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Abstract: The stability analysis of asynchronous sampled-data systems is studied. The
approach is based on a recent result which allows to study, in an equivalent way, the quadratic
stability of asynchronous sampled-data systems in a continuous-time framework via the use of
peculiar functionals satisfying a necessary boundary condition. The method developed here is
an extension of previous results using a fragmentation technique inspired from recent advances
in time-delay systems theory. The approach leads to a tractable convex feasibility problem
involving a small number of finite dimensional LMIs. The approach is then finally illustrated
through several examples.
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1. INTRODUCTION

Sampled-data systems have emerged quite recently when
digital controllers began to be used [Chen and Francis,
1995] and consist in continuous-time systems controlled,
most of the time, by a piecewise constant control input,
generally computed by digital devices like microprocessors
coupled with I/O devices. A somehow reasonable assump-
tion, which was to consider a constant sampling period,
has led to a well-rounded theory and a wide panel of
applications. However, in more recent applications, jitter,
computation delays, possible delays on the input/output 1

and data losses (arising in Networked Control Systems
[Zhang et al., 2001, Hespanha et al., 2007]) can affect the
regularity of the sampling period and may lead to an un-
stable behavior for the closed-loop system. To analyze and
overcome this problem of stability deterioration, several
approaches have therefore been developed.

Several works have been devoted to the stability anal-
ysis of such systems. In [Fridman et al., 2004, Suplin
et al., 2007], an input-delay based technique is considered
where the sampled state is identified to a delayed state as
x(tk) = x(t− τ(t)) where τ(t) = t− tk, t ∈ [tk, tk+1). It is
clear that the delay value is bounded from above by T , the
maximal sampling period. Thus delay-dependent stability
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1 which are most of the time not commensurable with the sampling
period

results can be used. However, the actual sawtooth shape
of the delay can be difficult to handle in that framework.
Continuous-time techniques based on impulsive/hybrid
systems [Naghshtabrizi et al., 2008, Seuret, 2009] use func-
tionals depending explicitly on τ(t). Due to the discontinu-
ity of τ(t) at sampling times tk, k ∈ N, the functionals were
built in such a way that the discontinuous terms vanish at
sampling instants. Such functionals also have the benefits
of considering exactly the constraint τ̇ (t) = 1 between
sampling instants. Robust techniques in continuous-time
have also been employed [Mirkin, 2007, Fujioka, 2009b]
and in discrete-time [Montestruque and Antsaklis, 2004,
Oishi and Fujioka, 2009, Fujioka et al., 2010] using small-
gain, passivity, IQCs and robust optimization techniques.

The approach considered here is based on recent results
on sampled-data systems analyzed using impulsive/hybrid
systems theory. It lies in the continuity of the recent
works [Seuret, 2010] in which the stability analysis was
done in a more general way. Indeed, in this paper, a
necessary condition the functionals must satisfy is con-
sidered and the engendered class includes the functionals
used in [Naghshtabrizi et al., 2008, Seuret, 2009] as par-
ticular cases. A very fundamental feature of this result
is the emphasis of the equivalency between continuous-
and discrete-time analysis. Indeed, it turns out that the
decrease of the continuous-time functionals is equivalent
to the decrease of the discrete-time Lyapunov function
at each sampling instants. A consequence of this result
consists in the relaxation of some positive definite ma-



trices 2 to indefinite ones. This makes the result more
flexible via the introduction of new degrees of freedom
and reduces the conservatism. Moreover, the necessary
conditions also provides a guideline for the construction
of new functionals.

According to this result, it turns out that this class of
functionals may contain integral quadratic terms leading
then to integral terms in the stability conditions. A way to
get rid of these integral is the use of the Jensen’s inequality,
similarly as for time-delay systems. Thus, following the
ideas of [Gouaisbaut and Peaucelle, 2006, .Gouaisbaut and
Peaucelle, 2006, Briat, 2008] where it has been emphasized
that fragmentation of integral terms in such functionals
are very often related to an efficiency increase, the same
procedure is then applied here to the functional considered
in [Seuret, 2010]. This leads to a sequence of results
providing sufficient conditions for the asymptotic stability
of asynchronous linear sampled-data systems.

The paper is structured as follows. In Section 2, the
problem is formulated. Section 3 states a fundamental
result on the equivalence between the stability notions in
discrete- and continuous-time. This result is then applied
to sampled-data systems in Section 4. Finally, some exam-
ples illustrate the approach in Section 5.

