
HAL Id: hal-00575231
https://hal.science/hal-00575231

Submitted on 10 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis and Classification of Speech Signals by
Generalized Fractal Dimension Features

Vassilis Pitsikalis, Petros Maragos

To cite this version:
Vassilis Pitsikalis, Petros Maragos. Analysis and Classification of Speech Signals by Gen-
eralized Fractal Dimension Features. Speech Communication, 2009, 51 (12), pp.1206.
�10.1016/j.specom.2009.06.005�. �hal-00575231�

https://hal.science/hal-00575231
https://hal.archives-ouvertes.fr


Accepted Manuscript

Analysis and Classification of Speech Signals by Generalized Fractal Dimen‐

sion Features

Vassilis Pitsikalis, Petros Maragos

PII: S0167-6393(09)00090-9

DOI: 10.1016/j.specom.2009.06.005

Reference: SPECOM 1817

To appear in: Speech Communication

Received Date: 7 August 2008

Revised Date: 17 March 2009

Accepted Date: 1 June 2009

Please cite this article as: Pitsikalis, V., Maragos, P., Analysis and Classification of Speech Signals by Generalized

Fractal Dimension Features, Speech Communication (2009), doi: 10.1016/j.specom.2009.06.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.specom.2009.06.005
http://dx.doi.org/10.1016/j.specom.2009.06.005


ACCEPTED MANUSCRIPT 

Analysis and Classification of Speech Signals

by Generalized Fractal Dimension Features

Vassilis Pitsikalis ∗, Petros Maragos

School of Electrical and Computer Engineering, National Technical University of

Athens, Iroon Polytexneiou Str., Athens 15773, Greece.

Abstract

We explore nonlinear signal processing methods inspired by dynamical systems and

fractal theory in order to analyze and characterize speech sounds. A speech signal

is at first embedded in a multidimensional phase-space and further employed for

the estimation of measurements related to the fractal dimensions. Our goals are to

compute these raw measurements in the practical cases of speech signals, to fur-

ther utilize them for the extraction of simple descriptive features and to address

issues on the efficacy of the proposed features to characterize speech sounds. We

observe that distinct feature vector elements obtain values or show statistical trends

that on average depend on general characteristics such as the voicing, the manner

and the place of articulation of broad phoneme classes. Moreover the way that the

statistical parameters of the features are altered as an effect of the variation of pho-

netic characteristics seem to follow some roughly formed patterns. We also discuss

some qualitative aspects concerning the linear phoneme-wise correlation between

the fractal features and the commonly employed mel-frequency cepstral coefficients

(MFCC) demonstrating phonetic cases of maximal and minimal correlation. In the

same context we also investigate the fractal features’ spectral content, in terms of

the most and least correlated components with the MFCC. Further the proposed
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methods are examined under the light of indicative phoneme classification exper-

iments. These quantify the efficacy of the features to characterize broad classes

of speech sounds. The results are shown to be comparable for some classification

scenarios with the corresponding ones of the MFCC features.

Key words: feature extraction, generalized fractal dimensions, broad class

phoneme classification

1 Introduction

Well known features, such as the mel-frequency cepstral coefficients (MFCC),

are based on the linear source-filter model of speech. This modeling approach

when fertilized by auditory concepts that are incorporated via the mel-scale [1]

spacing of the filterbank, results in a feature space representation that captures

characteristics of the speech production system. Such feature space represen-

tations are massively utilized in automatic speech recognition (ASR) systems,

which still suffer as far as plain acoustic modeling is considered. Herein, we

investigate whether an alternative feature space representation that is taking

advantage of a different perspective may be utilized for analysis, and fur-

thermore for characterization of speech signals. Specifically, we exploit novel

feature descriptions that are based on simple concepts from the system dy-

namics and fractal theory. Via the proposed analysis we seek to investigate

the capability of the methods concerning speech sound characterization and

relate general phonetic characteristics with the proposed measurements. A
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practical motivation that prompts this direction is the successful, to a certain

degree, application of related methods in ASR [2,3]. Hence, also continuing

previous work, we focus on fractal features as these are related to a set of

generalized fractal dimension measurements and furthermore proceed by con-

sidering the following aspects: 1) provide statistical measurements regarding

the fractal related features, and discuss issues on the characterization of speech

sounds by the new measurements; 2) apply a variety of classification experi-

ments; 3) highlight viewpoints concerning their correlation with the cepstral

features.

The employed concepts from system dynamics and fractal theory originate

from the experimental and theoretical evidence on the existence of nonlinear

aerodynamic phenomena in the vocal tract during speech production [4–6],

such as flow separation, generation of vortices e.g. at the separation boundary,

jet formation and its subsequent attachment to the wals; these phenomena,

together with the possible generation of turbulent flow indicate the non-linear

character of the speech production system leading also to a discussion on the

factor by which they affect phonation [7,8]. From the observation point of

view, the dynamics of systems that demonstrate phenomena sharing charac-

teristics with turbulent flow are referred to as ‘chaotic’ [9,10]. Such systems

are characterized by limited predictability, whereas nonlinearity can be an es-

sential feature of the flow. Turbulent motion can be seen as a combination of

interacting motions at various length scales leading to the formation of ‘ed-

dies’ [9], i.e. localized structures of different sizes. Such structures function

for the transfer of energy from higher to lower scales, untill the extend of en-

ergy dissipation due to viscosity; a phenomenon known as the energy cascade.

The twisting, streching and folding that are acounted in this context are also
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characteristics of deterministic systems that resemble chaotic behaviour; these

are characterized by properties such as mixing and conditional dependence on

the initial conditions [10]. Within this frame of reference, fractal dimensions

and Lyapunov exponents are among the invariant quantities that may be used

for the characterization of a chaotic system. Besides, it has been conjectured

that methods developed in the frame of chaotic dynamical systems and frac-

tal theory may be employed for the analysis of turbulent flow: for instance

by utilizing fractals and multifractals to model the geometrical structures in

turbulence that are related to phenomena like the energy cascade [11–15]. For

further discussion on this motivation see [2]. In general, fractal dimensions can

be utilized to quantify the complexity, concerning the geometry of a dynamical

system given its multidimensional phase-space. This quantification is related

to the active degrees of freedom of the assumed dynamical system, providing

a quantitative characterization of a system’s state.

Recently there have been directions in speech analysis that are based on con-

cepts of fractal theory and dynamical systems. Numerous methods have been

proposed [16–19] that attempt to exploit in some way turbulence related phe-

nomena of the speech production system. Work in this area includes the appli-

cation of fractal measures on the analysis of speech signals [20,2], application of

nonlinear oscillator models to speech modeling, prediction and synthesis [21–

23], or multifractal aspects [24]. For instance [20,2], fractal dimensions are

computed as an approximate quantitative characteristic that corresponds to

the amount of turbulence that may reside in a speech waveform during its

production, via the speech waveform graph’s fragmentation. Ideas concerning

phase-space reconstruction have attracted additional interest. Methods that

follow this approach are based on the embedding theorem [25]. The anal-
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ysis may be followed by measurement of invariant quantities on the recon-

structed space. Early works in the field employing phase-space reconstruc-

tion include [21,22,26,27,17,18,28], whereas recently there has been increasing

interest in the area [19,29,30]. These employ concepts on Lyapunov expo-

nents [18,19,29], density models of the phase-space [30], correlation dimen-

sion measurements [18,28], especially for fricative consonants [17], or surrogate

analysis on the nonlinear dynamics of vowels [31].

