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Vibrations of a nonlinear coupled parametrically and self-excited oscillators driven by an external harmonic force are presented in the paper. It is shown that if the force excites the system inside the principal parametric resonance then for a small excitation amplitude a resonance curve includes an internal loop. To find the analytical solutions the problem is reduced to one degree of freedom oscillators by applications of Nonlinear Normal Modes (NNMs). The NNMs are formulated on the basis of free vibrations of a nonlinear conservative system as functions of amplitude. The analytical results are validated by numerical simulations and an essential difference between linear and nonlinear modes is pointed out.

Introduction

Self-excited systems are one of the most interesting and common in mechanical engineering theory and practice [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. The response of this type of systems is represented by periodic limit cycles which can be stable, then the self-excitation is called soft, or unstable, called hard or catastrophic.

Another, well known and intensively studied are parametric vibrations which are generated by periodically changing in time parameters. Dynamics of a parametrically excited system is observed by, so called, parametric resonances where vibration amplitudes increase reaching large values [START_REF] Cartmell | An Introduction to Linear, Parametric and Nonlinear Vibrations[END_REF].

Interesting dynamical phenomena can be observed when both of mentioned above vibrations meet together at the same time. Then interactions between two different types of vibration take place. Such a situation may arise in many mechanical engineering structures.

As an example we can mention dynamics of a helicopter's rotor blade, while during the rotation due to varying blade incidence angle, the stiffness of the blade is changing periodically. Under flutter conditions caused by air flow the interaction of both parametric and self-excitation takes place. Moreover, due to nonlinear coupling various vibration modes are coupled as well.

Tondl [START_REF] Tondl | On the interaction between self-excited and parametric vibrations[END_REF] and co-authors [START_REF] Tondl | Cancelling of elf-Excited Vibrations by Means of Parametric Excitation[END_REF], [START_REF] Tondl | The effect of parametric excitation on a self-excited three-mass system[END_REF] considerably contributed in the analysis of interactions of parametric and self-excited vibrations. They studied dynamics of self-excited systems of van der Pol's type driven by Mathieu parametric excitation. It has been found there that in wide intervals of excitation frequency the response of the system is quasi-periodic, and observed by quasi-periodic limit cycles on Poincaré maps. However, near the parametric resonances, self-excited frequency is quenched and the response of the system is periodic, represented by singular points on Poincaré maps. Those regions are sometimes called "frequency synchronisation regions", due to the fact of the synchronisation of self-and parametric excitation frequencies. Extension of the works concerning parametric and self excited systems on bifurcation analysis and also chaotic or hyperchaotic dynamics can be found e.g. in [START_REF] Abadi | Nonlinear Dynamics of Self-Excitation in Autoparametric Systems[END_REF]- [START_REF] Verhurlst | Quenchening of self-excited vibrations[END_REF].

The behaviour of the parametrically and self-excited system can completely change if the system is additionally forced by external force. In many practical examples it can happen that frequency of the external force is equal to half of the parametric excitation frequency. As an example we can mention a rotating shaft with a rectangular cross-section and unbalanced mass (Fig. 1). During the rotation the stiffness of the system changes twice (parametric excitation) while the external inertia force once per revolution. Fig. 1 Example of an externally and parametrically excited system with 1:2 frequencies ratio. Such a situation may appear also in other examples e.g. in sagged cable dynamics [START_REF] Benedettini | Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions[END_REF]- [START_REF] Luongo | Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables[END_REF] or gear systems [START_REF] Warminski | Regular and Chaotic Vibrations of Parametrically and Self-Excited Systems with Ideal and Non-Ideal Energy Sources[END_REF], vibrations of bars, beams and plates [START_REF] Nayfeh | Nonlinear Interactions, Analytical, Computational and Experimental Methods[END_REF] as well as in microelectromechanical systems (MEMS) [START_REF] Pandey | Frequency Locking in a Forced Mathieu-van der Pol-Duffing System[END_REF]. If the considered structure is additionally damped by a nonlinear force e.g. nonlinear friction or is placed in a fluid flow, which yield in flutter vibration, then we can find a system where also self-excited terms may appear. Differential equation of motion of one degree of freedom system with self-, parametric and external excitation can be written in form ( ) ( )(

