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Automatic Voice Onset Time Estimation from
Reassignment Spectra

Veronigue Stouten, Hugo Van hamrhe

ESAT department, Katholieke Universiteit Leuven
Kasteelpark Arenberg 10 PO 2441, B-3001 Leuven, Belgium

Abstract

We describe an algorithm to automatically estimate theevoitset time (VOT) of plosives.
The VOT is the time delay between the burst onset and thedsdtpetriodicity when it is fol-
lowed by a voiced sound. Since the VOT is affected by facikesglace of articulation and
voicing it can be used for inference of these factors. Therélgn uses the reassignment
spectrum of the speech signal, a high resolution time-fagy representation which sim-
plifies the detection of the acoustic events in a plosive. @dérormance of our algorithm
is evaluated on a subset of the TIMIT database by comparisibrmranual VOT measure-
ments. On average, the difference is smaller than 10 ms fa8@@&nd smaller than 20 ms
for 91.4% of the plosive segments. We also provide analysistcs of the VOT of /b/, /d/,
g/, Ip/, It and /k/ and experimentally verify some sourckgariability. Finally, to illustrate
possible applications, we integrate the automatic VOTvesttts as an additional feature in
an HMM-based speech recognition system and show a smalltdtigtically significant
improvement in phone recognition rate.

Key words: Voice Onset Time, speech attributes, estimation, reaswgh spectrum,
lattice rescoring.

1 Introduction

State-of-the-art automatic speech recognition (ASR)esgsttypically use a sliding
window with a length of about 30 ms and a shift of about 10 mxtwmaet features
such as Mel Frequency Cepstral Coefficients (MFCCs) fronatioeistic waveform
of the speech signal. However, plosives also exhibit dititie acoustic events at a

* Corresponding author. Tel: +32 16 321842, Fax: +32 16 321723
Email addressHugo. Vanhamre@sat . kul euven. be (Hugo Van hamme).
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finer time scale. Typically, the closure interval ends in Brugt increase in acous-
tic energy across the frequency range. The release intervaéasured from this
burst onset to the start of periodicity or to the onset of @aissilence. The duration
of the release interval is then called voice onset time or \i©dase periodicity is
present. These events can be as short as a few millisecoedsttheless, they con-
tain potentially important information on the plosive idigy which is lost when
a sliding window of the mentioned size is used. The subsammaused by the
10 ms frame shift is too slow to accurately represent theniinaf the events that
define the release interval and the window length is too leogecurately resolve
the very distict phases of the plosive. The length of theirgljdvindow and the
frame rate that are used by today’s ASR systems are a globgbroonise on all
phones, involving e.g. effects of the variance of the sp¢estimator, the trade-off
between temporal and frequency resolution as dictateddjdthsenberg inequal-
ity, the data rate and the modelling constraints imposedhbyubsequent acoustic
modelling techniques such as Hidden Markov Models (HMMs).

Recently, there has been considerable interest in'supplemgeASR systems with
information that is lost during frame-based front-end ssing or that is difficult
to model with popular methods such as HMMs or (hybrid) Maltgr Perceptrons
(Lee et al., 2007). For instance, the phone or state durdigiributions implied in
an HMM match poorly with actual distributions measured oaexgh. In general,
timing at different scales is poorly modeled in traditioA&R systems. Minor ASR
accuracy improvements were found with phone duration nwobglSeppi et al.
(2007), but the elapsed time between acoustic events atrtakest scale such as
in the current VOT study, or at larger scales such as for hodareaks seem to be
difficult to integrate in an ASR system. The work reported &elet al. (2007) also
illustrates that the exploitation of speech attributeg like VOT is a substantial
piece of research.

The emphasis of this paper is on the automatic measureméme MOT itself in-
cluding an accuracy analysis. The fact that VOT is not a fragrechronous feature
but that it is measured at the phone level and that it is ongvamt for a subset of
phones makes direct integration in an HMM architecturedliffi However, though
we realize that this is a suboptimal approach, we will iltatt the usefulness of the
VOT feature by rescoring phone lattices generated by an Hbélgled phone recog-
niser. Newer statistical modelling frameworks such as lgicgd models (Bilmes
and Bartels, 2005) probably offer additional opportusitier more rigorous ap-
proaches to exploit information sources of the type of theTVThe complexity
of the dependencies on various parameters like gender amukpb context will
therefore also be described experimentally.

Apart from applications in ASR, the current automatic VOTirasitor can also be
of interest in speech analysis, phonetics and speech pathol