In this paper, a speech signal segment is thought of as a 1D projection of the as-

sumed unknown phase-space of the speech production system. We reconstruct

a multidimensional phase-space (Section 2) and aim to capture measures of

the assumed speech production system’s dynamics in the way that these are

described by the reconstructed space. Such measures are related in our case

to the fractal dimensions. Moreover the analysis with generalized fractal di-

mensions renders the detection of a set’s inhomogeneity feasible.

Thus, as an extension of previous work [20,2], which exploits multiscale frac-

tal dimension on the scalar 1D speech signal, we move a step forward [32,33],

according to the directions outlined above employing measurements such as,

the correlation dimension (Section 3.1) and especially the generalized dimen-

sions (Section 3.2) on embedded spaces for the analysis of speech phonemes.

Since related methods have been employed to a certain extent succesfully in

speech recognition applications [2,3], we take a closer look on the employed

methods in the following ways. At first we highlight issues on their appli-

cation in the practical cases of speech phonemes and then construct simple

descriptive feature vectors incorporating information carried by the raw mea-

surements. We further demonstrate (Section 3.3) indicatively the statistical

trends and patterns that the feature elements follow depending upon general
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properties such as the voicing, the manner and the place of articulation. In

the same framework we show how phonetic properties affect statistical quan-

tities related to the fractal dimensions (Section 3.4). An implicit indication on

the relation among the information carried by the proposed fractal features

and the commonly used MFCC, is presented by measuring their in between

correlation (Section 4). This lets us consider some novel viewpoints at first

on how the correlation among the two feature sets varies with respect to the

phoneme class, and secondly on the fractal features’ spectral content as this

is formed in maximal and minimal correlation cases with the MFCC. The

potential of the measurements to characterize speech sounds, is also investi-

gated in the light of classification experiments that complement the preceding

analysis (Section 5). These contain 1) experiment sets of single phoneme clas-

sification tests; after inspecting characteristics on the phoneme confusability

of the features, we proceed by considering 2) experiments on broad phoneme

classes; in this way we examine quantitatively the efficacy of the proposed

analysis from the viewpoint of the resulting discriminative ability. The fractal

classification accuracies are also compared with two variants of MFCC-based

baselines, showing in some classification scenarios comparable performance for

the broad class case.

2 Embedding Speech Signals

We assume that in discrete time n the speech production system may be

viewed as a nonlinear, but finite dimensional due to dissipativity [34], dy-

namical system Y (n) → F [Y (n)] = Y (n + 1). A speech signal segment s(n),

n = 1, ..., N , can be considered as a 1D projection of a vector function ap-
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plied to an unknown multidimensional state vector Y (n). Next, we employ

a procedure by which a phase-space of X(n) is reconstructed satisfying the

requirement to be diffeomorphic to the original Y (n) phase-space so that de-

terminism and differential structure of the dynamical system are preserved.

The embbeding theorem [35,14,25] provides the supporting justification to

procceed while satisfying these requirements.

According to the embedding theorem [25], the vector

X(n) = [s(n), s(n + TD), . . . , s(n + (DE − 1)TD)] (1)

formed by samples of the original signal delayed by multiples of a constant

time delay TD defines a motion in a reconstructed DE-dimensional space that

shares common aspects with the original phase-space of Y (n). Particularly, in-

variant quantities of the assumed dynamical system like the fractal dimensions

from Y (n) are conserved in the reconstructed space traced by X(n). Thus, by

studying the constructible dynamical system X(n) → X(n+1) we can uncover

usefull information on the complexity as it is related to these invariant quan-

tities about the original unknown dynamical system Y (n) → Y (n + 1). The

above is feasible provided that the unfolding of the dynamics is successful, e.g.

the embedding dimension DE is large enough. For instance, let’s consider a toy

system case where the original phase-space is known: if one uses smaller em-

bedding dimension than the one required, the resulting reconstruction would

suffer from collapsing points; these points would otherwise belong to separate

time orbits. This would imply also a case of ambiguous determinism since

there would be multiple possible dynamic orbits for the succeeding points in

the time instances that follow. For further discussion on these issues see [25].

However, the embedding theorem does not specify any methods to determine
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the required parameters (TD, DE) but only sets constraints on their values.

For example, DE must be greater than twice the box-counting dimension of

the multidimensional set.

The smaller TD gets, the more correlated shall the successive elements be.

Consequently the reconstructed vectors will populate along the separatrix of

the multidimensional space. On the contrary, the greater TD gets, the more

random will the successive elements be and any preexisting order shall vanish.

To compromise, the average mutual information I for the signal s(n) is first

estimated as

I(T )=
N−T
∑

n=1

P (s(n), s(n + T ))·log2

[

P (s(n), s(n + T ))

P (s(n))·P (s(n + T ))

]

(2)

where P (·) is a probability density function estimated from the histogram of

s(n). I(T ) is a measure of nonlinear correlation between pairs of samples of

the signal segment that are T positions apart. Then, the time delay TD is

selected as:

TD = min{arg min
T≥0

I(T )} (3)

The final step in the embedding procedure is to set the dimension DE . As a

consequence of the projection, points of the 1D signal are not necessarily in

their relative positions because of the true dynamics of the multidimensional

system, referred to as true neighbors; manifolds are folded and different dis-

tinct orbits of the dynamics may intersect. A true versus false neighbor crite-

rion is formed by comparing the distance between two points Sn, Sj embedded

in successive increasing dimensions. If their distance dD(Sn, Sj) in dimension

D is significantly different, for example by one order of magnitude, from their
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Fig. 1. Phoneme signals from the TIMIT database (upper row) with the correspond-

ing embeddings (bottom row): (a,d) /ah/, (b,e) /s/, (c,f) /p/.

distance in dimension D + 1, i.e.

RD(Sn, Sj) =
dD+1(Sn, Sj) − dD(Sn, Sj)

dD(Sn, Sj)
(4)

exceeds a threshold (in the range 10 − 15) then they are considered to be a

pair of false neighbors. Note that any distance difference should not be greater

than some second order magnitude multiple of the multidimensional set radius

RA = 1
N

∑N
n=1 ‖s(n) − s‖. The dimension D at which the percentage of false

neighbors goes to zero, or is minimized in the existence of noise, is chosen as

the embedding dimension DE. An extensive review of such methods can be

found in [36,37].

Following the procedures described we set the embedding parameters for the

cases of speech signals and next construct the embeddings of three indica-
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tive types of phonemes. Figure 1 illustrates a few multidimensional phonemes

together with their corresponding scalar waveforms. Before the analysis and

measurements of the following sections, it seems, by inspection of the multi-

dimensional signals, that the different phoneme types are characterized in the

reconstructed phase-spaces by different geometrical properties. For instance

the vowel phoneme /ah/ demontrates dynamic cycles that resemble laminar

“flow” in the phase-space, the unvoiced fricative /s/ is characterized by many

discontinuous tragectories, and the unvoices stop /p/ shows a single trajec-

tory that settles to a region of interwoven tracks. Similar observations have

been made since [26,27]. Our goal is to describe this variation by means of

statistical measurements that are related to the fractal dimensions.

