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 Composites structural modelling with uncertain data 
 

N. Carrèrea†, Y. Rolleta, V. Retelb, L. Boubakarb, J.-F. Mairea 

 

a ONERA (French Aerospace Research Agency), 29 avenue de la Division Leclerc, BP 72,  
F-92322 CHATILLON CEDEX 

b LMARC, 24 chemin de l'Epitaphe, F-25000 BESANCON 
 
ABSTRACT :  

 

The aim of this paper is to propose a methodology in order to take into account the influence of 

uncertain data in structural calculations. A specific method, based on the approximation of the 

responses as a function of the uncertain data, is proposed. Classical methods from the literature 

are also considered. The different methods are compared on a simple example in terms of 

response (average value and standard deviation) and in terms of computational cost. The method 

proposed in the present work permits to estimate correctly the whole response and is very simple 

to use (pre and post processing). This method is applied to a structural calculation on a “hat-

shapes” part called, manufactured in the quasi-isotropic IM7/977-2 composite. 

 

Keywords : Structural calculations, Uncertain data, Variability 

 

1. Introduction 

The use of Polymer Matrix Composites (PMC) seems to be an essential evolution in terms of 

mass saving and innovative solutions. However, the available simulation tools, used during 

design of new structures, do not take into account their specific aspects (local heterogeneities, 

complexity of damage/rupture mechanisms, influence of the manufacturing process …) that leads 
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 to an under-using of these materials. A number of sources of lack in confidence could be 

evidenced (i) numerical aspects (mesh refinement, algorithms  ...), (ii) numerical models (choice 

of the material behaviour, of the rupture criterion …) and (iii) material uncertainties (materials 

parameters, boundary conditions). In order to obtain a sufficient degree of confidence, generous 

safety coefficients or important experimental campaigns are necessary, thus leading to maintain 

classical metallic solutions. The first two sources of uncertainties can be quantified and reduced, 

but the last one is partially “irreducible”. So, it is of absolute necessity to understand the role and 

the influence of uncertainties on the structure behaviour. The aim of the present work is thus to 

propose a methodology that permits to perform structural modelling taking into account material 

uncertainties in order to predict their effects on the behaviour of the structure. 

 

Data used in structural modellings are known only within a range of confidence (due for instance 

to the imperfections of the geometry or uncertainties on the loading conditions during structure 

tests, the natural variability of the mechanical properties …). A number of methods exist in the 

literature to estimate the effects of uncertainties on the response of a structure :  

• Calculation with the extreme data (called B-values) which requires only one evaluation of 

the response but provides only one pessimistic value without any statistical information 

on the obtained result. 

• Sampling procedures (Monte-Carlo).  The advantage of these methods is their simplicity 

of implementation, giving a good estimate of the interval of the responses but at a very 

high cost as soon as the number of variables increases. 

• Stochastic Finite Element Modelling (SFEM) based on perturbation, spectral Neumann 

expansion, projection on a polynomial chaos are the most popular approaches widely 
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 developed during these last few years [1-3]. These methods require, in order to be applied 

practically, significant modifications of the computer code.  Moreover, they are in general 

used only for variations of material properties.   

 

The previous methods are the most popular to deal with problems of variability. It should also be 

noted that some authors develop approaches on non-determinist arithmetic operations (fuzzy [4], 

interval [5]). 

 

In the present work, we propose a specific method which permits to study the effects of various 

kinds of material uncertainties (geometrical parameters and material, loading or boundary 

conditions) on the responses of a structure. The first part of this article will be devoted to the 

presentation of the different approaches. They will be compared, in the second part, on a simple 

example in terms of statistical responses (average value and standard deviation of the output data) 

and in terms of cost of calculation.  In the third part of this article, the method proposed in this 

work is applied to the case of calculation of a structure known as "hat-shaped", manufactured in 

the quasi-isotropic IM7/977-2 composite. 

 

2. Method for uncertainties transport 

 

2.1. Monte-Carlo methods  
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 The principle of the Monte-Carlo method is to choose at random (according to uniform or 

Gaussian distributions) values for each uncertain parameter and then to perform all the 

calculations associated with each set of variables. The major disadvantage of this type of 

approach is its cost. In fact, the number of calculations necessary to consider the extreme values 

(for example, the B-values of the response) could quickly become tremendous if the number N of 

variables is high (several thousands calculations if N>5). Furthermore, since the results are 

available for a number of sets of variables in the whole range of uncertainty, it is possible to 

estimate directly (using traditional statistical tools) probabilistic values (average value, standard 

deviation …). It should be noted that there are many alternatives to this method which are aimed 

at reducing the computational cost (by using an approximation of the inverse of the stiffness 

matrix by Neumann expansion or by using optimized random generators). 