) 3 1 cos 2 cos x f x x x t q t γ μ ω ω + + + - = (1) 
In the considered model the external force excites the system exactly inside the principal parametric resonance, since in this region the response of the system is subharmonic with respect to the parametric excitation frequency. The dynamics of such a system was investigated in papers [START_REF] Szabelski | The parametric self excited non-linear system vibrations analysis with the inertial excitation[END_REF], [START_REF] Szabelski | The self-excited system vibrations with the parametric and external excitations[END_REF]. The nonlinear damping was there assumed as the Rayleigh's nonlinear function ( )

3 f x x x α β = -+
. The results indicated very important quantitative changes in the principal parametric resonance regions. The resonance curves received by the multiple scale of time method for the system without external force ( 0 q = ) and driven by external force ( 0 q > ) are presented in Fig. 2 , external force amplitude 0 q = (Fig. 2a) or 0.05 q = (Fig. 2b). The response of the self-excited system driven parametrically is mainly quasi-periodic apart from, so called, frequency synchronisation regions where self-excited vibrations are quenched by parametric excitation and the single harmonic oscillations are observed. This phenomenon is visible near the parametric resonance regions. Fig. 2(a). Nevertheless, if the self-excited system is driven parametrically and externally then its response changes quantitatively and qualitatively. We see in Fig. 2(b) that inside this region the resonance curve possesses an internal loop (red colour). Near the frequency about 1.07 five possible solutions are possible. The stability analysis shows that only two upper among five are stable. Of course to get the stable solution it is necessary to put initial conditions inside their basins of attractions. Possible existence of five equilibria for one DOF parametric system with negative damping has been also presented in [START_REF] Rand | Parametric Resonance of Hopf Bifurcation[END_REF]. Similar phenomena has been observed in [START_REF] Pandey | Frequency Locking in a Forced Mathieu-van der Pol-Duffing System[END_REF] for one DOF MEMS resonator modelled by a van der Pol-Duffing system driven by parametric and external excitation. The bifurcation analysis revealed regions of the five solutions appearance.

The problem of existence of the additional solutions is more complicated for models with many degrees of freedom. For many DOF systems additional interactions between vibrating modes may appear (apart from that resulted from various vibrations types).

The results for two DOF model [START_REF] Szabelski | Vibrations of a Non-Linear Self-Excited System with Two Degrees of Freedom under External and Parametric Excitation[END_REF] confirm existence of the internal loop inside the main parametric region. However, to get this result a classical linear normal modes approach has been applied there. It has been shown that there is an essential difference between numerical and analytical results. This linear decoupling, which is usually used for weakly nonlinear system, was not sufficient for the nonlinear system with parametric and selfexcitation. Therefore, for a proper decoupling of the system another technique is required.

Application of nonlinear normal modes (NNMs) [START_REF] Rosenberg | Normal Modes of Non-linear dual-mode systems[END_REF], [START_REF] Vakakis | Non-Linear Normal Modes (NNMs) and Their Applications in Vibration Theory: an Overview[END_REF] is the promising approach which allows for separation of the structure for single DOF oscillators. Such constructed oscillators should include all information related with the nonlinear system's dynamics.

Various techniques of NNM have been presented and discussed on serious of conferences directly devoted to this topic, the first conference organised by C.H.Lamarque [START_REF] Warminski | Non-Linear Vibration Modes of Coupled Parametrically and Self-Excited Oscillators[END_REF], the second by A.Vakais [START_REF] Warminski | Analysis of Different Vibrations Types by Application of Nonlinear Normal Modes[END_REF] and the third by G.Rega [START_REF] Warminski | Nonlinear Normal Modes of Coupled Self-Excited Oscillators Under Parametric Resonance condition[END_REF]. Nonlinear Normal Modes of a strongly nonlinear autonomous system, conservative or damped, are formulated in [START_REF] Shaw | Normal Modes for Non-Linear Vibratory Systems[END_REF]. This formulation is based on the centre-manifold approach and it allows for model decoupling by taking into account, both, the displacement and velocity of a chosen set of coordinates, which are so called master coordinates while rest are slave coordinates constituted by modal surfaces. This methodology can be applied for nonlinear but autonomous systems. The centre manifold reduction has been successfully applied for coupled self-excited systems [START_REF] Warminski | Nonlinear normal modes of coupled self-excited oscillators in regular and chaotic vibration regimes[END_REF].