The notations are quite standard. Given two symmetric
matrices A,B, A ≻ B stands for A − B positive definite.
The identity matrix of dimension n is denoted by In while
0m×p is the 0 matrix of dimensionm×p. A matrix obtained
by stacking matrices U0, U1, . . . , Un with U0 on the top is
denoted by colni=0{Ui}. For a given function x : R+ → R

n

and an increasing sequence {tk}k∈N in R+, the function
κk is defined, for k ∈ N, as

κk : [0, Tk] → R
n

τ → x(tk + τ).

The set of continuous functions mapping [0, T ] to R
n is

denoted by C([0, T ],Rn). If Tk ≤ T , k ∈ N and x ∈
C(R+,R

n) then obviously κk ∈ C([0, T ],Rn). Implicitly
defined symmetric elements in symmetric matrices are
denoted by ⋆.

2. PROBLEM FORMULATION

Consider the LTI continuous-time system

ẋ(t) = Ax(t) +Bu(t) (1)

where x ∈ R
n and u ∈ R

m are the system state and the
control input respectively. In this paper, we are interested
in aperiodic sampled-data based state-feedback control
laws of the form

u(t) = Kx(tk), t ∈ [tk, tk+1) (2)

where K is the controller gain. The time between two
successive sampling instants is defined as Tk := tk+1 − tk
and satisfies 0 < Tk < T . By integration of (1)-(2) over
[tk, tk + τ(t)], τ(t) = t− tk, we get

x(tk + τ(t)) = Ã(τ(t))x(tk)

Ã(τ(t)) = eAτ(t) +

∫ τ(t)

0

eA(τ(t)−θ)dθBK
(3)

2 whose positive definiteness was required by previously developed
theorems

for all t ∈ [tk, tk+1] and τ(t) ∈ [0, Tk]. When the sampling
period is constant (i.e. Tk = T for all k ∈ N), then the
stroboscopic model is given by

x(tk+1) = Ã(T )x(tk). (4)

It is well-known that the above discrete-time LTI system is
asymptotically stable if and only if the eigenvalues of the
stroboscopic map Ã(T ) lie within the unit disc. When the
sampling period is time-varying, the above condition true
for any sampling period is not sufficient anymore. Indeed,
it is possible to find distinct Schur matrices M1,M2 such
that their product M1M2 is not. A way to overcome
this difficulty is to use discrete-time Lyapunov stability
analysis tools; see e.g. [Suh, 2008, Oishi and Fujioka, 2009,
Fujioka et al., 2010] where constant or switched discrete-
time Lyapunov functions are considered.

3. EQUIVALENCE BETWEEN CONTINUOUS- AND
DISCRETE-TIME STABILITY

In this section, the fundamental question on the equiv-
alence of stability notions in discrete- and continuous-
time is considered. Indeed, since sampled-data systems are
analyzed in a continuous-time framework while, from the
stroboscopic point of view, they are discrete-time systems,
it seems important to clarify the correspondence between
the two domains. The following theorem states this corre-
spondence through the existence of a functional satisfying
a necessary boundary condition.

Theorem 1. [Seuret, 2010] Let V : Rn → R
+ be a function

for which there exist real numbers µ1, µ2, 0 < µ1 < µ2 <
+∞ and an integer number p > 0 such that

∀η ∈ R
n, µ1||η||

p ≤ V (η) ≤ µ2||η||
p. (5)

Then the two following statements are equivalent:

(i) ∀k ≥ 0, ∆V (k) = V (x(tk+1))− V (x(tk)) < 0;
(ii) There exists a continuous functional V1 : R ×
C([0, T ],R) → R, differentiable over [tk tk+1) satisfying

V1(Tk,κk) = V1(0,κk) (6)

for all k ∈ N and such that the functional

W(τ(t),κk) := V (x(t)) + V1(τ(t),κk(τ(t)))

satisfies
Ẇ(τ(t), κk) =

d

dt
W(τ(t), κk) < 0 (7)

for all τ ∈ [0, Tk], k ∈ N− {0}.

Moreover, if one of these two statements is satisfied, the
solutions of system (1)-(2) are asymptotically stable.