3 Fractal Dimensions and Feature Extraction

The Renyi hierarchy of generalized dimensions Dq, q ≥ 0 is defined [38,10]

by exploiting the exponential dependency, with respect to the order param-

eter q, of a set’s natural measure. In this way it constructs a sequence that

unifies and extends known fractal dimensions. Such cases are of geometrical

type like the box-counting dimension DB corresponding to q =0, or of prob-

abilistic type like the information DI and correlation dimension DC for q =1

and q =2 respectively. Our exploration of methods for the analysis of speech

signals by fractal measurements has started [20,2] with the already presented

multiscale fractal dimension (MFD) which corresponds to the DB. In the sec-

tions that follow, a step ahead of these first order measurements employed on

the scalar 1D speech signal, involves the exploitation of the multidimensional

embedded speech signals. Towards speech feature extraction we consider at
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first measurements that are related to the correlation dimension DC and a set

of generalized dimensions that has been shown to extend the aforementioned

cases of the Renyi set of fractal dimensions [39].

3.1 Correlation Dimension

3.1.1 Background

The correlation dimension can be estimated by employing a practical method

from the category of average point-wise mass algorithms for dimension esti-

mation [40]. A quantity used for its estimation is the correlation sum C that

measures how often a typical sequence of points visits different regions of the

set and quantifies in this way its mass. C is given for each scale r by the num-

ber of points with distances less than r normalized by the number of pairs of

points:

C(N, r) =
1

N(N − 1)

N
∑

i=1

∑

j 6=i

θ(r − ‖Xi − Xj‖) (5)

where θ is the Heaviside unit-step function. The correlation dimension is then

defined as :

DC = lim
r→0

lim
N→∞

log C(N, r)

log r
(6)

For small enough scales and for N large enough C(r) is proportional to rDC .

3.1.2 CD Features and Characterization of Speech Signals

In the unfolded phase-space we measure C and DC as in (6) using least squares

local slope estimation of the log C(N, r) versus log r data, weighted with the

corresponding variance of each set of points. In this way we form the local

scale correlation dimension function DC(r) with respect to the local scale
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parameter r ∈ [rmin, rmax]. The scale boundaries are selected by ignoring a

small percentage of scales at each extent [37]. In order to derive information

from the set of raw measurements we form the following 8-dimensional feature

vector, whose elements are related to the correlation dimension (CD). This

concerns both the sum C, i.e. the average pairwise correlation over the whole

set, and how this quantity is varying in terms of the scale parameter’s exponent

DC(r). The feature components represent the measurements by 1) calculating

over the whole range of scales r the mean (µ) and the deviation (σ) of both C

and DC and 2) breaking the set of scales into two distinct subsets [rmin, r̄] and

[r̄, rmax], where r̄ is the mean scale value, and calculating the corresponding

means and deviations of DC , in order to include local-scale information. Hence,

the feature vector CD = [CD1...8] is defined as:

CD = [ µ(C), σ(C),

µ(DC([rmin, rmax])), σ(DC([rmin, rmax])),

µ(DC([rmin, r̄])), σ(DC([rmin, r̄])),

µ(DC([r̄, rmax])), σ(DC([r̄, rmax]))].

(7)

In order to explore the variation of the measurements either among different

types of phonemes, or among phonemes that share similar phonetic character-

istics, we measure the CD feature vector on a large set of embedded isolated

phonemes from the TIMIT database [41], independently of the speaker sex or

dialect; the amount of data used has on average order of magnitude of 2 000

instances per phoneme. The measurements concern the univariate component

densities so as to examine each component’s relation to phonetic character-

istics. The densities are shown in some cases in logarithmic scale for better

12



ACCEPTED MANUSCRIPT 

0.5 1 1.5 2 2.5

0.05

0.1

0.15

CD
3

aa

axr

b

k

v

z

s

(a)

0.5 1 1.5 2

0.05

0.1

0.15

0.2

0.25

0.3

CD
4

aa

axr

b

k

v

z

s

(b)

1 2 3 4

0.05

0.1

0.15

0.2

CD
5

aa

axr

b

k

v

z

s

(c)

0.3 0.35 0.4

0.05

0.1

0.15

CD
2

b

d

g

k

p

t

(d)
0.2 0.4 0.6 0.8 1 1.2

0.05

0.1

0.15

0.2

CD
8

th

dh

f

v

s

z

sh

zh

(e)
1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

CD
5

dh

f

th

v

jh

ch

(f)

Fig. 2. Density of selected single feature vector elements related to correlation di-

mension, indicative of phonemes from different classes: vowels, fricatives and stops.

Top row: feature vector elements for selected phonemes from mixed classes are

(a) CD3 = µ(DC), (b) CD4 = σ(DC), (c) CD5 = µ(DC(rmin, r̄)). Bottom row: cases

of stops, affricatives and fricatives for (d) CD2 = σ(C), (e) D8 = σ(DC(r̄, rmax)),

(f) CD5 feature vector elements.

visualization. The setup described holds for all succeeding density measure-

ments.

In Fig. 2 we present indicative cases of histograms drawn from the CD fea-

ture vector such as the CD5, referred to from now on as CDlow, that is the

correlation dimension over the lower scales ([rmin, r̄]), for selected phoneme

types (see Fig. 2 c, f). We observe that CDlow is higher for cases of strident

fricative sounds (/s/,/z/), especially voiced ones, and lower for non-strident

(/v/,/f/). Corresponding values for vowels seem to lie in between. Also, CDlow

shows greater variance, and mainly lower values, for stops, with the voiced or-

dered higher than the unvoiced. Especially for the fricatives, as illustrated by

Fig. 2 (f), it is observed that, among the non-strident ones, the voiced (e.g. /v/)
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demonstrate higher CDlow compared to the corresponding unvoiced ones (/f/)

or alternatively to the affricatives (/jh/,/ch/). Furthermore on the fricatives,

the deviation of the CD in higher scales (CD8) shown in Fig. 2 (e), assumes

on average lower values for the non-strident fricatives (/th/,/dh/,/f/,/v/) ver-

sus their strident counterparts (/s/,/z/,/sh/,/zh/). Voiced stops (/b/,/d/,/g/)

exhibit systematically different statistical characteristics than their unvoiced

counterparts (/p/,/t/,/k/); this holds either for the CDlow or the CD2, as

shown in Fig. 2 (d); the latter quantifies the spread of the correlation sum

function over the range of scales. Other presented components include the

average of the correlation dimension over all scales, and the corresponding

deviation shown in Fig. 2 (a) and (b) respectively.

3.2 Generalized Dimensions

3.2.1 Background

The description of a phase-space via a single quantity such as box-counting or

correlation dimension, might not represent sufficiently a set since the under-

lying probability density may vary. Although fractal dimensions of the proba-

bilistic type, do take into account the variability of how often the system visits

the different regions, they are a weighted average.

