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Abstract:

The hydrological cycle for high latitude regions irsherently linked with the seasonal
snowpack. Thus, accurately monitoring the snowldeptl the associated aerial coverage are
critical issues for monitoring the global climatgsem. Passive microwave satellite
measurements provide an optimal means to moni@rstitowpack over the arctic region.
While the temporal evolution of snow extent can dieserved globally from microwave
radiometers, the determination of the correspondimgv depth is more difficult. A dynamic
algorithm that accounts for the dependence of ti@owave scattering on the snow grain
size has been developed to estimate snow depth 8petial Sensor Microwave/Imager
(SSM/1) brightness temperatures and was validatedt the U.S. Great Plains and Western
Siberia.

The purpose of this study is to assess the dynalgarithm performance over the entire high
latitude (land) region by computing a snow deptHtryear field for the time period 1987 -
1995. This multi-year average is compared to theb@l Soil Wetness Project-Phase2
(GSWP2) snow depth computed from several statbefrt land surface schemes and
averaged over the same time period. The multi-y@arage obtained by the dynamic
algorithm is in good agreement with the GSWP2 sdepth field (the correlation coefficient
for January is 0.55). The static algorithm, whislswanes a constant snow grain size in space
and time does not correlate with the GSWP2 snowhdiegld (the correlation coefficient with
GSWP2 data for January is -0.03), but exhibits iy \egh anti-correlation with the NCEP
average January air temperature field (correlatmefficient -0.77), the deepest satellite snow
pack being located in the coldest regions, wheeestiow grain size may be significantly
larger than the average value used in the staggrighm. The dynamic algorithm performs
better over Eurasia (with a correlation coefficienth GSWP2 snow depth equal to 0.65)

than over North America (where the correlation Gorint decreases to 0.29).
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1. Introduction

Several studies have shown the importance of takitm account the large spatial scale
snowpack evolution in order to better understartiariver discharge regimes (Rango, 1997;
Cao et al., 2002; Rawlins et al., 2006). As thessrs supply fresh water to the Arctic Ocean,
a modification in their discharge, induced by ang® in snow fall, could lead to a
modification in the thermohaline circulation. Mowen, the snowpack is an important
component of the climate system and its depleti@ay mmcrease global warming through
feedback processes (Hall, 2004). Therefore, theitoramg of the snow depth and its extent is
a key issue to understand the hydrological cycla it relation to climate change at high

latitudes.

Over high latitude regions, in-situ measuremergsvary sparse and do not allow the accurate
estimation of the global snowpack. Passive micr@nsatellite sensors are well suited for this
purpose as they are sensitive to both snow extehsaow depth. Yet, snow depth retrieval
from SSM/I brightness temperature is difficult besa snow emissivity is also sensitive to the
snow grain size (Tsang et al., 2000) which is highhriable and depends on the bulk
temperature gradient through the snowpack (SturthBanson, 1997). In order to take into
account the variability of the snow grain sizejnavs depth dynamic retrieval algorithm has
been developed and validated over the Northernt@®aas (Josberger and Mognard, 2002;
Mognard and Josberger, 2002) and over West Sil§&nigppa et al.,, 2004; Grippa et al.,

2005a; Boone et al., 2006).

The main objective of this study is to validate thgnamic algorithm over the entire high

latitude regions, by comparing the satellite sn@ptd multi-year average from 1987 to 1995



to the snow depth multi-year average over the same period from a land surface scheme
(LSS) reanalysis product obtained from the Globail B/etness Project Phase 2 (GSWP2).
GSWP?2 drives several state-of-the-art LSS using test quality atmospheric and land
surface databases, and long-term monitoring sitggdduce global land surface fluxes and
state variables (Dirmeyer et al., 2006), such asvstepth (SD) and snow water equivalent
(SWE). Hence, it is analogous to the NCEP atmospheanalysis program. For this snow
study, the SD obtained from the static retrievgbathm developed by Chang et al. (1987)
(which assumes a spatially and temporally constaotv grain size) is compared to the SD

from the dynamic algorithm.

2. Study area and datasets

This section describes the input satellite datal igethe snow depth retrieval algorithms, the
ancillary input data, the snow depth multi-yearrage used to validate the satellite retrieval
algorithms and the main study area characterislibe. vegetation and lake classifications
used for a more detailed validation are also pteseherein. The time period of this study
extends from October 1987 to September 1995, wisitche common time period for both

SSM/I and GSWP2 datasets.