Proof :

In the following, we drop the dependence on time t for
simplicity. Let us consider a given time interval [tk, tk+1),
k ∈ N.

Proof of (ii) ⇒ (i). Assume (ii) is satisfied, a simple
integration of inequality (7) over [tk, tk+1] implies (i) using
the boundary condition (6).

Proof of (i) ⇒ (ii). Assume now (i) holds. Following the
idea of [Peet et al., 2009, Lemma 2], define the functional

V1(τ,κk) = −V (x) + τ/Tk∆V (k).

Note that V1 is indeed a functional since it involves ∆V (k)
which depends on x(tk) = κk(0), x(tk+1) = κk(Tk)



and x(t) = κk(t − tk) for all t ∈ [tk, tk+1]. Simple
computations show that this functional satisfies (6) and
after substitution into (7) we get

Ẇ =
1

Tk

∆V (k) < 0. (8)

Hence we have ∆V (k) < 0 and (i) holds. The equivalence
is proved.

From the discrete-time Lyapunov theorem, the equilibrium
of the discrete-time system is asymptotically stable. Con-
sequently, x(tk) tends to zero as tk tends to infinity.

The end of the proof consists in ensuring that the Lya-
punov function V (x(t)s) remains bounded between sam-
pling instants, i.e. for t ∈ [tk, tk+1). From (5), we have

V (x(t)) ≤ µ2||Ã(τ)x(tk)||
p for any τ ∈ [0, Tk] ⊂ [0, T ],

t ∈ [tk, tk+1). Since the function

Ã : [0, T ] → R
n×n

is continuous and bounded over [0, T ] then there exists

a positive scalar µm > 0 such that ||Ã(θ)|| ≤ µm for
all θ ∈ [0, T ]. This implies that V (x(t)) ≤ µ2µ

p
m||x(tk)||

p

and that the continuous-time Lyapunov function V (x(t))
is bounded between sampling instants. Hence, V (x(t))
converges uniformly asymptotically to 0 when t → +∞.
The proof is complete. �

Remark 3.1. When a discrete-time quadratic Lyapunov
function V (x) = xTPx with P = PT ≻ 0 is chosen, then
statement (i) is equivalent to saying that

Ã(θ)TPÃ(θ)− P ≺ 0 (9)

for all θ in the interval of admissible (time-varying) sam-
pling periods. Note that the above problem is a semi-
infinite dimensional convex feasibility problem which is
difficult to solve due to the presence of exponential terms
in Ã(T ) [Hetel et al., 2008, Fujioka, 2009a, Oishi and
Fujioka, 2009]. As we shall see later, the obtained LMI
conditions using statement (ii) are still semi-infinite but
linear in the sampling-period and hence easy to check.
They provide thus a good alternative to the discrete-
time stability condition provided that the functional V1

is suitably chosen.

Remark 3.2. The reason for introducing functionals is sim-
ple. Indeed, since continuous-time methods are employed
for discrete-time systems, we need to consider the inter-
sample behavior. The intersample behavior of the state is
exactly considered by choosing the functions κk as the
state of the continuous-time comparison system. Hence
the comparison system is an infinite dimensional system.
Similar ideas have been raised for the analysis of sampled-
data systems [Chen and Francis, 1990].

It is important to note that if a continuous-time quadratic
Lyapunov function (i.e. V (x(t)) = x(t)TPx(t) > 0 and

V̇ (x(t)) < 0 for x(t) 6= 0 and t ∈ R+) is used to prove
the stability of system (1)-(2), the obtained conditions
can be extremely conservative. Indeed, it is not difficult
to show that, when considering the stability of sampled-
data systems in a continuous-time framework, the above
continuous-time function may be locally increasing even if
the sampled-data system is asymptotically stable. What
really matters is the decrease of the Lyapunov function
when evaluated at the sampling instants (the standard

tk−1 tk tk+1 tk+2

V (t)

V (tk)

V (tk+1)
V (tk+2)

V (tk−1)

t

Wk

Wk−1

Wk+1

Fig. 1. Illustration of the proof of Theorem 1 where Wk :=
W(t− tk,κk)

discrete-time Lyapunov condition). The indefinite func-

tional V1 relaxes the continuous-time constraint V̇ < 0
into V̇ + V̇1 < 0 allowing V to be locally increasing, as
illustrated in Fig. 1.