A method, in the category of generalized dimensions of [38], that served as

inspiration for the extension of the conducted measurements, is the generalized

dimension function which defines an infinite class of dimensions, introduced

in [39]. This is accomplished by the computation of the moments of nearest

neighbors’ distances among randomly chosen points on the multidimensional
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set. Let δ(n) be the nearest neighbor distance among a reference point of the

embedded set and the n− 1 others, and P (δ, n) is the probability distribution

of δ, then the moment of order γ of these distances is

〈δγ〉 ≡ Mγ(n) =
∫ ∞

0
δγP (δ, n)dδ.

Since 〈δγ〉 depends on n as ∼ n−
γ

D(γ) ([39]), the dimension function is defined

as:

D(γ) = − lim
n→∞

γ log n

log Mγ(n)
(8)

where γ is the parameter that suppresses or enhances the different distances of

scale δ. Since for increasing γ the larger distances are more weighted and vice

versa, D(γ) is theoretically a monotonic non-decreasing function of γ. Among

the infinite number of fractal dimensions with respect to the order parameter

γ, one can find the Renyi class of dimensions Dq for q ≥ 0. When γ = (1−q)Dq

the correspondence is realized as D(γ) = Dq. Geometrically the Dq’s are the

intersection of the D(γ) graph with a set of lines with slope 1
1−q

. Thus, Dq=0

is the point that γ = D(γ) and Dq=1 is the intersection with γ = 0. If D(γ)

is not varying with respect to γ, then the set is said to be homogeneous, with

respect to the scales that are suppressed or amplified, possessing constant

fractal dimension in the Renyi hierarchy of Dq: D0 = D1 = . . . = Dq, q ≥ 0,

and vice versa.

The integral equation of 〈δγ〉 can be rewritten as a sum for a discrete signal

of finite length N :

Mγ(n) =
1

N

N
∑

i=1

δγ
i (n)P (δi, n) (9)

where i is an index for the points of the data set. The probability density func-

tion P (δ, n) can be computed for an arbitrary scale δj as the difference of vol-

ume estimates based on the resolution of the successive scales [42]. Let {y(k):
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k =1, . . . , M} be a set of uniform random numbers of the same dimensional-

ity as the data set X, and let us define the membership function fδj
(k) = 1

if dist(y(k), X) ≤ δj and 0 otherwise where dist(y(k), X) = infx∈X ‖y(k) − x‖.

Then the volume estimate of a δj-cover of the set X is: A(δj)≡
1
M

∑M
k=1fδj

(k).

Given the above, P (δj, N)≈A(δj) − A(δj+1) is an estimate of the probability

that some point has a nearest neighbor at distance δ ∈ (δj+1, δj]. This prob-

ability P (δi, n) equalizes the corresponding nearest neighbor distances. The

latter distances are computed among randomly sampled subsets of the origi-

nal data. This procedure is repeated for the varying number of points that are

included, in the considered subset giving rise to the n dependence, and for all

the γ values, according to the above details, leading to the final moment M

of order γ for varying number of points Mγ(n).

3.2.2 Computation and Intermediate Measurements

In order to compute the dimension function we need to estimate the slope of

log nγ versus log Mγ(n) data. This is practically achieved by computing the

mean slope of sequential estimations that result by a sliding window estima-

tion within the range of log nγ data. An indicative window utilized for slope

estimation covers 7 points on the log Mγ(n) data.

Next we present intermediate measurements on the computation for a test data

set, i.e. the Sinai toy system (see Fig. 3). The measurement of the generalized

dimensions is conducted on two variants of data sampled from the uniform
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Fig. 3. Construction of the Dγ curve: slopes of the nγ versus Mγ data points super-

imposed with the corresponding mean slope fits for the (a) uniform and (b) non-uni-

form Sinai system; (c) explicit schematic comparison of the minimum and maximum

slopes of (a) and (b) for the case of uniform (dashed line) versus the non-uniform

case (solid line). (d) The resulting Dγ curves.

or the non-uniform Sinai system respectively 1 . We show in the same plots a

number of nγ versus Mγ data points; in these we have subtracted the mean

value of each one in order to make visualization feasible. Each group of points

corresponds to a discrete γ value. Moreover, for each curve that corresponds

to a different γ value there is superimposed the corresponding line-fit that

shares the respective mean slope. This mean slope is considered as the average

dimension with respect to each γ. Thus, by computing the slope for each γ

value we create the D(γ) curve, henceforth referred to as Dγ for simplicity,

shown in Fig. 3 (c). We also employ a schematic plot as in Fig. 3 (d) in which we

1 The Sinai 2-D map is (xn+1, yn+1) = (xn + yn + g · cos(2πyn) mod 1, xn + 2yn),

where g=0.3 and g=0.02 are the parameter values for the non-uniform and uniform

cases respectively
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visualize via straight lines the minimum and maximum slopes for the two cases

of system states, i.e. uniform versus non-uniform. Via this explicit comparison,

the greater variation of the slope in the second case becomes apparent.
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Fig. 4. Construction of the Dγ curve: (a,c) slopes of the nγ versus Mγ data points

superimposed with the corresponding mean slope fits; (b,d) the corresponding re-

sulting mean slope points construct the Dγ curves for: top row, case of phoneme

that has varying generalized dimensions (stop phoneme /p/); bottom row, the Dγ

curve for the case of a phoneme for which it is relatively constant (vowel phoneme

/ax/).

Following this procedure in Fig. 4 (b), (d) we show the corresponding mea-

surements for two isolated phonemes after being embedded in the multidimen-

sional phase-space. These correspond to two opposite cases: one in which the

numerous dimensions for the subsequent γ values are constant, and to another

that the dimensions vary with respect to the order parameter γ. In practice

we use γ values in the range of [−3, 3]. However the sparsity of the data points

of the set might not allow the computation of the respective Dγ for all γ. This

leads sometimes to possibly different domains that the generalized dimension
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measurements are computed.

Among the practical issues, we should mention that the computational com-

plexity of the fractal features is higher than the one of the MFCC. This is due

mainly to the complexity of the embedding procedures including the computa-

tion of the embedding parameters; this complexity is increased by two orders

of magnitude compared to the one of the cepstral features. However, com-

putational issues can be further more radically accounted for by procedures

discussed in [37].
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Fig. 5. Geometrical correspondence, for phonemes (a) /ih/ and (b) /p/, among the

Dγ measurements and fractal dimensions from the Renyi hierarchy Dq: intersection

points of the Dγ with lines of slopes equal to 1
1−q

correspond to the Dq fractal di-

mension; y = −x, y = 0, and y = x for q = 2, 1, 0 respectively. Indicative comparison

with the average correlation dimension (CD) for the same phoneme type.

3.2.3 Comparison of Measurements among Fractal Dimensions

We present next the geometrical correspondence among fractal dimensions

from the Renyi hierarchy together with an indicative comparison among the
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fractal dimension related measurements i.e. the correlation dimension and the

generalized dimensions. As mentioned in Section 3.2.1 this relation is given

geometrically by the intersection of the graph of the Dγ function with a series

of straight lines with slope 1/(1−q). Here, we show the generalized dimensions

measurement for two cases of phonemes. In Fig. 5 (a) along with the Dγ graph

we have superimposed the lines that correspond to the cases of q = 0,1,2. It

seems that the relatively constant case of the Dγ leads to almost equal Dq’s:

D0 ≈ D1 ≈ D2. This is an example of the type of uniformity or homogene-

ity that we seek to detect since the dimension function is relatively constant.