2.1. Study area

The study area corresponds to the high latitudemegwith latitudes higher than 50° North.
Figure 1.a shows a topographic map of this regidre main vegetation zones consist of
steppe and agricultural areas at lower latitucdsggatand tundra at higher latitudes (fig. 1.b).
In addition, there are a large number of lakesha study domain, especially in North

America (fig. 1.c), which provides an additionattiar of diversity in the surface emissivities.

2.2. SSM/I data



The Special Sensor Microwave/ Imager (SSM/I) messithe earth emissivity in seven
microwave frequencies with horizontally and veiticgolarized channels at 19.35, 37 and
85.5 GHz and a vertically polarized channel at 22&@Hz.. Since July, 1987, this instrument
has been operating on board the operational Defétsieorological Satellite Program

satellite series (DMSP F-8, F-11 and F-13 platfgrni®r these frequencies Chang et al.
(1987), showed that the 37 GHz channel is the aiasuitable to study the snowpack when
combined with the 19 GHz channel, which reducesetfiects of ground temperature and
atmospheric perturbations on changes in brighttesgeratures. Both the static and the
dynamic algorithms employ the spectral gradientjctvhis defined here as the difference

between the horizontally polarized 19 and 37 GHaclels.

Daily SSM/I data have been provided by the Natid®dabw and Ice Data Center (NSIDC),
mapped to the Equal Area SSM/I Earth Grid (EASEdBith a 25x25 krh resolution
(Armstrong et al., 1994). To minimise the spatiapg resulting from the swath width, the

daily data were averaged over pentads (5-daysgsrio

2.3. Ancillary input data for the dynamic algorithm

For cold snowpacks, the snow grain size growth rimarily driven by the temperature
gradient through the snowpack. In the dynamic digar, this gradient represents the
difference between the atmosphere/snow interfaeéerfed to herein as “air”) and the
ground/snow interface temperatures. For the airp&rature, the National Center for
Environmental Prediction (NCEP) global reanalysas lbeen used, available from the Joint
Institute for the Study of Atmosphere and OceaSAD) (Kalnay et al., 1996). The NCEP air

temperatures have been interpolated to the EAS&-#il averaged into pentads.

To estimate the temperature at the base of themukythe ground temperature simulated by

the Interaction between the Soil-Biosphere-Atmospl{{SBA) LSS is used. ISBA (Noilhan



and Mahfouf, 1996) is a state-of-the-art LSS whitds been developed at Météo-France.
Boone et al. (2006) explain in details how ISBA bagn run to obtain the soil temperature.
Briefly, ISBA has been used with the explicit sdiifusion option (Boone et al. 2000) with a
six-layer soil configuration with the highest vedi resolution at the surface. The uppermost
soil temperature (centred at 0.015m) is assumeedpiesent the temperature at the soil-snow
interface (at z=0). This approximation has negl@ilimpact, especially since monthly
averages are used in this study. ISBA was forcdd thie GSWP2 database to produce the
averaged pentad ground temperatures for a 13 peaisd (1982-1994) mapped into EASE-

grid

2.4. Evaluation data

The datasets used to validate or investigate thgasgehaviour of the retrieval algorithms,

namely the GSWP2 snow depth and the land covesifitation, are presented in this section.

2.4.1. GSWP2 snow depth

A crucial issue for remote sensing based algoritienglidation, particularly over the high
latitude regions, where in situ observations aré&reexely sparse. Grippa et al. (2004)
emphasized the difficulty in comparing local scdéd¢a to large scale averages. Indeed, point
observations are of limited value when looking atadover the relatively large spatial scales
considered herein. Chang et al. (2005) performgédastatistical analysis of snow gauge data
in the Northern Great Plains of the USA and estwadhe snow depth error to be about 22 cm
for one station on a 1°x1° grid cell. For this @ashe retrieval algorithm performance has
been evaluated by comparing to the global modeddbasalysis snow depth product from the

GSWP2 rather than to snow gauge data.

For this study, the GSWP2 snow depth fields repitear average of the snow depth output

from five LSS: MOSES (from the U. K. Met. Officex&er, UK), NOAH (National Center



for Environmental Prediction, Camp Springs, USAKIRP (NASA Goddard, Greenbelt,
USA), SSiB (Center for Ocean Land Atmosphere stjdi@alverton, USA) and SWAP
(Institute of Water Problems, Moscow, Russia). Tdusraging was performed to reduce the
influence of single LSS, which can be large at Higfitudes (Schlosser et al., 2000). The
input atmospheric forcing database used to drive UUBS is the NCEP-DOE reanalysis
(Kanamitsu et al., 2002), which has been “hybridizgorrected using observed and satellite
based precipitation data). These five LSS have baeifor the period from 1986 to 1995 and
a monthly multi-year average for the same periodihes SSM/I data (October 1987 to
September 1995) has been derived with a spatialutesn of 1°x1°. Figure 2.a presents the
average GSWP2 January snow depth. To quantify ghead amongst the 5 LSS, the inter-
model coefficient of variation (CV) was computeddtent of the standard deviation of the 5
LSS by their mean). Figure 2.b shows that glob#&tlythe regions with large snow depth (SD
> 30 cm), the scatter is low (CV~20%) while forimgs with lower SD, the CV increases to
40%, especially east of the Lena river The intedetospread is globally low and the
averaging (fig. 2.a) minimizes individual model4®a.