Complexity of NNM formulation increases if the system is non-autonomous. Then time has to be introduced as an additional coordinate. To get the modal equation it is necessary to apply a special numerical Galerkin-based technique taking into account a time coordinate [START_REF] Jiang | Nonlinear normal modes for vibratory systems under harmonic excitation[END_REF]. This method allows for finding NNMs for every instant of time.

Another proposal of NNM formulation, defined for the nonlinear systems with weak damping, around the resonance region is presented in [START_REF] Szemplinska-Stupnicka | One-modal Analysis of Resonant Vibrations of Nonlinear Systems[END_REF], [START_REF] Szemplinska-Stupnicka | Normal Co-ordinates in Analysis of Main Resonances of the Non-linear Systems with Many Degrees of Freedom[END_REF]. The resonant normal modes were found as a function of amplitude for the stationary response instead of functions of displacement and velocity. This approach allows for the system reduction around of resonance zones. The response is represented by a single oscillator with modal mass and frequency, constrained by an amplitude dependent relationship. Similar formulation has been presented

in [START_REF] Bellizzi | A new formulation for existence and calculation of nonlinear normal modes[END_REF] with application to undamped nonlinear and autonomous mechanical systems. The resonant periodic response has been defined by a single degree of freedom system with period of motion depending on the amplitude. The approach presented in [START_REF] Szemplinska-Stupnicka | One-modal Analysis of Resonant Vibrations of Nonlinear Systems[END_REF]- [START_REF] Bellizzi | A new formulation for existence and calculation of nonlinear normal modes[END_REF], seems be also attractive for the nonlinear the self-and parametrically or/and externally excited system. The study of self-and parametrically excited system without external force influence has been published in [START_REF] Warminski | Nonlinear Vibration Modes of Parametrically Coupled Self-Excited Oscillators[END_REF].

This paper presents resonant nonlinear normal modes based on the approach formulated in [START_REF] Warminski | Nonlinear Vibration Modes of Parametrically Coupled Self-Excited Oscillators[END_REF]. The normal modes are constructed on the same basis of nonlinear natural oscillations.

However, in the present case the analysis is extended to the system with two degrees of freedom which includes self-, parametric and external excitations. Such a system may exhibit a multi-solutions resonance curve comparing to those presented in [START_REF] Warminski | Nonlinear Vibration Modes of Parametrically Coupled Self-Excited Oscillators[END_REF] where only single classical resonances took place. This study is carried out for the purpose of proper reduction of the multi-degree of freedom model into set of separate single oscillators near the principal parametric resonance region. The separated nonlinear modes should exhibit appearance of the internal loop inside the parametric resonance, similar to whose described for that of one DOF.

Model of the system

Let's consider two coupled nonlinear oscillators (I) and (II) composed of mass, nonlinear spring of Duffing type and nonlinear damping which represents self-excitation (Fig. 3). The oscillators are coupled parametrically by a spring with periodically changing stiffness.

Besides, the first oscillator is driven by a harmonic force. 
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Nonlinear damping is represented by Rayleigh's function

3 1 1 1 1 1 d f x x α β = - + and 3 2 2 2 2 2 d f x x α β = - + .
The coupling stiffness is linear of Mathieu type with periodically varying term ( )( )

12 12 1 2 cos 2 f t X X δ μ ω = - - .
In mechanical engineering systems this kind of periodically varied stiffness may appear e.g. in gear boxes due to changing of mesh stiffness during operation.