Besides, this measurement is close to the average correlation dimension (CD)

that is superimposed in the same figure, as computed along the lines of Sec-

tion 3.1. In this case the description of the set by a single quantity, would be

sufficient. Nevertheless this information enriches our knowledge on the specific

speech signal, since in the case that we would only have access to the single

valued correlation dimension we would not be aware of the set of values that

the generalized dimensions render accesible. On the contrary, a different case is

shown in Fig. 5 (b) in which the characterization of the embedded phoneme is

not sufficient by this single measurement, whereas the generalized dimensions

vary with respect to the γ values. In this case the single CD measurement

would be not sufficient.

3.3 GD Features and Characterization of Speech Signals

Based on the above raw measurements we construct a 9-element feature vec-

tor that is related to the generalized dimensions. This consists of 1) the mean

µ(Dγ) and the standard deviation σ(Dγ) of the dimension function, which in-
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clude statistical information of the measurements; 2) the minimum min (Dγ)

and maximum values max (Dγ) of the same function, 3) the parameters

[p1, p2, p3] of a 2nd order polynomial fit p1 + p2 · γ + p3 · γ2 of the dimen-

sion function Dγ , which is also weighted by the corresponding estimation vari-

ances; these coefficients include more specific information on the location of

the Dγ measurements and are thought of as the parametric decomposition of

the Dγ into the specific basis; 4) and finally, the boundaries argminγ(Dγ) and

argmaxγ(Dγ) of the range of γ values for which the dimension function has

been constructed. Hence, the generalized dimensions related feature vector,

referred to as GD, summarizes characteristics of the generalized dimensions

and is defined as follows by its GD1...9 components:

GD = [ µ(Dγ), σ(Dγ), min (Dγ), max (Dγ),

p1, p2, p3, argminγ(Dγ), argmaxγ(Dγ) ].

(10)

Next we examine in detail how the distinct feature vector components are

related to general phonetic characteristics, by examining their univariate den-

sities.

3.3.1 Mean and Variance Feature Components

Both the µ(Dγ) and σ(Dγ) measurements are of interest: the mean dimension

value is related to the values of the computed set of dimensions corresponding

to an offset-like value over the generalized dimensions; in addition by focusing

on the deviation, as if the above offset has been subtracted, low deviation

suggests that the dimension function tends to be quite constant along the

subsequent γ values and vice versa. By viewing the mean value µ(Dγ) (see
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Fig. 6. Density of the mean GD1 (top row) and the deviation GD2 (2nd row) of the

Dγ curves given the phoneme class; indicative of classes of (a) vowels, (b) fricatives,

(c) stops.

1st row of Fig. 6) for phoneme classes that share phonetic characteristics we

observe the formation of statistical trends: the vowels have mean values in a

specific range of values and their deviation (see Fig. 6 2nd row) is relatively

low, compared to the one of the stops. Fricatives seem to share larger mean

value forming again a discriminable statistical pattern for the cases of strong

fricatives (/s/,/z/,/sh/,/zh/) as presented on the corresponding histogram.

Taking a closer look, for example, at the stops we shall observe that among

them the unvoiced ones versus the voiced ones follow two distinct trends, with

the latter sharing broader distributed average values. Next, in Fig. 7, we see

these statistical measurements superimposed for phoneme types that belong

to different broad categories. Phonemes of the same broad class, share similar

statistical characteristics, that form densities that are consonant with each

other; at the same time, these trends seem to be moderately distinguishable

in some cases among the phonemes of the different type.
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Fig. 7. Density of the (a) mean GD1 and the (b) deviation GD2 of the Dγ curves

given the phoneme class; indicative of the different mixed classes of phonemes.

3.3.2 Lower and Upper Bound Feature Components

Following we examine the minimum and maximum values of the generalized

dimensions, that represent a practical approximation to their lower and upper

bounds. As Fig. 8 (a) illustrates, the lower bound provides different forms for

the cases of voiced versus unvoiced stops. The same component, as pictured

in Fig. 8 (b) differentiates slightly the densities of the front voiced fricatives

(/v/, /dh/) from the corresponding unvoiced ones (/f/, /th/) or from the

strong voiced ones (e.g. /z/) assigning on average lower values to the former.

The vowels show lower values compared to most of the fricatives apart from

the voiced fronts. The upper bound tends to lead to systematic forms in terms

of statistical characteristics, demonstrating, as shown in Fig. 8 (c) greater

values for the case of unvoiced fricatives smaller for the voiced ones and even

smaller for the vowels.

3.3.3 Polynomial Decomposition Feature Components

The polynomial coefficient components of the GD feature vector are inter-

preted, as a constant, a linear and a second order trend, all together approx-

imating the Dγ function; moreover the constant term corresponds to an ap-
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Fig. 8. Density of the lower bound GD3 of the generalized dimension measurements

for (a) stops and (b) mixed phoneme types. (c) Similarly the upper bound GD4 in

the case of mixed phoneme types.

proximation of the information dimension DI from the Renyi hierarchy i.e. the

value of the dimension function Dγ for γ = 0. We view next measurements on

the three coefficients, denoted as p1,2,3. The p1 term shown in Fig. 9 (a) seems

to form statistical trends that differ either for the voiced non-strident frica-

tives (/v/, /th/) compared to either the unvoiced fricatives or to the voiced

stridents (/z/, /zh/). Similar patterns are demonstrated in Fig. 9 (b) among

the vowels, the voiced stops, the unvoiced stops and the fricative unvoiced

non-stridents or the voiced stridents. The values of the linear coefficient p2

as pictured in Fig. 9 (c) for the case of fricatives, show dependence on their

type, for example the front fricatives versus the strident fricative pairs. The

p3 term tends to lead to typical forms as shown in Fig. 9 (d) demonstrating

greater values for the unvoiced stops showing in addition higher variance. In

the case of fricatives, see Fig. 9 (e), the corresponding measurement gets lightly

grouped, in terms of statistical characteristics, in pairs of related phonemes,

such as the pair of front labials (/f/, /v/), the alveolar pair (/s/, /z/), and

the palatal pair (/sh/, /zh/). Similar observations have been spotted among

several types of phonemes, depending on the feature component utilized, as for

instance, fricatives versus affricatives. However, an exhaustive enumeration of

such properties is beyond our scope, since our goal is rather to expose indica-
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tive aspects on how the proposed measurements are related to the phonetic

characteristics.

2 4 6 8

0.05

0.1

0.15

0.2

0.25

0.3

GD
5

sh

s

zh

z

f

v

th

dh

(a)

2 4 6 8 10

0.1

0.2

0.3

GD
5

aa

ae

f

th

b

p

zh

z

(b)

−2 −1 0 1

0.1

0.2

0.3

GD
6

f

v

zh

z

sh

s

(c)
5 10 15

10
−2

GD
7

b

d

g

k

p

t

(d)
0.2 0.4 0.6

10
−4

10
−2

GD
7

f

v

zh

z

sh

s

(e)

Fig. 9. Density of the components corresponding to the polynomial coefficients that

decompose the generalized dimension function. Upper row: constant term DG5 for

(a) fricatives and mixed cases of phonemes. Bottom row: (a) linear term DG6 for

fricatives and (b,c) 2nd order term DG7 for the same set of fricatives and stops.