Figure 2.c shows the USAF/ETAC snow depth climajpléor January (Foster and Davy,
1988)which approximately represents a mean on a 30 pe@nd ending in the 1980s. The
manually edited snow depths were derived from maayrces based on axtensive
literature search. Figure 2.d shows the correspgntiCEP air January temperature field.
Globally, the snow accumulation areas are the Sam&TAC and GSWP2, except around
160°E, where ETAC shows a local maximum that is pgsent in with GSWP2. The
correlation coefficient between ETAC and GSWP2.830the differences come from errors
in snow depth field from GSWP2 (input errors, madetlrors, ...), errors in the ETAC
climatology (few in-situ data, interpolation methad) and also from the differences in the

time period considered in regions that have thengist response to climate warming. The



characteristic features of these snow depth fiatdssimilar, even if GSWP2 snow depths are
greater than ETAC. Even if this analysis can namatively address the accuracy of the
GSWP2 data, it is worthwhile to remember that tH&WF2 models are run with the best
atmospheric reanalysis, which takes into accoursitin measurements. Thus, GSWP2
products are an equivalent of a reanalysis andigothe best possible estimate of land
surface variables, like snow depth. Furthermorey ttover the same time period as SSM/I
data, unlike the USAF/ETAC snow depth fields.

Similar results (relatively low inter-model scateard the good agreement with in-situ based
snow depth climatology) have been found for theeothinter months. That is why GSWP2

snow depth fields have been used to validate tiieval algorithms.

Since the GSWP2 models simulate the land surfate ssing a 1°x1° resolution, the snow
depth over Alpine grid points represent valuesasponding to an average elevation (mostly
due to the spatially averaged air temperature). r8gions with high sub-grid (1°x1°)

topographic variability will likely be the leastligble in terms of the snow product.

2.4.2. Land cover classification

Since vegetation cover affects brightness tempersitihe correlation between GSWP2 data
and output from retrieval algorithms has been iigated over different vegetation areas. For
the high latitude regions, the main vegetationsgasare tundra and taiga. The classification
used in this study is the snow classification frBmrm et al. (1995). The different classes,
represented in figure 1.b, are as follows: watendta snow, taiga snow, maritime snow,
ephemeral snow, prairie snow, alpine snow andhay, have a spatial resolution of 0.5°x0.5°
that has been resampled to a 1°x1° spatial resaluBturm et al. (1995) describes the tundra
snow class as a thin, cold wind-blown snow areaallys found above or north of tree line,
with a snow depth range from 10 to 75 cm and withukk density of 0.38 g.cth The taiga

snow class corresponds to a thin to moderately temensity cold snow cover found in



cold climates in forests where wind, initial snoendity, and average winter air temperatures
are all low. The snow depth range from 30 to 120amd the bulk density is 0.26 g.ém
Over North America, tundra and taiga classes coespectively 41% and 23% of the whole
area, whereas over Eurasia tundra and taiga repinespectively 41% and 37% of the whole

area.

To check the retrieval algorithms performance arelas with different percentages of lakes,
data from the International Geosphere-Biosphergrar (IGBP) Earth surface classification
(Belward et al., 1999) is used and mapped to thibREASE-Grid projection. The IGBP
classification gives the percentage of lakes faheBASE-Grid pixel (fig. 1.c). The spatial
distribution of lakes greatly differs between Euimasnd North America: according to IGBP,
the areal extent covered with 10% of lakes or highenuch larger in North America than in

Eurasia.

3. Methods

This section presents the algorithms used in theeot study to retrieve snow depth from
SSM/I data. The first algorithm (section 3.1.) istatic algorithm developed by Chang et al.
(1987), extensively used and referred to in thexdiiure. The second algorithm is the dynamic
algorithm described in section 3.2. The third allfpon, presented in section 3.3., is called the
extended dynamic algorithm and computes the sngwthd@ regions where the dynamic

algorithm can not be applied due to the low temipaaeiations of the brightness temperature.

