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In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix.

As in the prequel, where we considered the eigenvalues of Hermitian matrices, the non-random limiting value is shown to depend explicitly on the limiting singular value distribution of the unperturbed matrix via an integral transform that linearizes rectangular additive convolution in free probability theory. The asymptotic position of the extreme singular values of the perturbed matrix differs from that of the original matrix if and only if the singular values of the perturbing matrix are above a certain critical threshold which depends on this same aforementioned integral transform.

We examine the consequence of this singular value phase transition on the associated left and right singular eigenvectors and discuss the fluctuations around these non-random limits.

Introduction

In many applications, the n × m signal-plus-noise data or measurement matrix formed by stacking the m samples or measurements of n × 1 observation vectors alongside each other can be modeled as:

X = r i=1 σ i u i v * i + X, (1) 
where u i and v i are left and right "signal" column vectors, σ i are the associated "signal" values and X is the noise-only matrix of random noises. This model is ubiquitous in signal processing [START_REF] Van Trees | Detection, Estimation, and Modulation Theory Part IV: Optimum Array Processing[END_REF][START_REF] Scharf | Statistical Signal Processing: Detection, Estimation, and Time Series Analysis[END_REF], statistics [START_REF] Muirhead | Aspects of Multivariate Statistical Theory[END_REF][START_REF] Anderson | An Introduction to Multivariate Statistical Analysis[END_REF][START_REF] Jolliffe | Principal component analysis Springer Series in Statistics[END_REF] and machine learning [START_REF] Kannan | Spectral algorithms[END_REF] and is known under various guises as a signal subspace model [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF], a latent variable statistical model [START_REF] Jordan | Learning in graphical models[END_REF], or a probabilistic PCA model [START_REF] Tipping | Probabilistic principal component analysis[END_REF].

Relative to this model, a common application-driven objective is to estimate the signal subspaces Span{u 1 , . . . , u r } and Span{v 1 , . . . , v r } that contain signal energy. This is accomplished by computing the singular value decomposition (in brief SVD) of X and extracting the r largest singular values and the associated singular vectors of X -these are referred to as the r principal components [START_REF] Rao | The use and interpretation of principal component analysis in applied research[END_REF] and the Eckart-Young-Mirsky theorem states that they provide the best rank-r approximation of the matrix X for any unitarily invariant norm [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF][START_REF] Mirsky | Symmetric gauge functions and unitarily invariant norms[END_REF]. This theoretical justification combined with the fact that these vectors can be efficiently computed using now-standard numerical algorithms for the SVD [START_REF] Golub | Calculating the singular values and pseudo-inverse of a matrix[END_REF] has led to the ubiquity of the SVD in applications such as array processing [START_REF] Van Trees | Detection, Estimation, and Modulation Theory Part IV: Optimum Array Processing[END_REF], genomics [START_REF] Alter | Singular value decomposition for genome-wide expression data processing and modeling[END_REF], wireless communications [START_REF] Edfors | OFDM channel estimation by singular value decomposition[END_REF], information retrieval [START_REF] Furnas | Information retrieval using a singular value decomposition model of latent semantic structure[END_REF] to list a few [START_REF] Klema | The singular value decomposition: Its computation and some applications[END_REF].

In this paper, motivated by emerging high-dimensional statistical applications [START_REF] Johnstone | Statistical challenges of high-dimensional data[END_REF], we place ourselves in the setting where n and m are large and the SVD of X is used to form estimates of {σ i }, {u i } r i=1 and {v i } r i=1 . We provide a characterization of the relationship between the estimated extreme singular values of X and the true "signal" singular values σ i (and also the angle between the estimated and true singular vectors).

In the limit of large matrices, the extreme singular values only depend on integral transforms of the distribution of the singular values of the noise-only matrix X in (1) and exhibit a phase transition about a critical value: this is a new occurrence of the so-called BBP phase transition, named after the authors of the seminal paper [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF]. The critical value also depends on the aforementioned integral transforms which arise from rectangular free probability theory [START_REF] Benaych-Georges | Rectangular random matrices, related convolution[END_REF][START_REF] Benaych-Georges | Rectangular random matrices, related free entropy and free Fisher's information[END_REF]. We also characterize the fluctuations of the singular values about these asymptotic limit. The results obtained are precise in the large matrix limit and, akin to our results in [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF], go beyond answers that might be obtained using matrix perturbation theory [START_REF] Stewart | Matrix perturbation theory[END_REF].