The main feature of the considered model is that nonlinear damping produces selfexcitation represented by limit cycles on the phase plane and the parametric excitation of frequency 2ω yields in instability regions so called parametric resonances. Near the principal parametric resonance the response of the system is subharmonic (1:2) with corresponding frequency ω . Such resonances appear when excitation frequency is close to one of the natural frequencies

01 ω ω ≈ or 02 ω ω ≈ .
Because we want the system to be driven by external harmonic force exactly inside the principal parametric resonance, therefore frequency Ω is taken as half of parametric excitation, ω Ω = . Physical justification of such a model is presented in the introduction.

Nonlinear Normal Modes Formulation

The nonlinear normal modes are formulated on the basis of the observation of the physical system response [START_REF] Szabelski | Vibrations of a Non-Linear Self-Excited System with Two Degrees of Freedom under External and Parametric Excitation[END_REF]. The interaction between parametric and self-excited vibration results mainly in quasi-periodic motion composed by influence of both vibration types. On the Poincaré map this kind of motion is represented by quasi-periodic limit cycles. It means that the self-excitation dominates in those regions exhibiting its main features. However, approaching the parametric resonances, near their neighbourhood, after the second kind of Hopf bifurcation (Nejmark-Sacker bifurcation), the self-excitation is quenched, and the system response is periodic.

To formulate the nonlinear normal modes we will concentrate only in the neighbourhood of the main parametric resonance region. Taking into account that the selfexcitation (nonlinear damping) is quenched we can assume that the vibration modes are close to the mode of nonlinear conservative system. Therefore, at first we will formulate nonlinear normal modes of a nonlinear conservative system and then we will extend them to the selfexcited model driven by parametric and external excitations. The equations of motion of the conservative nonlinear system takes form ( ) ( )
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In contrast to the pure linear system we define the vibrations modes as functions of amplitude.

One of the mode coefficients can be taken arbitrary and the second is expressed as a function of amplitude. Therefore, the coefficient 1 u is taken as a constant and for convenience is equal to one ( 1 1 u = ) in further analysis, while the second is a function of amplitude ( )

2 2
u u a = .

The solution of the set (3) is sought by the harmonics balance method (HBM). Only the first harmonic of the response is taken into account therefore the solution is assumed in form

1 0 2 2 0 cos ( )cos X t a X au a t ω ω = = (4) 
where 0 ω is a natural vibration frequency of the nonlinear system. According to definitions introduced in papers related to NNMs the coordinate 1 X is called "master coordinate" while 2 X is so called "slave" coordinate (see e.g. [START_REF] Shaw | Normal Modes for Non-Linear Vibratory Systems[END_REF], [START_REF] Vakakis | Non-Linear Normal Modes (NNMs) and Their Applications in Vibration Theory: an Overview[END_REF]).

Substituting the solutions (4) into (3), putting and expanding trigonometric functions we get 

- + + + - + = ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ ⎜ ⎟ ⎝ - + + + - + = ⎠ (5)
Taking into account the first harmonic approximation, we neglect the terms with 0 cos3 t ω .

We may note that this reduction does not reject nonlinear terms in total, only in the second order approximation. After such simplification we get ( ) ( )
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where coefficient ( )

2 2
u u a ≡ is a function of amplitude. Eliminating natural frequency 0 ω from above equations we get
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Equation ( 7) is a modal equation which allows for determination the mode coefficients of the nonlinear conservative system. From [START_REF] Bakri | Parametric excitation in non-linear dynamics[END_REF] we can find two roots for 2 u , ( )
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u a and ( )
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u a , for the first and the second mode respectively. However, because it is easier to determine inverse relation we find ( )
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Two real solutions for a represent the nonlinear curves of ( )

2
a u for the first and the second nonlinear normal modes, respectively. We have to bear in mind that natural frequency of nonlinear system 0 ω is also amplitude dependent. Eliminating in (6) vibration mode 2 u , we can find
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where The solutions which tend in a limit to frequencies of the linear model, Having the modal coefficient ( )

3 3 1 2 3 3 12 3 4 m a γ δ Γ = - , ( ) 3 
2 j
u a , the modal solutions take form The formulated above modes of the nonlinear conservative system will be applied to the system (2) for determination of the resonance curves.