3.1. Static algorithm
The static algorithm developed by Chang et al. 7)98® retrieve snow depth from SSM/I

data is given by the following equation:

SD=alBG=alTye ~Them) (1)



where SD corresponds to the snow depth (in cm),58=m/K, SG is the spectral gradient
and Toxy is the SSM/I brightness temperature at a frequesicyx GHz for horizontal
polarization. The value of theecoefficient given above corresponds to a snowngsaie (i.e.
radius) of 0.3 mm. This algorithm has been widedgdifor the last two decades to retrieve
snow depth at continental to hemispheric scalesariGhet al., 1990), for climate studies
(Bamzai and Shukla, 1999, Wulder et al., 2007)bglenow depth monitoring studies (Foster
et al., 1997), and to assimilate into land surfacelels (Dong et al., 2007).

Kelly and Chang (2003) computed global maps ofialiatvarying coefficientsa, obtained
by re-calibrating the static algorithm using metdogical station data that are not time
dependent. Foster et al. (2005) derived an alteralgorithm that made systematic error
adjustments based on environmental factors inctudiimest cover and snow morphology.
Actually, they defined, for each snow class fromrBt et al. (1995), a correction parameter
which changes each month. Nonetheless, this caeffidoes not have interannual variability
and within a class the snow grain size is suppasdoe homogeneous. These algorithms,
based on the Chang et al. (1987) initial formulatiallow spatially and even temporally
varying coefficients but do not take into accoung tinterannual snow crystal temporal

evolution for each grid cells as do the dynamic exignded algorithms.

3.2. Dynamic algorithm

The dynamic algorithm (Josberger and Mognard, 200&gnard and Josberger, 2002) used
in this study takes into account the internal sraskqproperties, in particular the snow grain
size temporal and spatial variability. The Ther@aadient Index (TGI) represents the effect

of the bulk temperature gradient through the snak@ad is a proxy for snow grain growth:

_(To-Ta
TGI _IW )
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where Ty is the ground temperature (K) at the interfacevbet the ground and the snow and
Tais the air temperature (K) as defined in sectigh 2osberger and Mognard (2002) showed,
using numerous in situ snow depth measurementseirNbrthern Great Plains of the USA,

that a linear relationship exists between the spkgtadient SG and TGI:
G=aTGl +5 (3)

Given the definition of TGI (equation 2) and byfdientiating the above equation, snow

depth can be calculated as follows:

D= a(Tg _Ta) 4
 dSG/dt )

Grippa et al. (2004) used the snow depth USAF/ETWti-year average (Foster and Davy,
1988) to determine the slope of the linear relabetween SG and TGd, which has been set
to a temporally and spatially constant value etqod.5. Yet, ETAC climatology, which ends
in the 1980s, captures a snow cover regime quiterent from the studied time period.
Therefore, the amplitude of the retrieved snow lldElds might be biased compared to

GSWP2. Subsequently, this issue can be solved.

In equation 4, the snow depth can only be computkeen the spectral gradient dSG/dt is
changing in time, i.e. when the snow grain size@ndepth is evolving at an appreciable rate.
This happens early in winter season when a thinwpaok combined with cold air
temperatures generates rapid crystal growth. Toereénow depth is calculated using
equation 4 at the beginning of the snow seasorwdrah dSG/dt decreases below a certain
threshold (in this study 1 K/pentad, for more dstaiee Grippa et al., 2004), the static
algorithm is used (after the snowpack has beerblstiad), with thea coefficient (equation

1) calculated to match the last snow depth estirfrate the dynamic algorithm for each

pixel. A spatially varying coefficient is then det@ned for each pixel from the snow depth
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value at the time of the transition between dynaamd static algorithm (the transition is
usually reached in February depending on the locaind the climatic conditions). Note that
this spatially dependent coefficient differs fromeowinter year to the next. This combination
of snow depths retrieved using equation 4 and thgcsalgorithm, equation 1, presented

above will be hereafter referred to as the dynaatgorithm.

3.3. Extended dynamic algorithm

Over some areas, snow depth cannot be computedideethe spectral gradient does not
change much in time throughout the entire snowsebdSG/dt is always below the threshold
of 1K/pentad). For these locations the spatiallyywvey Chang algorithm is used with tlae

coefficient calculated as follows:

Dy (January)
(Toson — Tharn )(January)

where SDRrac(January) is the January snow depth from the ETA(tirpear average and
(Toiorr Thaze)(January) is the average spectral gradient fouakgn This method allows the

coefficient to vary in space but not in time.