In the literature, several works introduced functionals with
different V1 satisfying the necessary conditions of Theorem
1 [Naghshtabrizi et al., 2008, Fridman, 2010, Seuret, 2009].
However, these results are based on Lyapunov-Krasovskii-
like theorems and the involved V1 had to be positive.
Theorem 1 says that this positiveness is not necessary as
long as V1 satisfies the boundary condition (6). Finally, it
is also important to point out that no direct relationship
between the continuous- and discrete-time results was
emphasized in these previous works.

4. ASYMPTOTIC STABILITY OF ASYNCHRONOUS
SAMPLED-DATA SYSTEMS

Let us consider the asynchronous sampled-data linear sys-
tem (1)-(2) with sampling period in the interval [T−, T+]
where 0 ≤ T− < T+ < +∞. We will consider the standard
quadratic Lyapunov function

V (x) = xTPx (10)

for the discrete-time stability conditions. The goal is then
to provide a sufficient condition for ∆V (k) = V (x(tk+1))−
V (x(tk)) < 0 for all T− ≤ tk+1 − tk ≤ T+. This problem
falls into the framework of Theorem 1 and hence admits
an equivalent continuous-time formulation.

In order to refine the stability conditions proposed in
[Seuret, 2010], a fragmentation of the interval [tk, t] in
N > 0 disjoint parts is performed and a functional is
built for the obtained fragmented system. Using such a
formulation the following theorem, providing a sufficient
condition for stability of (1)-(2), is obtained.

Theorem 2. The system (1)-(2) is asymptotically stable
for any time-varying sampling period in [T−, T+] if there
exist constant matrices P = PT ≻ 0, Ri = RT

i ≻ 0,
i = 0, . . . , N−1 and U = UT ∈ R

n×n, S = ST ∈ R
nN×nN ,

Q ∈ R
nN×n and Y ∈ R

n(N+1)×nN such that the LMIs

Ψ1 + T−(Ψ2 +Ψ3) ≺ 0, Ψ1 + T+(Ψ2 +Ψ3) ≺ 0

[

Ψ1 − T−Ψ3 T−Y

⋆ −α−R̄

]

≺ 0,

[

Ψ1 − T+Ψ3 T+Y

⋆ −α+R̄

]

≺ 0
(11)

hold where α− = NT−, α+ = NT+ and



Ψ1 = 2NT
0 PM0 − ΛT

12[SΛ12 + 2QN2]− 2Y Λ12

Ψ2 = MT R̃M + 2(Λ12∆
2
NM)TSΛ12 + 2QΛ2]

Ψ3 = N2UN2, R̄ = diag{Ri}i=0,...,N−1

R̃ = ∆T
N [ΛT

1 R̄Λ1 − ΛT
2 R̄Λ2]∆N

(12)

with

Mi =
[

0n×in A 0n×(N−i−1)n BK
]

M =
N

col
i=0

{Mi}, N0 =
[

In 0n×Nn

]

N2 =
[

0n×Nn In
]

Λ1 =
[

I(N+1)n 0(N+1)n×n

]

Λ2 =
[

0(N+1)n×n I(N+1)n

]

Λ12 = Λ1 − Λ2

∆N = diag
i=0,...,N

{

√

N − i

N
In

}

.

(13)

Proof : The proof is divided in 4 parts. The first one
concerns the fragmentation of the interval [tk, t] in N parts
and the derivation of the ’fragmented’ system. The second
one addresses the construction of a suitable functional
V1 complying with the fragmentation. The third part is
essentially tedious calculations, mainly consisting of the
differentiation of V + V1 and the bounding of integral
terms to finally obtained semi-infinite matrix inequalities.
At end, the fourth part discusses how to equivalently turn
to problem into a finite dimensional convex feasibility
problem involving LMIs.

Part 1. Let us consider a sampling instant tk and the
partition of the corresponding interval [tk, t], into N subin-
tervals, by considering the fragmented sampling instant
tik(t, tk) defined as

tik(t) = tk +
N − i

N
(t − tk) =

i

N
tk +

N − i

N
t. (14)

Note that the tik’s lie in the interval [tk, t] since they
are defined as convex combinations of the bounds on the
interval. Define the variable xi(t), i = 1, . . . , N to be

xi(t, tk) := x(tik(t)) = x

(

tk +
N − i

N
(t− tk)

)

for all t ∈ [tk, tk+1). It is clear that the xi’s represent a
fragmentation of the variable x over the interval [tk, t) ⊂
[tk, tk+1]. Their derivative is given by

d

dt
{x(tik(t))} =

N − i

N
(Axi(t, tk) +BKx(tk)) (15)

and we define ẋ(tik(t)) as

ẋ(tik(t)) = Axi(t, tk) +BKx(tk).