Acoustic information relevant to the identification of phessounds has been stud-
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ied in the literature (O’Brien, 1993; Whiteside et al., 2004cCrea and Morris,
2005; Jiang et al., 2006). Plosive consonants are producésbforming a com-
plete closure in the vocal tract via a constriction at theglaf articulation, during
which there is either silence or a low-frequency hum (calleidebar / prevoicing).
The vocal tract is then opened, suddenly releasing the ymeessiilt up behind the
constriction. This opening of the vocal tract’s airway ismiasted acoustically by
a transient and/or a short-duration noise burst. The cnati the interval between
the release of the plosive and the beginning of voicing invhwel is called the
voice onset time or VOT. During this interval there is silerand/or noise caused
by the release and/or aspiration noise. The VOT is one of theymacoustic cues
for distinguishing plosives. The acoustic cues relevarithéoarticulation of a plo-
sive can be related to manner (plosive, nasal, ...), platab{al, alveolar, velar,
...) and voicing (voiced, voiceless). A comprehensiveusson of these cues can
be found in chapter 5 of Borden and Harris (1984) and we liraiselves to an
enumeration here. Thmanner cuegor plosives include the presence of the silent
region in the stop gap (obstruction phase), the rapid fotrtransitions and partic-
ularly a low locus frequency for the first formant F1, suddeargy change, release
burst and aspiration. Thaace cuegor plosives include the burst centre frequency
(i.e. the main spectral peak of the turbulence occurringhatrelease), the locus
frequency for the second and third formant transitions dred\OT. Thevoicing
cuesfor plosives include the VOT, the presence of aspiratior, ghesence of an
audible F1 transition, the intensity-of the burst and theatan of the preceding
vowel.

In this paper, we describe a VOT estimation algorithm usihiga resolution sig-
nal analysis method which will better preserve timing imf@ation than MFCCs
can. The next section is devoted to this signal representdtie reassigned time-
frequency representation (RTFR). This representatioowallwell-separated im-
pulses, cosines and chirps to be precisely located in tirdeérainequency. Because
speech can to some extent be seen as a sum of such signalsyaeatadhe use
of this representation for our current task. In section & WOT characteristics
are highlighted. A VOT estimation algorithm starts with emdifying segments of
speech that potentially contain a plosive sound. We thezetescribe our plosive
data sets in section 4 and move on to section 5 where the atoaithm that com-
putes the VOT feature from the RTFR is described. AlthoughM®T has already
been studied extensively, there are not many algorithmsritbesl toautomatically
extract this feature. Related work can be found in LefebmaeZavierzynski (1990);
Ramesh and Niyogi (1998); Niyogi and Ramesh (1998); Sonmez. €2000);
Kazemzadeh et al. (2006). However, to our knowledge thibesfitst time that
the RTFR has been used to reliably extract the VOT feature. performance of
our algorithm is evaluated in section 6.1, while sectioniu3trates the modelling
complexity as well as the usefulness of our automatic VOTaexibn algorithm
for phonetic studies by measuring some statistics of the ¥§iure on the TIMIT
database. Finally, in section 6.4 a rescoring approach showodest improvement
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in speech recognition accuracy using VOT. Conclusions ediobnd in section 7.

2 Spectral reassignment

Time-frequency reassignment (Auger and Flandrin, 19%mtelet al., 1998; Hainsworth

and Macleod, 2003) offers an interesting solution for asialy transient signals

such as plosives. The corresponding reassigned timedrayuepresentation (RTFR)

has an increased sharpness of localisation of the signgd@oemts without sacri-
ficing the frequency resolution. The RTFR is obtained by mgihe spectral den-
sity value away from the point in the time-frequency planesrehit was computed.
The spectral density is reallocated from the geometricrearitthe spectral analy-
sis kernel function to the centre of gravity of the energytribsition. Though this
principle can be applied to a multitude of time-frequenggresentations, here it
is applied to the short time Fourier transform (STFT). Lkétt, w), D(t, w) and
T (t, w) denote the STFT of the signal obtained with the window fuorchi(t), the
derivative ofh(t) and its time-weighted versidm(t) respectively and Iet (X) and
J(X) be the real and imaginary parts ¥f then the energy at, ) is reassigned

to:
T
Y CLD
H(t, w)
D(t, w)
O ( Ht, w))
In practical implementations, the time-frequency planevierlaid with a grid and
reassigned energy is accumulated per cell.

t

LR

®

In case the signal is a single cosine, linear chirp or Diragulse, the localisation
in time and frequency is perfect. For instance, for a Dirapuses(t — tg) all
energy will be reassigned tg. When applied to speech with a sufficiently short
analysis window, the RTFR clearly shows vertical (i.e. wedlalized in time) lines
for plosive bursts as well as for energy releases by the Viotds$. This property
will make the construction of detectors for the burst ondet plosive and for the
subsequent start of periodicity (if any) fairly easy, ad W shown below. We have
experimented with the multi-taper version of the RTFR (X&em Flandrin, 2007),
but a single window seemed to provide sufficient detail ofglasives to reliably
reveal the acoustic events of interest, while it is compomaily less demanding.
Given the impulsive nature of the acoustic events we aredrio characterize, we
opt for a Hamming window of length 8 ms, shifted by 0.625 msgrelysis frame.
This corresponds to 128 and 10 samples respectively at alisgniequency of
16 kHz which is adopted throughout this paper. Comparededythical window
lengths of 20 to 30 ms with a frame advance of 10 ms which arelynosed in
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Fig. 1. Reassigned time-frequency representation of a /t/ segrabmivéd by /ih/. Colors
encode the logarithm of the energy.

speech recognition, our signal analysis offers a highexiuéi®n in time. We used
256 equally spaced frequency bins for reassignment, a eldiich is not critical
given the wideband nature of the variables upon which thedtiein of the burst
and the voicing onset will be based.