3.4 Comparison of Features’ Statistical Parameters

Finally, we present from a more macroscopic view, issues on the relation of

the features’ statistical parameters; at the same time we inspect in a more

explicit way, the effect of phonetic characteristics on the features’ statistical

parameters. This is accomplished, in terms of the mean and variance of the

distributions of the features, as follows: We question the normality or the

log-normality on the univariate feature’s phoneme distributions, employing

hypothesis tests. For the cases that the null hypothesis is not rejected and that

the realizations contained at least 100 entries, the mean and the variance of

the corresponding phoneme’s type distribution are estimated. In practice, this
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is the case for 90% of the distributions meeting the required constraint on the

amount of data, whereas 76% among them were characterized as log-normal.

The measurements are repeated across subsets formed by the eight speaker

dialects of the TIMIT database, providing in this way multiple realization

data.

On a second observation layer of the same results we superimpose in some

indicative cases arrows that demonstrate roughly the effects of the general

phonetic characteristics on the features’ statistical parameters. These effects

are observed due to a variation on a single characteristic each time while hold-

ing others constant. Such single characteristic variations refer for instance to

the following: 1) The existence of voicing or not in the excitation (dashed

lines); e.g. from /f/ to /v/ as in Fig. 10(b) corresponds to the case of varying

the voicing while all other characteristics remain the same. 2) The manner

of articulation (dotted lines), as for instance the varying among a stop, a

fricative or a vowel; e.g. from /b/ to /v/ as in Fig. 10(d) corresponds to the

transition from a stop to a fricative. 3) The place of articulation (full lines)

such as the variation among a front, a central or a back; e.g. from /th/ to

/f/ as in Fig. 10(b) that corresponds to the altering of the place from den-

tal to labiodental. In this way one can see three types of “transitions” or

“movements” in terms of the statistical parameters. Such an example is the

existence of voicing that moves the parameters of the unvoiced stops or the

unvoiced fricatives from right to the left in Fig. 10 (a); that is, showing lower

mean. Similarly, variation on the place of articulation moves either the un-

voiced stops or the front fricatives downwards, that is altering their variance.

Another case of movement due to the manner of articulation in corresponding

stop and fricative phonemes is shown either in Fig. 10 (c) or (d) for the GD3
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Fig. 10. Mean versus variance scatter plots of single component feature statistics.

After multiple realizations that correspond to the different speaker dialects of the

TIMIT database, an ellipsis is fitted on the underlying data points that each rep-

resent the parameters of each dialect’s distribution for the corresponding phoneme

type. Line arrows illustrate the effect on the statistical parameters of the represented

feature component when varying a single phonetic characteristic each time such as:

The existence of voicing or not in the excitation (dashed lines), e.g. from /f/ to /v/

as in (b). The manner of articulation (dotted lines), e.g. from /b/ to /v/ as in (d).

The place of articulation (full lines), e.g. from /th/ to /f/ as in (b). Components

shown include (a) the GD mean: GD1, (b) the GD variance: GD2 (c) the GD lower

bound: GD3 and (d) the CD mean in lower scales: CD5. Refer also to Section 3.4.
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or CD5 component respectively. In these cases we observe translation of the

statistical measurements for two types of phonemes, from /d/ to /dh/ and

from /b/ to /v/, i.e. altering the place of articulation while holding the other

characteristics such as the voicing, or the manner of articulation the same.

It seems that in many cases the variations of the statistical parameters of

single feature components form loose patterns due to the variation of pho-

netic characteristics. The numerical results advocate in favor of the previous

observations. Moreover, they demonstrate some finer details concerning the

statistics of the measurements. Indicative results are visualized in Fig. 10 by

mean versus variance plots. In these for the shake of clarity the points that rep-

resent the multiple realizations – unless these are less than three data points –

are represented by an ellipsis. Each ellipsis is centered on the center of mass of

the data for each phoneme type, and its two axis are constructed according to

the principal components of the underlying data. Each graph corresponds to

the statistics of a single feature component. Namely, the mean (Fig. 10 a), the

variance (b), the lower bound (c) of the generalized dimensions, and (d) the

mean of the CD. It is shown by the conducted analysis that 1) similar statisti-

cal trends demonstrated in the previous sections correspond to close points in

the mean-variance scatter plots; 2) the positions of the phoneme parameters

as visualized in these plots are related to their phonetic characteristics; 3) the

parameters for the different phoneme types are distinguishable in some cases

with respect to the phoneme identity.

For instance, the statistics of the lower bound of the generalized dimensions,

namely the GD3 component, exhibit lower mean values for voiced versus their

unvoiced phoneme cases. The vowels show less variance compared to conso-

nants. In the case of fricatives the place of articulation causes similar statistics
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on the variance of the GD1 component; assigning either in fricatives or stops

from higher to lower variance on fronts and backs respectively. In the same

graph unvoiced stops tend to concentrate on the right upper corner, voiced

ones left, first coming the front, followed to its right by the central and back

ones.

4 Correlation among Fractal and Cepstral Features

With the presented perspective, which employs the fractal features, we at-

tempt to measure information, which cepstral originated features might not

represent in specific cases. Towards this direction, we shed next some light on

issues concerning the linear correlation among the fractal and MFCC features.

In the following, that also indicate a new approach perspective, at first, we

discuss qualitatively the correlation between the features of the different type

with respect to the phoneme classes; secondly, we reconstruct in the same

context the spectral content that corresponds to the fractal features regarding

the most and least correlated components with the MFCC.

4.1 Correlation with respect to the phonemes

Towards the exploration of the linear correlation between the fractal and

MFCC features we employ canonical correlation analysis (CCA) [43]; in this

way we create two bases, one for each feature set i.e. the MFCC and the CD

fractal related feature vectors. These bases are developed so that their eigen-

vectors are ordered from the most correlated ones, among the two feature sets,

to the least correlated ones. Next, we compute the sorted eigenvalues for the
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two feature vectors with respect to the different phoneme types separately for

each speaker.
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Fig. 11. Canonical correlation coefficients measurements between the feature vector

components of the MFCC and the fractal features with respect to the phoneme

type (x-axis). The coefficients’ values are in grayscale shown in the side-bar. The

coefficient index of the y-axis has the minimum rank among the feature vectors.

Results are shown for two different speakers; speaker identities are (a) mdns0 and

(b) mkls0. Phoneme labels in the x-axis are sorted with respect to the average

correlation index per phoneme; data are from the TIMIT database.

Figure 11 (a,b) visualizes the measurements, showing the correlation coeffi-

cient among the two feature sets while this varies with respect to the phoneme

type. The phoneme type is represented in sorted order, based on average val-

ues, from the least correlated to the most correlated one. For example, certain

phoneme types hold larger on average coefficients but show lower values in the

less correlated components, that fall sharply in the following components; oth-

ers may retain their modest correlation coefficient across more components.

Such a case is formed between /p/ and /ih/ in Fig. 11. In general it seems that

across speakers the unvoiced fricative and stop phonemes are ordered lower

in terms of correlation, i.e. to the left of the x-axis as shown in the graphs,
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compared to vowels. Among the latter, the back vowels of the /i/-class are

ordered once again, lower than the others. Similar patterns, i.e. more corre-

lated components for some phoneme types, for example /aa/-like vowels and

less correlated components in others like some fricatives or unvoiced stops, are

observed across groups of different speakers.