 

2.2. Stochastic Finite Element Method  

Several types of methods exist under the denomination "Stochastic Finite Elements Methods" 

(SFEM). They are all based on the same principle: both the stiffness matrix (K) and the 

displacement vector (u) are expanded (using a perturbation method or on a polynomial base) with 

respect to the random variables. 

  

For instance, using a perturbation method, the quantities under interest are expanded using Taylor 

series, around the mean value of the N uncertain variables αi (also called stochastic variables).  

 

If a first order perturbation is considered, it is assumed that :  
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The mean value and the standard variation are given by :  
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where C α i ,α j[ ] is the covariance matrix. Note that the same expansion is used for K. 

The second order perturbation gives :   
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The mean value and the standard variation are written as follows : 
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The cost of this approach is due to the calculation of the derivatives by a perturbation method (2N 

calculations for the first order derivative and 3N for the second order derivative). A method based 

on an automatic derivation in the FE code is under investigation at ONERA. 

 

The method called polynomial chaos expansion (PCN, for a N order polynomial expansion) [1] 

seems to be very effective. It is based on the expansion of K and u on a particular polynomial 

base (the base defined by the monomials is orthogonal). The base is chosen as a function of the 

distribution of the stochastic parameters.  
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Using the properties of the polynomial (orthogonality), it is possible to show that :  
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The choice of the inner product (<xy>) is a function of the distribution of the stochastic 

parameters. The practical implementation of this method is more complex and necessitates the 

computation of a number of integrals. However, the results shown in the literature seem relatively 

precise and obtainable for reasonable computing times.  

 

2.2. Surface Response based Analysis of the Variability Method  

 

The method proposed in the present paper could be called "experimental design numerical 

method" since it is strongly inspired by the experimental design methods. However, the 

traditional experimental design is defined to minimize the effects of the experimental errors and 

the noise whereas, in the present case, all the values are computation results. This method 

consists in building an analytical relation (most generally polynomial) between stochastic 

variables and the outputs using a number of runs of the complete modelling (usually a FE 

calculation). The choice of the values of the stochastic variables for the computations is made in 

order to obtain the most precise approximation. Moreover, some tools have been developed to 

estimate the quality of this approximation.  
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 Remark : the approximation could be performed using a polynomial chaos expansion. In this 

case, the terms of the polynomial are calculated by eq. 7. The integrals are calculated by a Gauss 

integral approximation.  

 

The proposed approach is divided into several stages (Figure 1) :  

 

• Choice of the sets of variables to be tested,  

• Realization of the calculations, 

• Determination of the approximation (polynomial) function that relates the outputs to the 

stochastic variables, 

• Calculation of the estimators of error made by the approximation,  

• Calculation of the extreme values, statistical distributions of the responses, B-values... 

thanks to the approximation function.  

 

One of the key points of this method is the distribution of the sets of variables to be tested. Two 

strategies have been developed: one based on the neural network [6] that permits to occupy as far 

as possible the whole hypercube defined by the range of the stochastic variables, the other one 

consists in occupying the tops of the hypercube as far as possible. The sets of variables being 

chosen, FE simulations are performed on a cluster of PC by using the natural parallelization of 

the problem (3x[N+1 ] structural analyses).  

 

The outputs are extracted from all the calculations and the relations between the uncertain 

variables αi and the outputs are approximated using a polynomial form. The error evaluation of 
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 the polynomial approximation is performed using various techniques of cross-validations 

(bootstrap [7], leave-one-out [8]). It consists in identifying X times the approximation using sets 

of calculations randomly chosen through the N available ones (N randomly or (N-M) choices 

among the N for the bootstrap and the leave-M-out methods respectively). These techniques, 

which allow estimating the generalization error, improve considerably the reliability of the 

approximation.  

In practice, the approximation is first chosen as linear. If the errors are too significant (a minority 

of the investigated cases), it is possible to increase the degree of the polynomial interpolation. In 

order to avoid increasing significantly the number of monomials (384 for N=11 with a 

polynomial of degree 3), the Gram-Schmidt orthogonalization algorithm is used [9]. Following 

this method, the monomials are iteratively ranked in order of their decreasing contribution to the 

output. It has been shown that in several cases it is possible to drastically reduce the errors by 

introducing only some additional monomials. Other approximations or regression methods are 

based on neural networks for highly non-linear probabilistic transfer problems.  