For the retrieval algorithms and the GSWP2 da&ntlonthly snow depth multi-year average
was constructed by averaging the monthly fieldsnfil©ctober 1987 to September 1995. To
compare with the GSWP2 snow depth, the SSM/I-basetti-year averages have been
mapped to a 1°x1° resolution grid using a polarinclylcal equidistant map projection.

Finally, note that Greenland was not taken intooaaot in the results presented herein (as it

poses specific problems related to both the LS8dl@nretrieval algorithms).

4. Reaults

4.1. Global validation
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The GSWP2 January snow depth multi-year averageshewn figure 3.a, and the
corresponding SSM/I derived January snow depthirpedir averages from the three retrieval
algorithms are shown in figures 3.b, 3.c and 3l Three algorithms tend to underestimate
snow depth compared to GSWP2 (colour scales arthaaame in figure 3.a and figures 3.b,
3.c, 3.d). Some of the discrepancy between GWSRR the SSM/I estimates could be
removed by tuning tha coefficient for the static algorithm (equationaljd thea coefficient

for the dynamic algorithm (equation 4). Howevers thas not been done because the purpose

of this study is to derive an average snowpacktigss using currently available algorithms.

In Eurasia, the static algorithm (fig. 3.b) accuates snow over eastern Siberia (between
100°N and 180°N), whereas for GSWP2 and for theadyo and extended algorithms (fig.
3.a, 3¢, 3d) snow maxima are localized in westerd eentral Siberia (west of the Ural
Mountains and Yenisey river basin, in agreemenh wite location of maximum winter
precipitation patterns). Over North America, thatistalgorithm accumulates snow along an
east-west band located approximately at 60°N. TB&B2 data also shows snow in this
region, but the maximum snow accumulation is omer Rocky Mountains and the eastern
part of Canada in agreement with the location okimam winter precipitation patterns. The
characteristic features of snow accumulation regjioiotained with the dynamic and with the
extended dynamic algorithms agree globally with GBW Over Eurasia, the better
performance of the dynamic algorithms over theistdgorithm is particularly striking. Over
North America, the results of the visual comparisoe not as straightforward, but still the
dynamic algorithm features are in better agreemetit the GSWP2 field than the static
algorithm. The regions of deepest snow pack obtkwi¢h the static algorithm correspond to
the regions where the coldest winter air tempeeatare recorded (fig. 2.d). The correlation

coefficient between the January NCEP air tempegdfiefd (fig. 2.d) and the January static
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snow depth estimated field (fig. 3.b) is -0.77, aci larger value then for any of the

correlation coefficient obtained with the GSWP2wrdepth fields.

The dynamic algorithm (fig. 3.c) shows large regiovhere snow depth cannot be computed.
Some of these regions correspond to mixed pixelsgaihe coast line, to recurrent occurrence
of water in the snow pixel (succession of melt éseturing winter season, especially west of
the Ural Mountains), to topography effects (for Becky Mountains and the Urals), etc. For
the period 1987/1995 snow depth can not be compmusged) only the dynamic algorithm for
almost 34% of the study domain, this issue is stillder investigation. The extended
algorithm (fig. 3.d), that includes a priori infoation from the ETAC snow multi-year
average, shows accumulation in the Rocky Mountaires Ural Mountains and in the eastern

part of Alaska in agreement with GSWP2.

Monthly scatterplots, shown in figure 4, for thenter season from October to March,
compare the GSWP2 snow depth estimates to the siepths from both the static (first
column) and the dynamic (second column) algorithamy for the pixels over which the
dynamic algorithm is applied. In this figure, eachv corresponds to a winter month (from
October 1987/1994 to March 1988/1995). For eactiespdot, the y-axis corresponds to snow
depth from GSWP2 and the x-axis corresponds tdraeval algorithm. The coefficients of
correlation for the dynamic algorithm are of thensaorder of magnitude, and for November
to February are better, than the correlation coeffit between the USAF/ETAC climatology
and GSWP2. After January, the correlation betwegnanhic algorithm and GSWP2
decreases slightly. Boone et al. (2006), link thesrease with two factors. First, ice layer
formation, beginning of snow melt and reductionsitow grain size (arising from thermal
gradients) impact the retrieval algorithms. Secahere is an increasing inter-model spread in
time for GSWP2 snow depth multi-year average, b&eanf increasing LSS differences

during snow melt periods. Figure 5 presents sinsdatterplots, which correspond to GSWP2
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snow depth (cm) versus the static (first columrg #re extended dynamic (second column)
algorithms for the whole high latitude regions (epic Greenland). Apart from October, the
dynamic and extended dynamic algorithms always lsabetter correlation coefficient with

GSWP2 than the static algorithm, in agreement #ighobservations on the 2D plots (fig. 3)
in the preceding paragraph. There is no correldigiween static algorithm and GSWP2 from
December to March (correlation coefficient betw@®10 and -0.04). The poor performance
of the dynamic algorithm in October can be expldibg the high variability of the spectral

gradient in the very beginning of the snow seasdrile the snowpack is not well established.