0

1

2

3

4

5

Lo
g 

D
en

si
ty

 

 
ix iy ih ah aa ao ax uh p t k b d g s sh
f z v

1st
2nd

Fig. 12. Histograms in logarithmic scale for (a) 1st and (b) 2nd ranked phonemes

across all speakers; ranking is defined in terms of lowest correlation among the

included phonemes.

Given the sorting according to the average correlation coefficient of the

phonemes we proceed by computing the density with respect to the phoneme

type of the phonemes that are ranked as 1st or 2nd lowest according to their

correlation across all speakers. In this experiment all speakers of the TIMIT

database are taken into account. The results, visualized in Fig. 12, indicate

that the correlation among the two feature sets, i.e. fractals and MFCC, varies

with respect to the phoneme class; additionally this variation seems to follow

certain phoneme-wise patterns. Unvoiced stops and fricatives are ranked as

the lowest correlated, followed by the back vowels. Moreover, the above im-

plicitly supports from the examined viewpoint, that the proposed features

contribute non-correlated information that depends on the phoneme type.

Next, we continue on an effort to view aspects of this correlation information,

by demonstrating maximal or minimal cases in terms of the spectral content
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of speech.

4.2 Fractal Features’ Spectral Content

Thereafter, we explore another aspect concerning the correlated parts of in-

formation between the fractal and the MFCC features; this focuses on the

spectral content of their most and least correlated components. We employ

once again the CCA, however in the utterance level and independent to the

phoneme type. At first, we reconstruct the truncated spectra of an utterance,

denoted by Ftrunc, by utilizing the corresponding MFCC features as shown in

Fig. 13 (a). Next, given the ordering among the most and least correlated com-

ponents of the learned canonical bases, we keep only the most correlated one;

then, we reconstruct the corresponding MFCC features by utilizing the CCA

learned basis of the fractal features and mapping them back to the MFCC

vector space. At this point we reconstruct their spectra Fmost in order to be

comparable with the original spectra (see Fig. 13 (b)). This comparison shows

that this mostly correlated component owes its correlation mostly to the lower

frequency content retaining time relative information; in frequencies greater

roughly than 1
4

times the sampling frequency its spectral content is flattened

across time in different frequency bands; an effect of the scalewise processing

that the fractal features undergo. Next, we repeat the above procedure, by

keeping this time only the least correlated component of the CCA learned

fractal features’ basis. This is used to transform the fractal features to the

MFCC vector space and on their turn to be used for the spectra reconstruc-

tion of Fleast presented in Fig. 13 (c). This experiment shows that the least

correlated component’s spectral content is shown to lose the time-frequency
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information compared to the original spectra. This observation highlights that

the least correlated information among the fractal and MFCC features does

not show any structure concerning its spectral content.
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Fig. 13. (a) Original spectra that correspond to the 13-element MFCC feature vec-

tor, reconstructed spectra of the (b) most and (c) least correlated components be-

tween the MFCC and fractal features.

Given the variation with respect to the phoneme type of the correlated com-

ponents among the fractal and the MFCC features in Section 4.1, we have

shown maximal and minimal correlation cases on the information that the

different features share in terms of their spectral content. At the same time,
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the aspects examined in the above qualitative analysis, illustrate properties of

the features employed as far as the relation to well-known quantities like the

spectrum are considered.

5 Fractal Features in Phoneme Classification

A first set of experiments is conducted on sets of single phonemes. This allows

us to inspect the phoneme confusability among the different classes; however

the phonemes included are restricted to the union of the subsets that are part

of the specific task. Next, we restrict the set-up by considering phoneme clas-

sification in broad classes; this is realized by merging phonetically proximate

classes.

On the proposed analysis we require each embedded and further processed

signal to be a complete phoneme. This implies that each phoneme shall corre-

spond to a single feature vector. On the other hand MFCC features are based

on short-time processing so as to account principally for non-stationarity, sug-

gesting frame-wise features. To account for this heterogeneity in terms of com-

parison, apart from the frame-wise MFCC baseline that exploits dynamical

information, we also compare in some cases the results of the fractal features

with a second variant of MFCC-based baseline. The latter utilizes an average

with respect to the cepstral coefficients so as to map all frames into one.

The speech corpus utilized is the TIMIT database [41], which is accompanied

by hand-labeled phoneme-level transcriptions. Each signal processed is an

isolated phoneme. The training and testing sets have been employed as are

defined in the original speaker independent setup. The classification experi-
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Table 1

Partitioning of phonemes into broad classes.

Type Abrv. Phonemes

vowel Vo aa ae ah ao ax eh ih ix iy ow uh uw

fricative Fr ch dh f jh s sh th v z zh

stop St b d g k p t

nasal Na em en m n ng

liquid Li el hh l r w y

front Fro ae b eh em f ih ix iy m p v w

central Ce ah ao axr d dh el en er l n r s t th z zh

back Ba aa ax ch g hh jh k ng ow sh uh uw y

voiced Voi b d dh el em en g jh l m n ng r v z zh w y

unvoiced Uv ch f hh k p s sh t th

ments make use of the partitioning of phonemes into broad categories. These

classes are vowels (Vo), fricatives (Fr), stops (St), nasals (Na), liquids (Li),

voiced (Voi), unvoiced (Un), fronts (Fro), centrals (Ce) and backs (Ba); the

specific phonemes that each category consists of are listed in Table 1.

5.1 Single Phoneme Classification and Confusability

At first we examine the classification efficacy of each fractal feature among

single phonemes that are contained in a specific subset. The subsets used
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Fig. 14. (a) Classification accuracy in single phonemes among the phonemes that

are contained in the classes of each classification task, (x-axis) for each CD, GD

and MFCC feature vector; baseline MFCC features are averaged and mapped in a

single frame per phoneme. (b) Confusion matrix, for the feature component CD5,

of the 5th classification task among the scenarios included in (a), i.e. stop versus

vowels on single phonemes. We observe the higher confusability among phonemes

sharing similar characteristics like stops, a subset of vowels or unvoiced stops.

are unions of the sets defined in Table 1. The acoustic modeling has been

realized using the HTK [44] with 1-state Hidden Markov Models (HMM) for

the fractal and the MFCC features that contain each a single feature vector
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per phoneme. In detail, we show next in Fig. 14 (a) the classification accuracies

for each one of the CD and the GD feature vectors across the various scenarios

that are enumerated along the x-axis. The accuracies for each classification

task among the single phoneme classes range from 12 to 28%, depending on

the set of phonemes considered. The single phoneme classification experiment

allows us to observe the confusability within the different phoneme classes

across various scenarios. This is visualized in the confusion matrix shown in

Fig. 14 (b) that corresponds to the classification task among all phonemes

contained in either one of the classes of stop or vowels. We observe that the

intra-class confusability for either the vowels or the stops is higher than for

other cases. Another confusable intra-group is formed among the unvoiced

stops; similar results have been observed in other scenarios too. Given these

observations we proceed and take the union of phoneme sets into broad classes

that share phonetic characteristics.