Figure 1 shows an example of the RTFR for a voiceless plo#ifjeségment (fol-
lowed by the vowel /ih/ as in "pit”), taken from the TIMIT ddtase. The burst and
onset of voicing as detected by the algorithm describedspidper are shown with
arrows at the top. In this example, the burst of the /t/ istedat 15 ms, while the
voicing starts at 87 ms, such that the VOT has a value of 62 mrscé#mparison,
we also show the original STFT from which the RTFR is computetigure 2.
Clearly, both the alveolar burst and the effects of glottaivaty are better localized
in time in the RTFR.

3 Propertiesof the Voice Onset Time

On average, the VOT of voiceless plosives is larger than tB€& df voiced plosives,
and the VOT increases from a bilabial to an alveolar and tdax egricture. Hence,
on average we have:
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Fig. 2. STFT representation of the /t/ segment from figure 1. Coloode the logarithm of
the energy.

VOT(/bd g/) < VOT(/ptk/)
1w VOT(/b/) < VOT(/d/) < VOT(/g/)
VOT(/p/) <VOT(/t)) < VOT(/k/)

1w From the literature, we know that the VOT is influenced by sav&actors: the
11 left and right context of the plosive, the position withiretiord, the lexical stress,
12 Speakergender, speaking rate, the language, fundamestaéhcy of the vowel,. .. For
1z instance, there are notable differences in voicing acarsglages: Spanish has neg-
s ative VOTSs for the voiced plosives, while the VOTs of Englésle mostly positive.
1s | Women produce longer VOT values for voiceless stops than(WMérteside et al.,

us  2004). Also, the VOT of children slightly changes with thagre. When the plosive
17 1S followed by the vowel /i/, the mean VOT is larger than whersifollowed by

s the vowel /a/ (Whiteside et al., 2004). An increase of theakpeg rate causes a
e decrease of the VOT of voiceless plosives. Voiceless stopduged at a high fun-
150 damental frequency display shorter VOTs than those at lomidrFy's (McCrea

151 and Morris, 2005). In addition, voiceless stops tend to ldisghorter VOTs and
152 Voiced stops display increased VOTs during conversatispakch and reading,
153 compared with isolated words.

152 Because of these effects, VOT distributions tend to oveHigmce, the relation be-
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tween the VOT value and plosive identity or even its voicisigot straightforward.
Many studies try to circumvent this overlap by only considgmlosives that are
uttered in a constrained way, e.g. single words with a psiwsyllable initial pre-

stressed position. In this way, the variability of the VOTihin one class of plosives
becomes smaller. In section 6, it will be shown that sta@tmodels of the VOT
are more precise when they are conditioned on the phonetiexb If these mod-
els are to be used for accuracy gains in ASR as in sectiont@e4;dntext can be
assumed available (although not with 100% accuracy) fromstar@cognition pass
when evaluating the estimated VOT. By using this knowledige,overlap of the
distributions can also be reduced to some extent.

4 Data sets

Experiments are conducted on the TIMIT database (Garotodd.,€1990) since it
contains manually verified phonetic transcriptions. Itteoms English read speech
at office recording quality, uttered by native adults selddrom eight dialect re-
gions in the USA and sampled at a sampling frequency of 16 KiHpugh the
algorithm may also apply to other plosives and affricatieis, $tudy focuses on the
six plosives /p/, It/, Ik/, b/, /[d/ and /gl.

To study the quality of the VOT estimation algorithm that IMde specified (in
section 5), we adopt four data sets that are referred to asé@, "manual”, "free”
and "test”. Each of these sets contains a collection of setgy speech in which
we expect to find one of the six plosives. Depending on the sittathe segment
identity as well as its boundaries are generated in diffesays as described below.

The number of speech segments for each plosive is givenlia 1ab

4.1 The "forced” data set

The "forced” data set is relevant for phonetic studies, isioanated studies of the
parameters affecting the VOT or for automated pronunanesicoring in (foreign)

language learning. In these settings, speech segmentsdaurd in which one

of the plosives under study is present and our task is to agtithe VOT. The

segment boundaries are obtained from a forced alignmemt avit HMM-based

speech recogniser using the manually verified phonetistrgstions available in

the TIMIT database. Hence, we rely on information that ismalty not available in

an automatic speech recognition system. All 16134 occue®nf the six plosives
from the 3696 phonetically rich "si” and "sx” training utemces originating from
462 different speakers in the TIMIT database are includeberiforced” data set,

irrespective of the left and right phonetic context.
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The acoustic models used for segmentation are context émdiemt HMMs with
2 to 4 states per phone trained on an independent data setalnthere are 141
GMMs sharing 5550 Gaussians with diagonal covariance. peech features are
mel-scaled log-filterbank outputs that are linearly transfed with a decorrelating
and diagonalizing transform (Demuynck, 2001). Since tHieatures are recalcu-
lated every 10 ms, this is also the segmentation resolutioited plosives and
voiced affricates share a common 2-state HMM for the clasTine voiceless plo-
sives and affricates also share their closure model. Bydioh separate models
for the phone components of plosives, the HMM will producpasate segments
for the closure and the burst. The segment boundaries tbatssociated with the
plosive are those of the burst only. The reason for this éh@dhat the segment
boundaries generated by the HMM will serve as a fallback seaae fail to detect
the burst or the onset of voicing, while the duration of thesbgegment can be
seen as a measurement of the VOT.