The augmented vector X(t) is defined as

X(t) = col
i=0,...,N

{xi(t, tk)} (16)

and the vector Ẋ as
Ẋ(t) = col

i=0,...,N
{ẋ(tik(t))}

= MX(t)
(17)

where M is defined in (13). The time-derivative of X(t)
obeys

d

dt
{X(t)} = col

i=0,...,N

{

d

dt
{x(tik(t))}

}

=
d

dt
{X(t)} = ∆2

NMX(t)

where M and ∆N are defined in (13).

Part 2. From now on, the dependence on time will be
dropped when no confusion arises and the shorthand xi

k

will be used to denote xi(t, tk). Let us introduce the
column vector ζk as

ζk = col
i=0,...,N−1

{xi
k − xi−1

k
}. (18)

and the functional

V1(τ,κk) := (Tk − τ)ζTk [Sζk + 2Qx(tk)]

+(Tk − τ)

N−1
∑

i=0

∫ ti
k
(t)

t
i−1

k
(t)

ẋ(s)TRiẋ(s)ds

+(Tk − τ)τx(tk)
TUx(tk)

(19)

defined for some positive definite matrices Ri = RT
i ≺ 0,

i = 0, . . . , N−1 and symmetric matrices S = ST , U = UT .
Note that the matrices U and S can be chosen indefinite
since this functional satisfies the necessary boundary con-
dition (6), i.e. V1(0,κk) = V1(Tk,κk) = 0.

Part 3. Following the condition (7), the differentiation of
W = V + V1 leads to:

Ẇ(τ,κk) = 2xTP ẋ− ζk[Sζk + 2Qx(tk)]

+2(Tk − τ)
d

dt
ζk[Sζk +Qx(tk)]

+(Tk − 2τ)x(tk)
TUx(tk)

+(Tk − τ)Γ1 + Γ2

(20)

where

Γ1 =

N−1
∑

i=0

d

dt
{tik(t)}ẋ(t

i
k(t))

TRiẋ(t
i
k(t))

−

N−1
∑

i=0

d

dt
{ti−1

k
(t)}ẋ(ti−1

k
(t))TRiẋ(t

i−1
k

(t))

=

N−1
∑

i=0

N − i

N
ẋ(tik(t))

TRiẋ(t
i
k(t))

−

N−1
∑

i=0

N − i+ 1

N
ẋ(ti−1

k
(t))TRiẋ(t

i−1
k

(t))

Γ2 = −

N−1
∑

i=0

∫ ti
k
(t)

t
i−1

k
(t)

ẋ(s)TRiẋ(s)ds.

(21)

Using the compact notations

ẋ(t) = M0X(t), x(t) = N0X(t)

x(tk) = N2X(t), Ẋ(t) = MX(t)

ζk(t) = Λ12X(t),
d

dt
ζk(t) = Λ12

d

dt
X(t) = Λ12∆

2
NMX(t)

(22)

with matrices defined in (13) we obtain

Ẇ(τ,κk) ≤ XT
{

2NT
0 PM0 − ΛT

12[SΛ12 + 2QN2]

+(Tk − τ)(Λ12∆
2
NM)T [2SΛ12 + 2QN2]

}

X

+(Tk − τ)Γ1 + Γ2.

(23)

Using (22), the term Γ1 is rewritten as

Γ1 = ẊT diag{R0,
N − 1

N
R1,0, . . . ,

1

N
RN−1,N−2, 0n}Ẋ

= ẊT∆T
N diag{R0, R1,0, . . . , RN−1,N−2, RN−1}∆N Ẋ

where Ri,i−1 = Ri − Ri−1, i = 1, ..., N − 1. Note that,
in the second expression, the matrix RN−1 on the last
diagonal block have been artificially introduced. This does
not change the overall expression since the last diagonal
block of ∆N is zero. Finally, we obtain

Γ1 = ẊT∆T
N

([

R̄ 0nN,n

0n,nN 0n

]

−

[

0n 0n,nN

0nN,n R̄

])

∆N Ẋ

= ẊT∆T
N

[

ΛT
1 R̄Λ1 − ΛT

2 R̄Λ2

]

∆N Ẋ

= ẊT R̃Ẋ

(24)

where the matrices Λ1,Λ2 and R̃ are defined in (13).