5.2 Broad Class Phoneme Classification

In a first set of experiments we focus on each single feature vector component

of the fractal features. The acoustic modeling has been realized with 1-state

HMM for the fractal features. In detail, we show next in Fig. 15 (a) the

classification accuracies for each one of the GD components, and in Fig. 15 (b)

the corresponding accuracies for the isolated CD feature vector elements. It

seems that among the fractal feature components some are more efficient in

certain classification tasks than others. For instance, the constant term of the

polynomial decomposition (see Eq. 10), that is the GD5 component, performs

better than the linear term of the decomposition, that is the GD6 component,
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in the fricatives versus vowels scenario compared to the stops versus vowels

scenario and vice versa. Another case that demonstrates different performance

between a scenario that is based on the discrimination given the manner of

articulation versus a scenario that represents the discrimination depending on

the existence of voicing or not is the case of the CD6 and CD8 feature elements

(see Eq. 7): the former component performs better in the case of the second

scenario (voicing) and vice versa. The same holds for the GD7, GD9 pair.

In the second set of experiments we have explored the classification efficacy

of the whole feature vectors. Moreover, we have also employed for the com-

parison the more advanced baseline. The acoustic modeling in this case has

been realized with 1-state HMM for the fractal features, that contains a single

feature vector for each phoneme, and 3-state HMM for the MFCC. The latter

contain multiple frame-wise feature vectors per phoneme and are augmented

by derivative and acceleration coefficients, taking advantage of the phoneme

dynamics. The various classification scenarios highlight from a different view-

point the characteristics of the features relative to the phoneme classes they

are called to represent.

The classification scores for the 8 experiments shown in Table 2 indicate the

capability of the proposed feature sets to classify phonemes into broad classes;

some cases like Voiced versus Unvoiced phonemes perform better than Front

versus Central versus Back phoneme classes. Whilst the fractal features alone

contain 8 and 9 components per phoneme, for the correlation dimension (CD)

and generalized dimensions (GD) features respectively, they occasionally yield

comparable accuracies to the MFCC feature vector containing 39 coefficients

per frame. Apart from the different, to a certain degree, information that the

fractal features carry, this fact could be considered also as an indication of a
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Fig. 15. Classification accuracy in broad phoneme classes for each single component

(x-axis) of the (a) GD and the (b) CD feature vector; the classification tasks appear

in the legend.

more economic representation of the broad phoneme types. Another issue to

notice is that the generalized dimensions related feature set performs better

compared to the correlation dimension feature set. The average performance

over the presented classification scenarios of the GD features is 77.8%, com-

pared to 75.5% of the CD features, and 84.2% of the MFCC. Finally, when

the CD and GD features are combined by simple concatenation in a single

feature vector they perform modestly better than either cases in which they
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have been employed on their own, showing average performance of 80.4%.

Table 2

Classification scores (%) for broad phoneme classes† using either the MFCC baseline

features or plainly the fractal features. MFCC features are computed framewise

for each phoneme. Fractal features are: Correlation Dimension (CD), Generalized

Dimensions (GD). CD+GD label stands for the concatenation of the corresponding

feature sets.

St / Fr / Vo St /Na / Fr /Vo Fro /Ce / Ba St / Na / Fr / Li / Vo

MFCC 88.83 84.87 61.18 75.05

CD 81.62 68.87 40.33 55.84

GD 84.65 69.89 43.04 58.02

CD+GD 87.29 75.35 42.98 61.54

St / Vo Fr /Vo Un / Vo Un /Voi

MFCC 93.61 93.41 93.09 83.29

CD 94.49 86.83 91.85 83.92

GD 95.20 89.97 94.79 86.62

CD+GD 96.62 92.93 97.07 89.05

†Classes are vowel (Vo), fricative (Fr), stop (St), nasal (Na), liquid (Li), voiced

(Voi), unvoiced (Un), front (Fro), central (Ce) and back (Ba).

40



ACCEPTED MANUSCRIPT 

6 Conclusions

In this paper we present the application of speech signal processing methods in-

spired by dynamical systems and fractal theory for the analysis and character-

ization of speech sounds. The steps taken consist of the embedding procedure

that constructs a multidimensional space, followed by measurements related to

the correlation dimension and generalized dimensions for the practical cases of

speech signals. Then, we utilize these measurements to extract simple feature

vectors. The analysis of the features in terms of their statistical trends has

shown them to form statistical patterns depending on their general phonetic

characteristics. For instance distinct feature vector elements obtain on average

values that are subject to characteristics such as the voicing, the manner and

the place of articulation. Moreover the variation of the statistical parameters

of the features seems to follow loose-formed patterns when we alter a single

phonetic characteristic (e.g. place of articulation). These patterns seem to be

similar in different types of phonemes, e.g. fricatives or stops. Next, we employ

a variety of classification experiments, primarily among broad phoneme types.

Both the intermediate statistical measurements together with the qualitative

analysis and quantitatively the classification experiments indicate that the in-

formation carried by the extracted features characterizes to a certain extend

the different speech sound classes. The quantitative results are comparable

occasionally with the baseline features’ classification results; at the same time

the features consist of much smaller number of feature components. Another

issue addressed, which has not been considered up to now, is the varying cor-

relation with respect to the phoneme type between the fractal features and the

MFCC. This is explored by means of canonical correlation analysis, and shows
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lower correlation coefficients for unvoiced stops and fricatives, or backs in the

case of vowels compared to other types of phonemes. Continuing the above,

we also examined this varying correlation information in terms of the spec-

tra of the most and least correlated components among the fractals and the

MFCC. This direction concerns an aspect of the fractal features’ spectral con-

tent and lets us observe a concentration of the least correlated information in

bands lacking any time-frequency structure, whilst the most correlated com-

ponents contain mainly lower spectral content characterized also by partial

time-related resolution.

The specific fractal features cannot be compared with the baseline MFCC

features in terms of classification experiments, as far as the resulting accuracy

is concerned. This raises a number of issues that someone would consider to

look into. Among the most important issues, resides the subject of fusion

between the feature that carries the first order information as considered in

this work, i.e. the MFCC, and the non-linear features, which are considered to

carry second order information. On previous works we have considered simple

fusion approaches [2,3]. Interesting research directions involve the exploitation

of concepts of adaptive fusion by uncertainty compensation [45], by modeling

multiple sources of uncertainty, like measurement or model uncertainty; such

an approach has been explored for the case of audio and visual streams for

audio-visual classification. Towards this direction, it seems that it would also

be worth exploring aspects of the correlation among the multiple features: we

think of expanding the ideas presented in Section 4 of the paper, by use of the

canonical correlation analysis so as to take advantage of the varying correlation

among the different models. From another viewpoint it would be interesting

to consider the problem of fusion at the front-end level, by incorporating the
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multiple types of information in a common algorithm: spectral information

together with information related to complexity quantification. As far as the

statistical modelling for fusion of the multiple feature cues is concerned, state-

synchronous modeling does not fit on the specific phoneme-level approach

concerning the fractal features. In contrast, models like the parallel-HMM, or

other generalizations [46], could be more appropriate. Finally an interesting

track for further research includes the investigation of the relation of fractal

measurements with concepts that are more related to the physics of speech

production. Towards this direction, one could explore the association of the

proposed methods with concepts from the area of articulatory characteristics

of speech production [47,48].
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