4.2 The "free” data set

In a fully automatic VOT extraction setting, a forced aligamh is not possible due
to the lack of a unique transcription hypothesis. Thereforéhe second data set,
plosive segment candidates are generated by a phonetimatitcsspeech recog-
niser as described in Demuynck et al. (2006) applied to theesaterances used
in the "forced” data set. The HMMs described in section 44 ased to find the
best matching phonetic transcription using a phone-leiggin language model
with Witten-Bell smoothing (Witten and Bell, 1991). Any segnt automatically
labeled as the burst of one of the six plosives under studyinghsded in the set,
irrespective of the detected phone or phone component deftrend on the right.

4.3 The”manual” data set

The performance of the algorithm will be evaluated by cormgathe automatic
VOT estimates with values derived by an expert. To this emsdibset of the plosive
speech segments was selected from the "forced” set as ®llGycling through
all 16 gender/dialect combinations, we randomly drew a lspeftom that gen-
der/dialect combination and subsequently we randomly d@reecording (sample
file) from that speaker. For any of the six plosives for whioh eollected less than
130 examples so far, the expert manually estimated the VGill otccurrences in
the recording by inspection of waveforms and spectrograemseced around the
automatically generated segment boundaries, markingutst bnset time and the
start of voicing and finally storing the time difference. @il 268 different record-
ing files from the TIMIT database were used. All plosive segtaehat were not
followed by a voiced sound or for which the manual annotatari@d not detect a
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Table 1
Number of speech segments in each of the data sets.

forced| free | manual| test

b/ 2181| 2012 115| 754

[d/ 2432 | 2222 76| 728
g/ 11901 977 98| 386
Ip/ 2588 | 2749 111 | 821
It/ 3948 | 4052 92| 1180
K/ 3794 | 3968 90 | 1039

total | 16134 | 15980 582 | 4908

burst or the start of voicing were removed. There is no camstion the left pho-
netic context. Table 1 shows the exact number of .examples rétained in the
"manual”’ data set.

4.4 The "test” set

This set is constructed exactly like the "forced” data setept that the sentences
are taken from the TIMIT test set ("extended” set without'ibare” set), a total of
1152 sentences from 144 speakers.

5 TheVOT estimation algorithm

The VOT estimation algorithm proceeds in three sequenteggss In the subse-
guent subsections, each of these steps is described iegdesail. First, candidate
plosive segments are detected and segment boundaries reemaigel. Secondly,
the burst onset is detected by peak picking in the acoustasuare called "burst
power”. Thirdly, the start of voicing is found by peak picgim the acoustic mea-
sure called "periodicity”. The estimated VOT is then thepsked time between the
estimated burst onset time and the estimated start of peitypd-igure 4 illustrates

the acoustic measures the algorithm relies on as well asutoeme of the peak
picking criteria (described below) used for detecting batknts.

The procedure has different possible outcomes. First, ltheve detection may fail
by generating a false alarm or by missing a plosive. Thisddadunrecoverable
errors in the estimated VOT. Second, the generated segrentdaries may de-
viate too much from the real start or ending such that a d@ifieacoustic event is
identified as the burst or voicing onset. For instance, ifgire@osed segment start
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is too early, an event belonging to the previous phone magdtified as the burst
onset. If the proposed segment start is too late, the busstonay not be detected.
In the latter case, the missed event will be related to thensatjboundaries pro-
posed by the detector (see below), but given the errone@msesd boundary, the
VOT error will be important. Third, either burst or voicingay not be revealed
by their acoustic measure, in which case fallback estimaitéseir time of occur-
rence are derived from the segment boundaries proposedebyidisive detector.
In this case, the VOT errors critically depend on the quadityhe generated seg-
ment boundaries. Fourth, the segment may be correctlyifeghas a plosive with
successful timings of the burst and voicing onset, leadigntall VOT estimation
error related to the time-frequency representation.

5.1 Detection of plosive segments

The first step in the algorithm consists of finding segmenteérspeech signal that
could contain a plosive. Such segments could be found usdgated detectors,
as is shown in the research on automatic extraction of plognal! features. In

King and Taylor (2000) and Stouten and Martens (2006), deteare described
that exhibit sufficient accuracy to generate candidatey#asegments. The method
used for generating plosive segment candidates is imgdadahe performance of

the algorithm. In the introduction of section 5, four catege of outcomes were
defined. For the first outcome, one needs to optimize the ‘wéfdeetween false

alarms and missed detections. For the second and thirdroetdbe proposed seg-
ment boundaries need to be as accurate as possible.