Vibrations of a driven parametrically and externally coupled self-excited system

To transform the system from generalized into normal coordinates we make an assumption that inside the principal parametric resonance the vibration modes are close to the nonlinear normal modes formulated in previous chapter for the nonlinear conservative system.

Substituting [START_REF] Verhurlst | A note on higher order averaging[END_REF] into a set of the original equations [START_REF] Cartmell | An Introduction to Linear, Parametric and Nonlinear Vibrations[END_REF] and next multiplying the first equation by 1 j u (which in this case is equal to one) and the second by 2 j u (j=1,2), then adding them, we get
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Taking into account that for the conservative system ( ) , , 0

j j j
F Y Y t = and then substituting the periodic solution [START_REF] Verhurlst | Quenchening of self-excited vibrations[END_REF] we get relationship which represents natural frequency of the nonlinear system
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This equation corresponds to the frequency found from [START_REF] Abadi | Nonlinear Dynamics of Self-Excitation in Autoparametric Systems[END_REF], therefore the equation of motion may be written in nonlinear normal coordinates as
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where ( )
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is the modal mass of the system for the first and the second vibration mode for 1, 2 j = , respectively. Function ( ) , ,
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)
are modal coefficients representing parametric, self-and external excitation. The essential assumption made to transform the equations (3) into ( 13) is that the system's response is periodic up to the first balanced harmonic. The modes are called resonant nonlinear normal modes because they can be used only for regions of a single frequency response. For a selfexited system driven by parametric and external excitations they are used for the frequency locking zones ([ 3]- [START_REF] Tondl | The effect of parametric excitation on a self-excited three-mass system[END_REF], [START_REF] Pandey | Frequency Locking in a Forced Mathieu-van der Pol-Duffing System[END_REF]) characterized by periodic solutions. The formulated modes in approximation decouple the system also if amplitude and phase of the solution are slow functions of time.

To get resonance solution it is necessary to solve a single equation [START_REF] Srinil | Space-time numerical simulation and validation of analytical predictions for nonlinear forced dynamics of suspended cables[END_REF] together with constrain equation (7).

Analytical Solutions of Self, Parametrically and Externally Driven System

Analytical solutions of Eq.( 13) due to its nonlinear nature can be determined by application of approximation methods. The Multiple Scale of time method [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] is used to find the approximate solution. Introducing a formal small parameter ε, equation [START_REF] Srinil | Space-time numerical simulation and validation of analytical predictions for nonlinear forced dynamics of suspended cables[END_REF] is written in the form ( )
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Function [START_REF] Luongo | Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables[END_REF] is expressed by

j j F F ε =
, and parameters: μ εμ = ,

1 1 α εα = , 1 1 β εβ = , 2 2 α εα = , 2 2 
β εβ = and consequently

j j C C µ µ ε = , j j C C α α ε = , j j C C β β ε = , qj qj C C ε = .
According to the formulation presented in Chapter 4 it is assumed that the response of the system is periodic. However, assuming that amplitude and phase of the solution of (16) are slow functions of time i.e. if during one period of the fast scale there is a small change of amplitude (the slow scale) the presented approach can be used also in the neighbourhood of the resonance (frequency locking) zones. Solution of Eq.( 16) is sought in form of a series of the small parameter ε
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where ( )
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, j Y T T are zero and first order functions of time. Time is also expressed by the series of the small parameter,

0 1 t T T ε = + +… (18) 
where 0 T and 1 T are respectively fast and slow scale of time. Such time definitions results in the following formulae for the first and the second time derivatives
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where

m m n n D T ∂ = ∂
means m order partial derivative with respect to n scale of time.