Consider now the integral term Γ2. Each integral term of
the sum can be bounded as

−

∫ ti
k

t
i−1

k

ẋT (s)Riẋ(s)ds ≤ −2XT Yi[x(t
i
k(t)) − x(ti−1

k
(t))]

+δik(t)X
T YiR

−1
i

Y T
i X

(25)

where Yi ∈ R
n(N+1)×n, i = 0, . . .N − 1 are arbitrary

matrices and δik(t) := tik(t)−ti−1
k (t). From the definition of

the tik’s, it is easy to see that the quantity δik(t) is equal to
(t − tk)/N = τ/N . Then summing the above inequalities
over i ∈ {0, . . .N − 1} leads to

Γ2 ≤ −2XT

(

N−1
∑

i=0

Yi[x(t
i
k(t)) − x(ti−1

k
(t))]

)

+
τ

N
XT

(

N−1
∑

i=0

YiR
−1
i

Y T
i

)

X.

(26)

By introducing the matrix Y = [Y0, Y1, . . . , YN−1], the
previous inequality are rewritten as

Γ2 ≤ −2XT Y ζk +
τ

N
XT Y R̄−1Y TX (27)

where R̄ = diagi=0,...,N−1{Ri}.

Finally using (22), (23), (24) and (27) we obtain

Ẇ(τ,κk) ≤ XT [2NT
0 PM0 − ΛT

12[SΛ12 + 2QN2]

−2Y Λ12 + (Tk − τ)MT R̃M

+(Tk − τ)(Λ12∆
2
NM)T [2SΛ12 + 2QN2]

+(Tk − 2τ)NT
2 UN2 +

τ

N
Y R̄−1Y T ]X

(28)

or equivalently

Ẇ(τ(t), κk) ≤ X(t)TΨ(τ(t))X(t) (29)

over t ∈ [tk, tk+1) with

Ψ(τ) = Ψ1 + (Tk − τ)Ψ2 + (Tk − 2τ)Ψ3 + τΨ4 (30)

where the Ψi’s for i = 1, . . . , 3 are given in (12) and
Ψ4 = Y T R̄−1Y/N . Then asymptotic stability is ensured if

Ẇ(τ(t),κk) < 0 over t ∈ [tk, tk+1) or equivalently if

Ψ1 + (Tk − τ)Ψ2 + (Tk − 2τ)Ψ3 + τΨ4 ≺ 0 (31)

for all (τ, Tk) ∈ [0, Tk]× [T−, T+]. We have thus obtained a
semi-infinite matrix inequality depending affinely on both
τ and Tk.

Part 4. Turning the above semi-infinite dimensional prob-
lem into an equivalent finite dimensional one is easy in
this case. Indeed, since Ψ(τ) depends linearly on τ then,
using a convexity argument, it is necessary and sufficient
to check the feasibility of the condition on the vertices of
the set [0, Tk], that is, on the set {0, tk}. This yields the
underlying matrix inequality problem

Ψ1 + Tk(Ψ3 +Ψ4) ≺ 0, Ψ1 + Tk(Ψ2 −Ψ4) ≺ 0 (32)

which is also linear in Tk. Since the sampling period is
not constant and belongs to [T−, T+], using the same
reasoning as above, we need to check the feasibility of the
above at the vertices of the set [T−, T+], i.e. for values in
{T−, T+}. This leads to the conditions of Theorem 2 after
some Schur complements (to linearize the rational term
Ψ4). The proof is complete. �

The following immediate corollary deals with constant and
known sampling period.