Figure 5 shows that the plots GSWP2 versus exteattgatithm have a larger amount of
scattered points than the plots GSWP2 versus thandig algorithm. This could be explained
by the fit of the spatially variable coefficient in regions where the spectral gradaogs not

vary much in time.

Table 1 presents the correlation coefficients betw@&SWP2 and the three algorithms from
October to March for the entire domain (latitude$)) for Eurasia (latitude>50°N and
0°E<longitude<191°E) and for North America (latiexb0°N and 191°E<longitude<360°E).
For each correlation coefficient, a p-value hasnbeealculated to estimate the statistical
significance of the correlation. For the dynamid dne extended dynamic algorithm all the
correlation coefficients are highly significantl(dle p-values are under 0.001, except for the
dynamic algorithm in October over North America,and the p-value is 0.05, which is a low
value still significant). High p-values are obtadnfr the static algorithm after December,
these values correspond to correlation coefficiehdse to zero. The comparison between
Eurasia and North America reveals that the dynaeticeval methods perform better over
Eurasia than over North America. For example theetation coefficient between GSWP2
and the dynamic algorithm in January over Eurasi@a 65, whereas it decreases to 0.29 over

North America. In Canada, many investigators havauated the accuracy of SSMI snow
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depth derived from an adjusted static algorithmetluto the different land cover and obtained
a good performance in the prairie and high latittadest regions, but a poor performance in
the high latitude tundra region (De Seve et al971Derksen et al., 2003, Derksen et al.,

2004, Derksen et al., 2005).

4.2. Snow depth estimates over vegetation and lakes

To investigate the different behaviour of the SSMtived monthly snow depth over Eurasia
and North America, the vegetation and lake clastifbns described in section 2.4.2 has been
used. Tundra and taiga, the two predominant vagat&gpes in the high latitude regions, as
well as lake density modify brightness temperatuaad therefore snow depth estimates
(Duguay et al., 2005). Beside, GSWP2 models doinadtide lakes (only the land surface).
So, in regions with high percentage of lakes, tliter@nces between GSWP2 and SSM/I
based algorithms data are expected to be quitdisayt. For the following analysis, only the
snow estimates from the dynamic algorithm has hesd (not to be biased by the a priori
information included into the extended algorithm).

Microwave radiation at 37 GHz is absorbed by vdgmta(Chang et al., 1996). Yet,
Hallikainen et al. (1988) found that emissivities forests in Finland at 37 and 18 GHz are
very similar with values of 0.9 to 0.92. Thus, thfference between brightness temperature at
37 and 18 GHz might not be very sensitive to thee@loforest. The impact of vegetation on
the brightness temperature could influence the sthepth retrieval algorithm, but this impact

is very difficult to predict (compared to the statigorithm).

Figure 6 shows the correlation coefficients betw&®WP2 and the dynamic algorithm
versus time (October to March) for the entire dom#&r Eurasia and for North America as a
function of snow classification type. For the emtilomain (fig. 6.a), the correlation is
globally better over taiga, whereas over tundras itvery close (and a bit lower) to the

correlation over the global area. For Eurasia (@@idp), the correlation over tundra and taiga

16



are very similar. Thus, emissivity over Eurasia do®t seem to be very sensitive to the
distinction between tundra/taiga. For North Amef(fig. 6.c), the correlation is continuously
higher over taiga than over tundra. This differemoelld be attributed to the relatively
consistent distribution of snow properties in bbfeeest, whereas, in the open tundra, snow
depth could be highly variable and therefore veifficdlt to estimate because of wind
redistribution (Derksen et al., 2006). So, we dseavbe a difference in the behaviour over
tundra and taiga between the two continents: colytta Eurasia, North America seems to be
significantly sensitive to vegetation type.