As it has been assumed earlier we sought the solutions around the principal parametric resonance, where the self-excitation is quenched by dominating parametric vibrations, therefore, bearing in mind that parametric excitation frequency is equal to 2ω and external excitation ω , we can write

2 2 0 j j ω ω εσ = + (21) 
where j σ is frequency detuning parameter around the first and the second natural frequency

0 j ω , j=1,2.
Substituting solution [START_REF] Pandey | Frequency Locking in a Forced Mathieu-van der Pol-Duffing System[END_REF] and taking into account the derivatives definitions [START_REF] Szabelski | The self-excited system vibrations with the parametric and external excitations[END_REF], [START_REF] Rand | Parametric Resonance of Hopf Bifurcation[END_REF], after grouping terms with respect to ε order we get a set of differential equations in successive perturbation orders 0 ε -order
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Solution of Eq.( 22) is written in complex form

0 0 1 1 1 0 1 1 0 ( , ) ( ) exp( ) ( ) exp( ) j j j Y T T A T i T A T i T ω ω = + - (24) 
where

1 i = -is an imaginary unit, 1 j A , 1 j
A is complex amplitude and it's conjugate. Solution [START_REF] Warminski | Non-Linear Vibration Modes of Coupled Parametrically and Self-Excited Oscillators[END_REF] is substituted into [START_REF] Vakakis | Non-Linear Normal Modes (NNMs) and Their Applications in Vibration Theory: an Overview[END_REF] and then, after grouping terms in proper exponential functions, we get
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where cc means complex conjugate functions to those written in the equation. To eliminate secular terms, the components near 0 ( ) exp i T ω must vanish, thus
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Expressing complex amplitude j A by the polar form

1 j i j j A a e φ = (27) 
and then separating real and imaginary parts of (26) we get modulation equations for amplitude a j and phase φ j
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In a steady state 0 j a = , 0 j φ = . Therefore, from equations [START_REF] Warminski | Nonlinear normal modes of coupled self-excited oscillators in regular and chaotic vibration regimes[END_REF] we can find the resonance curve around the principal parametric resonances
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To get vibration amplitudes in the resonance regions it is necessary to solve equation [START_REF] Jiang | Nonlinear normal modes for vibratory systems under harmonic excitation[END_REF] together with nonlinear modal forms of the considered system formulated by Eq.( 7).

Introducing the particular solution of (25) into [START_REF] Pandey | Frequency Locking in a Forced Mathieu-van der Pol-Duffing System[END_REF] yields

( ) ( ) ( ) 2 cos cos 3 sin 3 3 16 2 j j j j j j j a a Y a t C t C t M μ β ω φ ε ω φ ω ω φ ⎡ ⎤ = + + - + + + ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ (30) 
where the amplitude a and the phase φ are determined from modulation equations [START_REF] Warminski | Nonlinear normal modes of coupled self-excited oscillators in regular and chaotic vibration regimes[END_REF] or for a steady state from algebraic equation (29).

Numerical Calculations

Numerical calculations are carried out for the nonlinear conservative model data

1 2 1 2 1 2 1 2 1, 2, 1, 1, 0.3, 0.1, 0.1 m 
m δ δ δ γ γ = = = = = = = (31) 
and for self-excitation parameters

1 1 2 2 
, 0.01 0.05, 0.01, 0.05

β α α β = = = = (32) 
while amplitude of parametric and external excitation are

0.2 µ = , 0 0.2 q ≤ ≤ (33) 
To evaluate results obtained by the proposed method the numerical calculations are also performed for linear normal modes. The physical coordinates X are transformed to normal coordinates Y by linear transformation