In the current work, we have opted for a HMM-based automatéesh recogniser
to generate plosive segment candidates, as explainedtiarsécDepending on the
application of the VOT estimate, it may or may not be reastm#abassume that
a phonetic transcription of the speech around the plosigeagable. We therefore
defined the "forced” and "free” data sets in which plosiversegts are generated
with or without phonetic knowledge of the test utterancedth sets, the algorithm
will start looking for the burst 2.5 ms or 4 frames prior to thxerst segment start
found by the recogniser. Starting earlier would increasertbk of misdetecting
energy bursts from the previous phone as belonging to tha&yagoStarting later
would increase the risk of missing the burst. The end of thpreat is extended
by 10 ms or 16 frames to the future. Extension of the segmedtt@rthe right
just means more pitch cycles will be included and is harmteshe algorithm.
The value of 10 ms is a compromise such that at least one lgbbdsure will be
seen in most cases, while avoiding unreasonably high VQinatds in case some
initial glottal vibration cycles are not detected. Notiteat even if the successor
segment was manually or especially automatically labeteah\aowel, this does not
guarantedhat glottal activity will be detected.

10
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In the discussion below, we will refer extendedgsegments to refer to the plosive
segment starting 2.5 ms before and ending 10 ms after theesggtatermined by
the speech recogniser.

5.2 Burst onset detection

Figure 1 shows that the onset of the release phase gives i@ssudden increase of
the amplitude over the whole frequency range.

To limit the influence of the high-amplitude pitch pulses @fhalso have a strong
low-frequency component, only the frequency range 3.2-8 isHietained for burst
detection. The corresponding frequency bins in the RTFRguawe summed to
form the "burst power’p(n) estimate for framen. Then, the first local maximum
in p(n) that is sufficiently strong and ramps up sufficiently shaiplidentified as
the burst onset. The condition is asymmetric becan@e can stay high during
the release interval after the burst. In formulae, framis retained as a possible
burst location if it satisfies all of the following conditisrp(n) > p(n — j), for

] = —=1,1 and 2 (local maximum)p(n) — p(n =1) > pyp(n) fori = 2...5
(sufficiently sharp and strong peak), wheyg(n) is a measure that relates to the
average signal energy so the criteria are invariant to isgaif the signal. In our
experimentspm(n) is taken to be the mean @i(n) over 150 plosive frames.

If the automatic algorithm does not find a local maximum, tteetof the (unex-
tended) segment is marked as the burst onset. This may hagpanse the burst
is simply missing (by construction, this will not happen iret’'manual” data set)
or because it is too weak. The resulting estimate is lessratecumeasured over
all plosives of the "manual” data set, the square root of teamsquare estimation
erroris 12.6 ms if a burst was detected, while it increas@2t6 ms if a burst could
not be detected.

5.3 ' Start of periodicity

As can be seen from the RTFR in figure 1, the periodicity of tgea gives rise to
vertical lines of high amplitude with valleys in between €ldistance between these
lines is determined by the pitch period. This periodic stueeis mainly present in
the lower part of the frequency range.

To obtain a robust estimate of the start of voicing, only tlegfiency range 0-4 kHz
is retained. At a sampling frequency of 16 kHz as used in tlogkythis comes
down to keeping only the lower half of the RTFR. Then, a sharhtautocorrelation
is computed by multiplying every RTFR frame (for every 0.688 frame advance)
with a weighted version of the frames at lags 1 to 40 and sumrhiase values
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over the lag index and over the retained frequency bins. Téighwing function
(figure 3) is given by the difference of two decaying exporafitinctions and has
a large value in the adult pitch period range of 5 to 20 franges;esponding to
a pitch period between 3.1 ms and 12.5 ms or a pitch frequen8g®Hz down
to 80 Hz. An asymmetric weighting function is chosen becausevant to extract
thestart of periodicity. The result is normalised with the total egyem the frames
under the autocorrelation window over the whole frequemmge (0-8 kHz).
Weighting Function

0.35r 1
0.3F
0.25r
0.2f
0.15r

0.1F

0 5 10 15 20 25 30 35 40
frame number

0.05 : ‘ ‘

Fig. 3. Weighting function of the periodicity detector.

The aurocorrelation function obtained in this way will esibia large value at times
where there is a substantial amount of energy that is peadigirepeated within

the analysis frame, i.e. at the time instants for which ahppalse is present in
the RTFR. To be marked as a local maximum, the following ciboras have to be

met: its value has to be larger than the value of its diregym®ours, and it has to
exceed the value ofits neighbours at distances of +/-2, aiteB+/-4 frames with

an increasing threshold to assure that the selected pealks &ast 5 frames (or
the minimum pitch period) on either side from their neighitsoand at least 0.03 in
height, a value which was determined from visual inspeationthe "forced” data

set (excluding the "manual” set).

With this scheme, some of the bursts will also be marked ah pitilses. Moreover,

a velar stricture can have multiple bursts that should notdogused with pitch
pulses. To avoid selecting the burst as the start of voi@ngadditional constraint
iIsimposed. A local maximum has to be within the maximal pgehod (20 frames

or 12.5ms) from th@extlocal maximum (or from the end of the extended segment).
For low-pitched voices, the wrong starting point of voicican still be selected if
some pitch pulses are not detected. However, the risk oftsedethe burst onset is
strongly reduced, especially if multiple bursts are présen

If the algorithm cannot detect voicing within the extendegiment, the end of
the unextended segment is marked as the start of voicingyedall back to the
HMM'’s decision of the start of the next phone. This is a readd® choice for
English, where VOTs are mostly positive, but for other laages, voicing may al-
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ready start in the closure interval. On the "manual” datawetmeasure a square
root of the mean square error of 12.2 ms if voicing was detkatdile it increases
to 17.8 ms if voicing could not be detected within the extehsegment. Not sur-
prisingly, the HMM does a better job at detecting the stathefnext vowel than it
does at detecting the burst.