 

Finally, once the approximation is identified and validated, it is very easy to obtain for each 

output a number of results such as extreme values (minimum and maximum of each output), the 

B-values (using Monte-Carlo techniques thanks to the polynomial approximation). Using the 

developed error approximation, it is possible to determine the confidence in these results.  

 

3. Comparison of the methods on a simple example 

 

This section is devoted to the comparison of the presented methods (in terms of average value, 

standard deviation and computing time).  The very simple case under investigation is a 2D square 
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 element subjected to a simple tensile test (see Figure 2). The behaviour of the material is 

isotropic, with a stochastic Young modulus and a deterministic Poisson's ratio ( µ= 0.31). The 

applied load F is equal to 100N and E is defined by:  

)1( ξErEE +=  (8) 

 where GPaE 200=  is the mean value of the Young modulus. rE (=0.1) is the coefficient of 

variation. ξ is a centered Gaussian random variable.  

 

The results obtained with the different approaches are presented in Figure 2. When the number of 

random variables is sufficiently low (N<5), it is well known that for a great number of samples, 

the results obtained by the Monte-Carlo method (MC) could be considered as having converged 

(as compared with the exact solution). On this example, the 2nd or 4th order polynomial chaos 

methods (PC2 or PC4) lead to very close results as compared with the MC method. However, the 

cost of a calculation with the PC method is drastically less than that which the MC method. The 

1st order perturbation method is very efficient in terms of computational cost but underestimates 

the results.  

The method proposed in the present work gives very close results as compared with the MC ones. 

Its computational cost is low since only some deterministic FE calculations are necessary (here 7 

calculations were used to identify the approximation). The average and the variance of 

displacement can be calculated:   

• Analytically, starting from the equations (1) and (2) for which the derivatives are very 

simple to calculate due to the polynomial approximation of the output 

•  By a MC method using the polynomial approximation that allows a quasi immediate 

estimate of the output.  
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The method proposed in this paper permits to obtain very close results as compared with the 

other ones found in the literature, for a much lower computational cost. Moreover, the use of this 

method does not require any modification of the computer code since the whole analysis is 

performed in post-processing. Finally, it should be noted that this method permits to study 

material uncertainties but also geometrical ones (boundary conditions, loading …).  

 

4. Influence of geometrical uncertainties 

 

In the following example, geometrical (dimensional uncertainties but also uncertainties on 

boundary conditions and loading) are investigated. The structure under investigation (called “hat-

shaped” structure, see Figure 3) is defined by the following 9 parameters (θ1, θ2, θ3, r, l, ag, ad, r4 

and r5) with uncertainty intervals of ± 10 % for each parameter. In order to validate the proposed 

method, comparison with reference results obtained by a MC method (1024 FE calculations with 

uniform distribution on each stochastic parameter) is performed. This structure is a 8-ply quasi-

isotropic IM7-977-2 composite. The behaviour of the ply is described by a transverse-isotropic 

linear elastic model (5 elastic parameters). The structure is subjected to an imposed displacement. 

Several outputs are investigated (load, maximal stress, maximal strain, rupture criteria such as 

maximal admissible fiber deformation…).  

 

Figure 4 presents all the load/displacement curves obtained thanks to the 1024 FE calculations. 

The first remark is that, according to the Central Limit Theorem, even if the distribution of the 

stochastic variables is uniform, if the number of runs is not too small, the histogram presents a 
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 Gaussian shape. Three outputs are investigated:  stiffness of the structure (load/déplacement 

ratio), maximal strain criterion for the fibers and, finally, a damage criterion (quadratic criterion 

which is a function of the stress field). The first output is a global one as the other ones are 

evaluated by seeking, for each calculation, the maximum value on the whole structure. The 

statistical treatment of the MC results are presented in table 1 (average value and standard 

deviation of 1024 calculations as well as the minimal and maximum values). 

 

Moreover, thanks to cross-validation approaches it is possible to evaluate the quality (confidence) 

of the values provided in table 1. For that, the "bootstrap" [7] method used in descriptive 

statistics, is well adapted. The results obtained with this method with samples of 50, 200, 512 and 

1024 calculations are presented in table 2. 

 

The method proposed in this paper has been applied and identified using a set of 20, 30 or 60 

calculations. In the first part of table 3, the average values and the variations are indicated when 

the method is identified 100 times, starting from sets of different calculations.  One can notice the 

good robustness of the method. It should be noted that using only one set of calculations (0, 30 or 

60), it is possible to obtain results equivalent to those obtained using cross-validation methods 

(here the method used is of type "leave-one-out"). Very similar results are obtained on the other 

outputs. It is also important to note that the effect of the type of distribution of the stochastic 

parameters on the output can be investigated using the proposed method. For instance, if a normal 

distribution is chosen instead of the uniform distribution, the standard deviation decreases from 

14.2 to 8.6. The confidence on the values of table 3 depends obviously on the quality of the 

approximation (linear in this case). If the degree of confidence is low, it is possible to increase the 

quality of the approximation by increasing the number of monomials (chosen using the Gram-
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 Schmidt orthogonalization method, [9]. The reduction of the average quadratic error (estimated 

on all 1024 calculations) on the fiber rupture criterion is presented in figure 5.  