0 X = u Y (34)
where 0 u is a linear modal matrix

110 120 0 210 220 u u u u ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ u ( 35 
)
For the assumed data [START_REF] Szemplinska-Stupnicka | Normal Co-ordinates in Analysis of Main Resonances of the Non-linear Systems with Many Degrees of Freedom[END_REF] coefficients of modal vectors takes values Taking into account the derived Eq. (7), which constitutes relationship of the mode coefficient The vertical dashed lines arising from these points represent linear modal lines which are amplitude independent. To solve the equation [START_REF] Nayfeh | Nonlinear Interactions, Analytical, Computational and Experimental Methods[END_REF] apart from modal coefficients also natural frequencies of the nonlinear model have to be determined from Eq.( 12). Fig. 5. Vibration natural frequencies versus amplitude; parameters given by [START_REF] Szemplinska-Stupnicka | Normal Co-ordinates in Analysis of Main Resonances of the Non-linear Systems with Many Degrees of Freedom[END_REF] Solid lines in Fig. 5 presents course of frequency for free vibration of a nonlinear system with respect to amplitude, dashed line points out amplitude independent linear natural frequencies.

To construct the response based on nonlinear normal modes and related with it nonlinear resonant curves we have to solve Eq.( 29) together with modal relationships [START_REF] Bakri | Parametric excitation in non-linear dynamics[END_REF] and nonlinear frequencies [START_REF] Benedettini | Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions[END_REF]. Instead of Eqs, [START_REF] Bakri | Parametric excitation in non-linear dynamics[END_REF], [START_REF] Benedettini | Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions[END_REF] the set of algebraic equations (6) may be taken for numerical convenience.

At first, correctness of the nonlinear normal modes is demonstrated for a nonlinear conservative system without any excitations or damping. In Fig. 6 we see free vibrations of coupled nonlinear oscillators in physical (generalised) and normal coordinates determined by linear transformation (34). Initial conditions have been selected to activate only the first normal coordinate. Therefore, for simulations, initial conditions have values:

( ) 1 X 0 10.0 = , unstable. It is worth to mention that apart from steady state response, the sixth quasi-periodic motion also takes place. This solution is not presented in the figure because it has not been determined by the proposed analytical approach. The quasi-periodic motion requires a special treatment. The curves presented in Fig. 8(a) have been found by the nonlinear normal mode transformation. Therefore, each amplitude has been determined together with modal and frequency dependencies presented in Fig. 8(b) and (c) respectively. For amplitude equal to zero the modal coefficient takes values equal to the linear modes, however for 0 a > the modes is a nonlinear function (Fig. 8b).

The equivalent resonance curve got by linear normal modes approach is shown in Fig. 9 for comparison. We see that solutions differ essentially. The internal loop is located on the left hand side of the main resonance branch and is much larger than that got by nonlinear normal mode formulation. 

Conclusions

The paper presents a technique for resonant nonlinear normal modes formulation with application to a self-and parametrically excited system. It is shown that NNMs defined on the basis of free vibrations of a nonlinear system give results which are much closer to direct numerical simulation, comparing with classical LNMs. A width of synchronisation regions, near the principal parametric resonance fits very well to the regions found by numerical simulations, presented in the bifurcation diagram. Resonance curves, obtained by nonlinear and linear normal modes are essentially different. Correctness of the applied technique is confirmed by time histories analysis for various set of parameters. An effort of numerical solving of a set of nonlinear algebraic equations is a cost which is paid for the accuracy increase. Out of the synchronisation regions, due to strong influence of self-excitation, another method for NNMs formulation is required. The method should take into account also influence of velocity on the vibration modes.

Figures Caption

Fig. 1 Example of an externally and parametrically excited system with 1:2 frequencies ratio. 

  (a) and (b), respectively.

Fig. 2

 2 Fig.2 Resonance curve of a self-excited system driven parametrically (a) and driven parametrically and externally (b); 0.01 α = , 0.05 β = , 0.1 γ = , 0.1 µ = , 0.05 q =

Fig. 3

 3 Fig. 3 Model of coupled self-excited oscillators driven by parametric and external excitations

Equation ( 9 )

 9 has three real roots for 2 0 ω , however only two of them have physical meaning.

=

  will be taken for the further consideration. Thus, we found the formulae for the natural frequencies

  frequencies of the linear system 01 0.766091 ω = , 02 1.16752 ω = , where index 0 underlines the linear transformation.

Fig. 4 .