5.4 Discussion

The proposed peak picking algorithms are surely not the posible approaches
to detecting the burst and voice onset events in RTFRs. Tvenéaye of the RTFR
is that the peaks are clear and sharp, which motivates thetimge resolution of
0.625 ms used in our proposed algorithm. Often, both thetlamd the glottal
closures can be located to a single frame. Decreasing theefrate might make
the algorithm computationally more efficient, but would raake peak picking
more error prone. In any case, even at pitch periods downdatabms, sampling
needs to be fast enough to resolve the pitch peaks. Simitadyburst onset may
exhibit multiple clicks which should not be merged into agd&nbroad peak op(n)

if the same peak detection criteria are maintained.

6 Experiments

6.1 Algorithm performance for phonetic studies

The VOT was estimated for the complete "forced” data set bgmseof the auto-

matic algorithm of section 5. Since the "manual” data setsalaset of the "forced”

set, it is possible to compare the manual and automatic V@mates on this sub-
set. Figure 5 shows the cumulative distribution of the alieodlifference between
the manually and the automatically extracted VOT estimd@esaverage, the dif-
ferenceis smaller than 10 ms in 76.1% of the plosive segmemigller than 20 ms
for 91.4% of the plosive segments, and smaller than 30 msd@9 of the plosive

segments. The average deviation from the manually assij@éds the largest for

/d/ and decreases from /d/ to /k/, /g/, It/, Ip/ and /b/.

Table 2 gives an indication of the bias of the algorithm. Facheplosive, it con-
tains the average of the manually and of the automaticalipeted VOTs on the
"manual” data set. The resulting bias is calculated as tfierdnce of both means
and the uncertainty on this estimate is given as its standirtion assuming in-
dependent bias measurements. There is an overall bias ofi.9vhich is even
statistically detectable on most individual plosives. ow that the bias is mainly
due to the fallback in case either burst or voicing onset otha detected automat-
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Fig. 4:Left: illustration of the peak picking on a /b/ segment withight context /aa/ (from
"flat bottom”) taken from the "free” data set. From top to boitn: RTFR, burst detection
and periodicity detection. The peaks that satisfy the selecriteria are marked with
vertical solid lines. Right: /b/ segment (from the word "thby”) with erroneous detection
of the start of voicing. The missed start of periodicity isked with a dashed line.

ically, the right side of the table gives the same statisnessured only on those
segments from the "manual” data set for which the algorithas wble to detect
both events. The overall bias is now down to 0.9 ms and moséized on /d/. A

further analysis would need to question the human annotatsowell as the peak
selection criteria. Phenomena as illustrated in the rigimepof figure 4 are likely
to play a role here.
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Fig. 5. Absolute difference between the manually and the ‘autoallgtiextracted voice
onset time.

Table 2

Comparison between the average manually and automatieathacted VOT for each plo-
sive. Left: all plosive segments of the "manual” data set.Rignly the plosive segments
for which both burst and voicing onset could be detectedraatally.

VOT (ms) VOT (ms)

all segments without fallback

manual | autom{| bias | stdev| manual| autom | bias | stdev
b/ 7.7 9.8 2.1 0.9 7.9 8.8| 0.9 0.8
/d/ 8.5 16.1| 7.7 19 8.2 13.5| 5.2 2.0
g/ 21.8| 22.7| 0.9 1.1 21.7| 21.7| 0.0 1.1
Ip/ 39.4| 441| 4.6 1.1 38.5| 404)| 1.9 1.2
It/ 509| 514| 0.6 1.2 50.2| 48.9]| -1.3 1.3
Ikl 543| 56.4| 21 1.7 56.2| 55.2|-11 2.0
avg 30.3| 331| 29 0.5 28.8| 29.7| 0.9 0.5

6.2 Algorithm performance for automatic speech recognitio

While the above accuracy analysis is relevant for e.g. ptiostudies, where seg-
ment boundaries can be generated based on a manually pdoghoaetic tran-

scription, its validity can be questioned in a fully autoraaetting, where the goal
of VOT estimation could be to improve speech recognitiorugacy on plosives.

Therefore, in the second study, the absolute differenced®t manual and auto-
matic estimates is analysed on the "free” data set. Howewvegutomatic phone
recogniser can mislabel plosive segments, insert or orihtlor generate different
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Table 3

VOT estimate [ms] for each plosive class, averaged overatexts in the "forced” data
set. Mean value for all speakers, only male or only femalalepres. Columns 5-7 indicate
the corresponding number of segments.