 

5. Conclusion 

 

Various methodologies may be found in the literature allowing to take into account the effect of 

uncertainties on the response of a structure. A method, based on the surface response has been 

proposed in the present paper. These various methods have been compared on simple examples in 

terms of response (average value and standard deviation of the output) and in terms of 

computational cost. The method proposed in this paper permits to evaluate a number of statistical 

results. This method is very simple to use since it does not need any modification of the FE code 

(procedure used in pre/post processing). It has been shown that the distribution of the output and 

the associated confidence could be evaluated using a few number of calculations (3x[N+1]).  
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Figure captions 
 
Figure 1 : Principle of the proposed method 
 
Figure 2 : Comparison between the different methods on a 2D element subjected to a uniaxial 
loading. (a) Presentation of the treated example, (b) Approximation used in Variability Analysis, 
(c) Mean value and variance (d) of the displacement. 
 
Figure 3 : Geometry and boundary conditions of the « hat-shaped » structure 
 
 
Figure 4 : Load/Displacement curve for all calculations and distribution of the load 
 
Figure 5 : Mean square error reduction by increasing the degree of the polynomial intepolation 
using the Gram-Shmidt orthogonalization algorithm. 
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Table captions 
 
Table 1 : Results obtained by the Monte-Carlo method 
 
Table 2 : Results obtained using a re-sampling method 
 
Table 3 : Results obtained by the present method : comparison between 100 re-identification of 
the polynomial approximation and a re-sampling method. 
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Figure 2 : Comparison between the different methods on a 2D element subjected to a uniaxial 
loading. (a) Presentation of the treated example, (b) Approximation used in Variability Analysis, 

(c) Mean value and variance (d) of the displacement. 
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Figure 3 : Geometry and boundary conditions of the « hat-shaped » structure 
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Figure 4 : Load/Displacement curve for all calculations and distribution of the load 
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Figure 5 : Mean square error reduction by increasing the degree of the polynomial intepolation 
using the Gram-Shmidt orthogonalization algorithm. 
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Tables 
 
 
 

Monte-Carlo method Mean 
value Standard deviation Minimal value Maximal value 

Stiffness (N/mm)  335.8 14.2  298.9  379.5  
Fibers strain (%) 1.46 0.04 1.35 1.58 

Hill criterion (MPa) 127.5 3.85 117.1 139.9 
Table 1 : Results obtained by the Monte-Carlo method 

 
 
 

Stiffness (N/mm) N Mean value Standard 
deviation 

Minimal 
value Maximal value 

Bootstrap  

50 
200 
512 

1024 

336.5 ± 6.0 
335.4 ± 2.9 
335.2 ± 1.9 
335.7 ± 1.5 

14.9 ± 6.2 
14.6 ± 2.7 
13.8 ± 1.8 
14.1 ± 1.1 

304.7 ± 9.8 
300.3 ± 5.7 
299.7 ± 2.8 
299.5 ± 2.0 

375.6 ± 15.8 
377.7 ± 6.8 
377.0 ± 4.5 
378.9 ± 2.7 

Table 2 : Results obtained using a re-sampling method 
 
 

Stiffness (N/mm) N Mean value Standard 
deviation Minimal value Maximal value 

100 re-identifications 
20 
30 
60 

336.2 ± 0.8 
336.2 ± 0.4 
336.1 ± 0.3 

14.5 ± 0.9 
14.2 ± 0.5 
14.2 ± 0.3 

295.7 ± 4.6 
298.8 ± 1.5 
298.6 ± 1.0  

376.6 ± 4.3 
375.6 ± 2.3 
375.6 ± 1.2 

Cross-Validation 
20 
30 
60 

336.1 ± 1.8 
335.9 ± 0.3 
336.0 ± 0.2 

15.4 ± 1.4 
14.2 ± 0.4 
14.2 ± 0.3 

287.8 ± 8.6 
297.9 ± 1.4 
298.5 ± 0.8  

384.4 ± 9.3 
376.0 ± 2.5 
376.5 ± 1.0 

Table 3 : Results obtained by the present method : comparison between 100 re-identification of 
the polynomial approximation and a re-sampling method. 