Emissivity from snow-covered lakes is differentrfraerrestrial emissivity, yet the retrieval
algorithms have been designed to work on land sesfand do not take into account those
differences. Indeed, contrarily to other land stefa brightness temperature over lakes is
higher at 37 than 19 GHz during both the ice-fre@ &e-covered periods (Hall et al., 1981;
Soko et al., 2003; Duguay et al., 2005). The spkgnadient (difference between 19 and 37
GHz brightness temperature) will be smaller if ¢hare lakes in the SSM/I pixel and can even
be negative if the percentage of lakes is high ghowo both the static, dynamic and
extended dynamic algorithms will be affected. Tablgresents the mean percentage of lakes
over the entire high latitude regions, over Euraara over North America depending on the
vegetation cover (tundra, taiga and the regionabae). North America has almost twice as
many lakes as Eurasia (mean percentage of lakesNomgh America is 9.1%, whereas it
decreases to 5.6% over Eurasia) and for both camsnthe lake density is almost twice as
dense in the tundra than in the taiga regions.ifitieased lake density could be responsible
for the low correlation coefficients over North Anma and may also explain the different
behaviour over tundra and taiga between the twairgamts. Over North America the higher
lake density may affect the microwave signal prongda significantly better snow depth

retrieval in relatively lower lake density regiorise taiga region (mean lake density of 7%),
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than in the tundra (mean lake density of 11%), avlmVer Eurasia the difference in lake
density between tundra and taiga may be less mr@leswace it is in both cases lower than 7%.
To better characterize the influence of lakes am d¢brrelation between GSWP2 and the
dynamic algorithm, the correlation coefficients @akeen plotted (fig. 7) for different

percentage of lakes (above 10%, 20%, 30% and b&08®, 5% and 0%) for the entire study
domain (fig. 7.a), for Eurasia (fig. 7.b) and foomth America (fig 7.c). On this figure it

appears clearly that correlation is better for lakarse (less than 10%) than for lake rich

(more than 30%) grid cells, except for November Bedember in North America.

5. Conclusion and per spectives

Global snow depth estimates over the Northern Helmeise (above 50°N) have been derived
from SSM/I data, using a static algorithm and aadgit algorithm that takes into account the
temporal and spatial variations of the snow graiae. The static algorithm, which is widely
used, does not take into account the spatio-terhpareations of the snow pack and assumes
a constant snow grain size. The snow depth fiedtisnated from the static algorithm do not
correctly locates the regions of greater snow acdaton and do not significantly correlate
to the GSWP2 snow depth fields (correlation cogdfit-0.02 for January), but show a high
degree of correlation with the NCEP air temperafietels (correlation coefficient -0.77 for
January). The deepest satellite derived snow partighocated in regions with the lowest air
temperatures. This justifies our hypothesis tha¢ of the main driving factors for the
microwave emissivity of the snow pack is the snawairg size determined by the thermal
gradient in the snow pack. The dynamic algorithnmrexily locates the regions of greater
snow accumulation when compared to the GSWP2 oytmutelation coefficient 0.55 for
January, which can be considered good since tBareich snow depth variability in a 25 by

25 km pixel due to wind effects, microscale topping..).

18



Since the dynamic algorithm is restricted to regiovhere the spectral gradient varies with
time, an extended dynamic algorithm has been derikiat allows to compute a global 2D
satellite snow depth field and fills in the gapsandthe dynamic algorithm cannot be applied.
This extended dynamic algorithm also correlated wih the GSWP2 snow depth over the

whole high latitude regions (with a correlation ffimgent of 0.52 in January).

A comparison of the monthly satellite-derived snd@pth multi-year averages over Eurasia
and North America yields different behaviors. Okerasia the correlation with the models is
better than over North America. The differencesvieen Eurasia and North America could be
explained by the differences in lake density, whiin North America almost twice as high
as in Eurasia.

If the characteristic features of the GSWP2 snoptldéelds have been correctly reproduced
with the satellite derived fields, the amplitudetb& signal has to be fine-tuned. There is a
constant underestimation of the amplitude of thellst® fields compared to the GSWP2
fields (fig. 4 and 5), which could be overcome lailarating thea coefficient (equation 4).
We did not re-calibrate any of the models becahseggbal of this study was to determine if
characteristic features of the multi-year averagtabal snow depth in the high latitude
regions can be derived from passive microwave lgateteasurements, if the spatio-temporal

evolution of the snowpack is correctly taken inbo@unt.

In the future, the new satellite derived snow ddlis can be used to study the interannual
snowpack variability and better understand the dipdjical cycle in the high latitude regions.
A study over a test region, the Ob river basin ibeB8a, showed that the interannual
snowpack variability over the entire basin was eated to the Ob in situ discharge
measurements at the Ob estuary (Grippa et al.,&085correlation between the snowpack
variability and the summer vegetation activity ihe&ia has been found, that could be

explained by the protection provided by the snowp@aom the cold Siberian temperatures
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(Grippa et al., 2005b). We plan to extend theséned analyses to the whole high latitude
regions. Moreover, climate studies of the snow pacthe high latitude regions can also be

performed, since the satellite passive microwava gt is continuous since 1979.
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TABLE CAPTION

Table 1 Correlation coefficients from October to Marchtween the three algorithms
and GSWP2, for three regions: the entire domatitytie>50°N), Eurasia (latitude>50°N
and  0°E<longitude<191°E) and North  America  (latém80°N and
191°E<longitude<360°E). For each correlation caedfit, p-value has been calculated to
estimate the statistical significance of the catieh. In this table, only the p-values
above 0.001 are shown in brackets below the coiwalacoefficient (correlation

coefficients with p-values under 0.001 are highgyngicant).