Corollary 3. The system (1)-(2) is asymptotically stable
with constant sampling period T if there exist constant

Theorems Ex.1 Ex.2

[Fridman et al., 2004] [0, 0.869] [0, 0.99]
[Naghshtabrizi et al., 2008] [0, 1.113] [0, 1.99]

[Fridman, 2010] [0, 1.695] [0, 2.03]
[Liu and Fridman, 2009] [0, 1.695] [0, 2.53]

[Seuret, 2010] [0, 1.721] [0, 2.51]

Th.2, N = 1 [0, 1.721] [0, 2.51]

Th.2, N = 3 [0, 1.727] [0, 2.62]

Th.2, N = 5 [0, 1.728] [0, 2.64]

Table 1. Interval of allowable asynchronous
samplings for Examples 1 and 2.

matrices P = PT ≻ 0, Ri = RT
i ≻ 0, i = 0, . . . , N − 1 and

U = UT ∈ R
n×n, S = ST ∈ R

nN×nN , Q ∈ R
nN×n and

Y ∈ R
n(N+1)×nN such that the LMIs

Ψ1 + TΨ2 + TΨ3 ≺ 0
[

Ψ1 − TΨ3 TY

⋆ −αR̄

]

≺ 0
(33)

hold where the matrices Ψ1, Ψ2 and Ψ3 are given in
Theorem 2 and α = NT .

Remark 4.1. Note that taking N = 1, the functionals
defined in [Seuret, 2010] and in [Fridman, 2010] (but with
U = 0) are retrieved.

It is also important to mention that the problem of
pathological sampling is automatically included in the
conditions. Indeed, the set [T−, T+] cannot contain such

sampling period since in this case, the matrix Ã(T o), for
some pathological sampling period T o, is not Schur and
hence conditions of Theorem 2 and Corollary 3 cannot be
satisfied. Thus there is no need of considering pathological
sampling periods separately.

5. EXAMPLES

To illustrate the approach let us consider system (1)-(2)
with matrices

(1) Ex.1 [Fridman et al., 2004, Naghshtabrizi et al., 2008]

A =
[

0 1
0 −0.1

]

, BK =
[

0 0
−0.375 −1.15

]

(2) Ex.2 [Fridman, 2010]

A =
[

−2 0
0 −0.9

]

, BK =
[

−1 0
−1 −1

]

(3) Ex.3 [Gu et al., 2003, Michiels et al., 2004]

A =
[

0 1
−2 0.1

]

, BK =
[

0 0
1 0

]

Tables 1 and 2 summarize the results obtained in the
literature and using Theorem 2. A first remark concerns
the reduction of conservatism with respect to the existing
results dealing with the continuous-time approaches when
N = 1 (except for example 2 with the method of [Liu and
Fridman, 2009]). We can also see that, as noticed in Re-
mark 4.1, Theorem 2 with N = 1 leads to identical results
as those of [Seuret, 2010]. Moreover, as expected when the
fragmentation order N is increased, the conservatism is
reduced.

The system of Example 3 exhibits a singular behavior.
Indeed, while the corresponding continuous-time system
ẋ(t) = (A+BK)x(t) is unstable, and so is discrete-time for
sufficiently small sampling period, it becomes stable when



Theorems Ex.3

[Fridman et al., 2004] -
[Naghshtabrizi et al., 2008] -

[Fridman, 2010] -
[Liu and Fridman, 2009] -

[Seuret, 2010] [0.40, 1.11]

Th.2, N = 1 [0.40, 1.11]

Th.2, N = 3 [0.40, 1.28]

Th.2, N = 5 [0.40, 1.31]

Table 2. Interval of allowable asynchronous
samplings for Example 3.

the sampling period is larger than a threshold, determined
to be 0.4. This type of systems cannot be considered with
previous techniques, see e.g [Naghshtabrizi et al., 2008, Liu
and Fridman, 2009, Fridman, 2010] since the stability of
the corresponding continuous-time is a necessary condition
(encoded in the LMIs). It is indeed well-known that if the
system is stable in continuous-time, then it will be stable
for a sufficiently small sampling period, the converse is, in
general, not true, as nicely illustrated by this example.

The provided method allows to consider these systems due
to the presence of the indefinite matrix U in LMIs (11)

and (33) which are obtained when Ẇ(τ,κk) is evaluated
at τ = 0. Indeed, when τ = 0, the system is pointwisely
a continuous-time system and becomes a sampled-data
system when τ > 0. The matrix U allows to ’compensate’
the instability of the system in the region [0, 0.4]. Note that
in this region the Lyapunov function V increases to finally
decrease in the region [0.4, 1.31] to make the Lyapunov
function globally decreasing (or decreasing in mean) over
[0, θ] with θ ∈ (0.4, 1.31].
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