 4 Fig.4. Vibration modes versus amplitude; parameters given by[START_REF] Szemplinska-Stupnicka | Normal Co-ordinates in Analysis of Main Resonances of the Non-linear Systems with Many Degrees of Freedom[END_REF] 

2 u

 2 versus vibration amplitude, we can draw the nonlinear modal curves as functions of amplitude. The solid line on the right hand side of the Fig.4 presents the first vibration mode, while on the left hand side the second mode is plotted. Of course, for amplitude equal zero 0 a = value of the vibration mode corresponds to linear mode coefficients 210 u or 220 u (36).

Fig. 10

 10 Fig.10 Bifurcation diagram of the physical coordinate X 1 versus excitation frequency;

  To validate the received results the original Eqs.(2) have been solved directly by numerical methods. The bifurcation diagram of the physical coordinate 1 X versus excitation frequency is presented in Fig.10. The phenomenon of internal loop appearance is clearly visible near the principal parametric resonance around the second natural frequency for the main branch of the resonance curve as well as internal loop fit very well to the resonance regions obtained by nonlinear normal modes approach.
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 23456 Fig.2 Resonance curve of a self-excited system driven parametrically (a) and driven parametrically and externally (b); 0.01 α = , 0.05 β = , 0.1 γ = , 0.1 µ = , 0.05 q =
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Y 0 0 = . We note that assumed values are high in the aim to expose the nonlinear effects (Fig. 6a,b). For a linear system only the first mode is activated while the second is equal to zero. Application of the linear normal modes to the nonlinear model is acceptable only for relatively small amplitudes.

Fig. 6. Free vibrations in physical coordinates X 1 , X 2 and linear normal coordinates Y 1 , Y 2 ; initial conditions ( )

Y 0 0 = ; parameters given by [START_REF] Szemplinska-Stupnicka | Normal Co-ordinates in Analysis of Main Resonances of the Non-linear Systems with Many Degrees of Freedom[END_REF].

For the considered example the linear transformation leads to large differences. ). However, after a few seconds the coordinate increases and goes to very high values (Fig. 6d). The linear transformation leads definitely to wrong results. Therefore, for large displacements the nonlinear transformation is required.

The same analysis has been repeated but applying nonlinear transformation [START_REF] Verhurlst | A note on higher order averaging[END_REF]. It means that modal coefficient 21 u has been calculated taking into account vibration amplitude.

Initial condition for physical coordinates take values ( ) , ( )

Y 0 0 = , parameters given by [START_REF] Szemplinska-Stupnicka | Normal Co-ordinates in Analysis of Main Resonances of the Non-linear Systems with Many Degrees of Freedom[END_REF].

Time histories of X 1 and X 2 generated for initial conditions ( ) 1 X 0 10.0 = , ( ) Presented above formulation is used for resonant curves determination of the self-, parametrically and externally excited system near the main parametric resonances. The solutions are received from (13) by using analytical solutions [START_REF] Jiang | Nonlinear normal modes for vibratory systems under harmonic excitation[END_REF] assuming that in the resonance the vibrations modes are close to the mentioned above NNMs found for the nonlinear conservative system. Solving together [START_REF] Jiang | Nonlinear normal modes for vibratory systems under harmonic excitation[END_REF] and Eq.( 7) we get the resonance curve presented in Fig. 8(a). , 0.01 0.05, 0.01, 0.05

This curve has been plotted for the principal parametric resonance region near the second natural frequency. The resonance is chosen because the nonlinear effects are very well demonstrated there. In the Fig. 8 we can see behaviour of the system similar to that of one degree of freedom model presented in the introduction and papers [START_REF] Pandey | Frequency Locking in a Forced Mathieu-van der Pol-Duffing System[END_REF], [START_REF] Szabelski | The self-excited system vibrations with the parametric and external excitations[END_REF]. External force acting together with parametric and self-excitation changes classical resonance curve of the considered model. We see that in the main parametric resonance additional internal loop arises. In the frequency region, near 1.25 ω = , five solutions are possible. However, numerical check up shows that only two upper solutions are stable, while three lower are ( )