Table 2 Mean percentage of lakes for tundra, taiga aothajlarea for the entire study

domain, for Eurasia and for North America.
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FIGURE CAPTION

Figure I Maps of different parameters characterizing thighhlatitude regions:
topography from NGDC 5 minutes Digital Elevation 8&b (a.), snow classification from

Liston and Sturm, 1998 (b.) and percentage of |&kas IGBP (c.).

Figure 2 GSWP2 snow depth inter-model mean in cm averagea 1988 to 1995 (a.),
inter-model coefficient of variation (standard ddion/mean, b.), snow depth mean from
USAF/ETAC in cm (c.) and NCEP air temperature in&raged from 1988 to 1995

(d.), for January.

Figure 3 Snow depth (cm) multi-year average for Janua88811995) from GSWP2

(a.), static algorithm (b.), dynamic algorithm (ar)d extended dynamic algorithm (d.).

Figure 4 Scatter plots GSWP2 versus the static (first moly and the dynamic
algorithms (second column) with only the pixels owhich the dynamic algorithm is
applied. For all the plots the y-axis correspor@&EWP2 snow depth (cm) and the x-
axis corresponds to snow depth (cm) estimates w&atge or dynamic algorithm. Each
row corresponds to a month (from October to Mardle linear regression fits (solid
lines, with its equation in the top left-hand cornaf each plot), the correlation
coefficients and the line y=x (dashed lines) arsoathown. Greenland has been

eliminated.

Figure 5 Scatter plots GSWP2 snow depth (cm) versus thte gfirst column) and the
extended dynamic algorithms (second column) snopthd¢écm) for the whole high

latitude regions (except Greenland). Each row spoads to a month (from October to
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March). The linear regression fits (solid linesthwits equation in the top left-hand corner

of each plot), the correlation coefficients andlthe y=x (dashed lines) are also shown.

Figure 6 Plots of correlation coefficients between GSWIRA dynamic algorithm (y-

axis) for each month from October to March (x-axa)the entire domain (a.), Eurasia
(b.) and North America (c.). For each plot, cottielas over the whole area (black solid
line), over tundra (black dotted line) and overg#ai(black dashed line) are shown.

Classification between tundra and taiga comes trmton and Sturm, 1998 (fig. 1.b).

Figure 7 Plots of correlation coefficients between GSWIR# dynamic algorithm over
regions with more than 30% (black dotted line witimarkers), 20% (black dotted line
with square markers), 10% (black dotted line witdwd triangle markers) of lakes and
less than 10% (black dashed line with triangle megk 5% (black dashed line with
diamond markers) and 0% (black dashed line withatkers) of lakes and the whole area
(black solid line) for the entire domain (a.), Esiea(b.) and North America (c.). The lake

classification comes from IGBP (fig. 1.c).
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Table 1:

Oct Nov Dec Jan Fev Mar
. -0.03 -0.04 0.02
Entire Statie 045 038 010 (p=007) (p=0.01) (p=0.26)
domain Dynamic 0.33 0.60 0.54 0.55 0.47 0.47
Extended 0.23 0.48 0.49 0.52 0.49 0.47
. 0.01 -0.04 -0.03
e rasia Static 0.62 0.50 0.18 (p=0.42)  (p=0.01)  (p=0.15)
Dynamic 0.40 0.68 0.63 0.65 0.56 0.50
Extended 0.29 0.53 0.57 0.61 0.59 0.52
. 0.01 -0.02
Static 0.27 0.27 (p=0.95) -0.11 (p=0.45) 0.16
North 013
America Dynamic (p=0.05) 0.42 0.33 0.29 0.33 0.39
Extended 0.20 0.46 0.35 0.33 0.33 0.36
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Table 2:

Entire domain Eurasia North America
Global Tundra Taiga Global Tundra Taigp Global dman Taiga
Mean
% of 6.8% 8.5% 4.4% 5.6% 7% 3.2% 9.1% 11% 7%
lakes
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Figure 1
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Figure 2

a.Mean SD models GSWP2 b.CV=100*std/mean
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Figure 3
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Figure 4

Figure 5:
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Figure 7
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