VOT [ms] # segments

m+f| m f m+f| m f

/b/ | 11.8| 11.3| 13.0| 2181 | 1522| 659
/d/ | 18.6| 17.7| 20.5| 2432| 1681| 751
/lg/| 21.8|20.7| 24.0| 1191| 800| 391
/Ip/ | 40.8| 39.0| 45.0| 2588| 1798| 790
It/ | 43.6| 41.8| 48.1| 3948| 2791 | 1157
/kl | 48.0| 47.1| 50.3| 3794 | 2686 | 1108

segment boundaries. We related the plosive segments frefifrde” data set with

one from the "forced” data sets by selecting the "forced’sple segment with the
largest overlap in time. For 9.2% of the segments, there wasarlap. Only 0.04%
of "free” segments overlapped with more than one "forcedjrsent, in which case
we took the "forced” plosive with the largest overlap in tiniéotice that it may

well be that the phone identity (amang the set of six considleis different in both

sets, corresponding to the mislabelings by the recognisgme are trying to cor-
rect. In this analysis, the manual phonemic labelings piedithe TIMIT database
are assumed to be correct.

With this procedure, 566 plosive segments from the "fred” smuld be linked

with a segment from the "manual” set, which allows the curtivdadistribution

of the absolute difference between manual and fully autmm&DT estimates to
be recomputed. The percentiles for 10 ms, 20 ms and 30 mstibevizow be-

come 72.6%, 87.8% and 93.8% respectively (instead of 7691%4% and 96.2%).
Hence, the main source of estimation error is not caused éwatiomatic gener-
ation of segment boundaries. Also notice that only 26582 — 566) out of 582

plosive segments from the "manual” set could not be foundraatically, which is

far less than 53 (9.2 % of 582). Hence, the HMM-based plosgteador performs
a lot better on plosives for which the human annotator fouhdrat that are also
followed by a voiced sound.

6.3 Estimated VOTs

With this automatic algorithm, we can investigate to whigkteat factors such as
gender and phonetic context could be taken into accountirsstal models. In
this study, we focus on the voicing dimension, rather thacglof articulation.
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First, we measure the effect of gender. The second colunabtd 8 shows the VOT
obtained on the "forced” data set for each of the plosivesiayed over all speakers
and all contexts. These values confirm the inequalitiesaf@e3. Columns 3 and
4 contain the VOT values averaged over all contexts but dhaotyionly the male,
or only the female speakers, respectively. On our datalthee/OTs of plosives
uttered by women are on average 12% longer than that of menpRok/, this
is in line with Whiteside et al. (2004), but the latter arialid not mention the
same effect for /b d g/. Notice that the gender-independesrtages differ from
those of table 2 because the phonetic context of the plodiffess, as explained in
section 4.

80 T T T T T T T T T T T T T T T T T T . T T T T
»

T
|

60

VOT (ms)
N
S

200 ] | ° R :

Fig. 6.Mean VOT for plosives /p bt d k g/ by context (context indepetdight context /ih/,
/aal, leh/): The left context is always unconstrained. Ebars indicate +/- one standard
deviation. Measured on the "forced” data set.

The effect of the right context can be found in figure 6, whicbsents the VOT
means together with the standard deviations without aryt Bgntext imposed or
when it is followed by a vowel /ih/ (as in "bit”), /aa/ (as in 6&") or /eh/ (as in
"bet”). There is no constraint on the left context. In totlere are between 68
and 253 examples of each right-context dependent plositieeirdatabase when
pooling over all speakers. If the phonetic context is caiséd, the overlap of the
VOT distributions usually decreases. For instance, thar éaurs of /k eh/ and /g eh/
do not overlap, while the error bars for the context indemendk/ and /g/ do. The
same can be said about /p aa/ and /b aa/ versus /p/ and /bbAger bverage VOT
for right context /ih/ than for context /aa/ is only obsenfedplosives /b d g t/.
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Fig. 7.Normalised histogram of VOT estimates on the "forced” dagafer plosives /b d
g/ and /p t k/ followed by vowel /eh/, without constraint oe kbft context.

Figure 7 shows histograms of the context dependent VOT sosiyas followed by
the vowel /eh/, constructed on the "forced” data set. Frois figure, the overlap
of the distributions is clearly apparent. This overlap ismVarger for the context
independent histograms. This illustrates that the rataietween the VOT value
and the voicing cue of the plosive is not straightforward.

6.4 VOT as a feature for automatic speech recognition

Histograms like the one of figure 7 can be used in a likelih@idtest to discrim-
inate, for instance, along the voicing dimension. To thid, @ontext dependent but
gender independent histograms are built with 23 uniforrplgced bins 5 ms apart
between -10 ms and +100 ms using the "forced” data setN(&t, |, p, r) be the
number of times the estimated VOT falls in bihfor plosive p with left context

| and right context. Overall, 1298 different phone/plosive/phone combinagio
are observed. Many of these histograms have little data,ealé-stage backoff
scheme is applied to histograms having less than 40 cousts, i

> N(V.1, p.r) <40
\%

First the left context is generalised to one of 12 broad ptioretasses, then the
right context is generalized, then the left context is djarded and finally the right
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Fig. 8. Logarithm of the likelihood ratio versus the automaticatigiculated VOT value,
measured on the "test” data set.

context is disregarded. The backoff steps are terminatsd@s at least 40 counts
are observed in the histogram with the generalized cont&gtwill call the thus

obtained generalized left and right contésndf respectively.

Figure 8 shows the logarithm (to base 10) of the likelihodibraersus the esti-
mated VOT value for the "test” data set. This set containa that was not used dur-
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ing the construction of the histograms, while the grounthtabout plosive identity
and its context is known from the manual labeling providethe TIMIT database.
SoletP(V]l, p, r) be the probability that the estimated VOT falls in hrfor plo-
sive p as measured on its histogram, andRWV I, p, r) be the probability read
from the histogram for the plosive with opposite voicing.€Tlbg-likelihood ratio
is then

PV, p,r)+e
|
Ogm(P(vu,b,rHe

where

NV, I, p,f)
ZV N(V’ I~» P, f:')

PV, p,r) =

ande is a small constant to cope with zero probability estimates &as set to
103 in our experiments. The left panes show the log-likelihcatibron the voice-
less data and assuming the voiceless sopnd {p/, /t/ or /k/ andp is /b/, /d/ or /g/
respectively), while the right panes show the log of thepexial on the voiced
data (i.e. assuming is a voiced sound). Figure 8 illustrates that large (small)
VOTs for voiceless (voiced) sounds indeed lead to positigelikelihood ratios,
but that negative log-ratios can occur. That the choice igfnot a critical one is
also apparent from these scatter plots. Its side-effed it extreme values of
the log-likelihood ratio, an effect that is mostly obsergatthe positive side.

In an attempt to improve the phone recognition rate by exiplgpithe VOT as a
feature, phone lattices were generated on the TIMIT test datdescribed in De-
muynck et al. (2006). These are the same sentences as u$ed’tadt” data set,
but now the lattice will include more plosive candidatese iest path through the
lattice will generate the phone segmentation of the "teatadet. In formula 1, the
likelihood L (A) of each plosive ar@ in the lattice is then linearly combined with
the log-likelihood ratio of it being correct versus its &t with opposite voicing
being correct. There is, however, a difference with the ab®When dealing with
the "test” data set, the left and right phonetic contextsuanigue. In a lattice, mul-
tiple arcs may arrive in the starting node Afand multiple arcs may leave from its
ending node, so the left and right phonetic context are nmjue We denote the
set of phone labels of arcs ending (or starting) in the stgrtor ending) node of
arc A with £ (or R) and sum the statistics over all contextsAgllowed by the
lattice:

Dier drer NV T, p,F)

P(VIL, p,R) = p.)_
Z|€£ ZFE'R ZV N(V’ I’ p’ r)
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The corrected acoustic likelihood of a lattice adecomes:

(1)

PV
L(A)—i—ozloglo( (VIE, p’R)+8>

P\VIL,P,R)+ ¢

Linear combination of log-likelihoods of different infomtion sources was exam-
ined in Beyerlein (1998). The single free parameteave introduced was tuned on
the "forced” data set, which is independent of the "test’adsdt. This procedure re-
duced the phone error rate from 26.70% to 26.53% on the TIM$Tget. Hence, we
observe that the VOT feature has contributed only venelidl error rate improve-
ment. This is not surprising, since we observe in figure 8 thatlog-likelihood
ratio can become negative for valid utterances of the ptogdn the other hand we
have to realize that we attempt to correct only the plosiyeotiyeses generated by
the HMM system, and this only along the voicing dimension.d&k find the best
obtainable error rate by correcting the voicing of the plesiin the first best path
through the phone lattice using the reference transcrpfihis yields an error rate
floor of 25.85%. Hence, we have obtain@b.7 — 26.53)/(26.7 — 25.85) = 20%
of the performance gain that would be achievable using aal idagicing detec-
tor. In absolute numbers, the VOT-based likelihood ratsi torrected 80 out of
1853 plosive errors and hence the improvement is statilytgignificant. The gain
shows that the VOT estimate does contain information thatHMM is not able
to exploit. Apart from the overlap in the distributions obtNVOT, the performance
in this particular implementation is also limited by the ping in the phone lattice.
Each plosive hypothesis (arc) is rescored, but this can lealy to a change in de-
cision if the hypothesis with opposite voicing is also in thttice (and receives a
better combined scare). Hence, if the alternate, correabthesis was not included
in the lattice because of pruning, it cannot be recovereeh &ith an ideal voicing
detector. Further performance improvements might alsodb@imed by combining
the HMM and VOT likelihoods in a non linear way.

7 Conclusions

We have described an algorithmaatomaticallyextract the voice onset time. It op-
erates on the reassigned time-frequency representatitire gignal, which has an
improved localisation of the relevant acoustic events. dlgerithm performance
was charactarised for English plosives on the TIMIT datab@ike accuracy seems
sufficient to reconstruct and extend some of the findings @ptionetics literature
about the factors affecting VOT. Using a rescoring appro#csias shown that the
automatic VOT estimate does provide some additional inédiom about the phone
identity which is not exploited in state-of-the-art HMMd&d ASR systems.
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