Our results are in a certain sense very general (in terms of possible distributions for the noise model X) and recover as a special case results found in the literature for the eigenvalues [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF][START_REF] Baik | Eigenvalues of large sample covariance matrices of spiked population models[END_REF] and eigenvectors [START_REF] Hoyle | Statistical mechanics of learning multiple orthogonal signals: asymptotic theory and fluctuation effects[END_REF][START_REF] Paul | Asymptotics of sample eigenstructure for a large dimensional spiked covariance model[END_REF][START_REF] Nadler | Finite sample approximation results for principal component analysis: a matrix perturbation approach[END_REF] of X X * in the setting where X in (1) is Gaussian. For the Gaussian setting we provide new results for the right singular vectors. Such results had already been proved in the particular case where X is a Gaussian matrix, but our approach brings to light a general principle, which can be applied beyond the Gaussian case. Roughly speaking, this principle says that for X a n × p matrix (with n, p ≫ 1), if one adds an independent small rank perturbation r i=1 σ i u i v * i to X, then the extreme singular values will move to positions which are approximately the solutions z of the equations

1 n Tr z z 2 I -XX * × 1 p Tr z z 2 I -X * X = 1 θ 2 i , ( 1 
≤ i ≤ r).
In the case where these equations have no solutions (which means that the θ i 's are below a certain threshold), then the extreme singular values of X will not move significantly. We also provide similar results for the associated left and right singular vectors and give limit theorems for the fluctuations. These expressions provide the basis for the parameter estimation algorithm developed by Hachem et al in [START_REF] Hachem | A Subspace Estimator for Fixed Rank Perturbations of Large Random Matrices[END_REF].

The papers [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF][START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF] were devoted to the analogue problem for the eigenvalues of finite rank perturbations of Hermitian matrices. We follow the strategy developed in these papers for our proofs: we derive master equation representations that implicitly encode the relationship between the singular values and singular vectors of X and X and use concentration results to obtain the stated analytical expressions. Of course, because of these similarities in the proofs, we chose to focus, in the present paper, in what differs from [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF][START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF]. At a certain level, our proof also present analogies with the ones of other papers devoted to other occurrences of the BBP phase transition, such as [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF][START_REF] Féral | The largest eigenvalue of rank one deformation of large Wigner matrices[END_REF][START_REF] Capitaine | The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations[END_REF][START_REF] Capitaine | Central limit theorems for eigenvalues of deformations of Wigner matrices[END_REF][START_REF] Capitaine | Free convolution with a semi-circular convolution and eigenvalues of spiked deformations of Wigner matrices[END_REF]. We mention that the approach of the paper [START_REF] Benaych-Georges | Large deviations of the extreme eigenvalues of random deformations of matrices[END_REF] could also be used to consider large deviations of the extreme singular values of X.

This paper is organized as follows. We state our main results in Section 2 and provide some examples in Section 3. The proofs are provided in Sections 4-7 with some technical details relegated to the appendix in Section 8.

Main results

2.1. Definitions and hypotheses. Let X n be a n × m real or complex random matrix. Throughout this paper we assume that n ≤ m so that we may simplify the exposition of the proofs. We may do so without loss of generality because in the setting where n > m, the expressions derived will hold for X * n . Let the n ≤ m singular values of X n be σ 1 ≥ σ 2 ≥ . . . ≥ σ n . Let µ Xn be the empirical singular value distribution, i.e., the probability measure defined as

µ Xn = 1 n n i=1 δ σ i .
Let m depend on n -we denote this dependence explicitly by m n which we will sometimes omit for brevity by substituting m for m n . Assume that as n -→ ∞, n/m n -→ c ∈ [0, 1].

In the following, we shall need some of the following hypotheses.

Assumption 2.1. The probability measure µ Xn converges almost surely weakly to a nonrandom compactly supported probability measure µ X .

Examples of random matrices satisfying this hypothesis can be found in e.g. [START_REF] Bai | On the empirical distriubtion of eigenvalues of a class of large dimensional random matrices[END_REF][START_REF] Capitaine | Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to beta random matrices[END_REF][START_REF] Bai | Silverstein Spectral analysis of large dimensional random matrices[END_REF][START_REF] Benaych-Georges | Rectangular random matrices, related convolution[END_REF][START_REF] Anderson | An Introduction to Random Matrices[END_REF][START_REF] Pan | Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix[END_REF]. Note however that the question of isolated extreme singular values is not addressed in papers like [START_REF] Bai | On the empirical distriubtion of eigenvalues of a class of large dimensional random matrices[END_REF][START_REF] Pan | Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix[END_REF] (where moreover the perturbation has a non bounded rank). Assumption 2.2. Let a be infimum of the support of µ X . The smallest singular value of X n converges almost surely to a. Examples of random matrices satisfying the above hypotheses can be found in e.g. [START_REF] Capitaine | Strong asymptotic freeness for Wigner and Wishart matrices[END_REF][START_REF] Bai | Silverstein Spectral analysis of large dimensional random matrices[END_REF][START_REF] Anderson | An Introduction to Random Matrices[END_REF][START_REF] Pan | Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix[END_REF].

In this problem, we shall consider the extreme singular values and the associated singular vectors of X n , which is the random n × m matrix:

X n = X n + P n ,
where P n is defined as described below.

For a given r ≥ 1, let θ 1 ≥ • • • ≥ θ r > 0 be deterministic non-zero real numbers, chosen independently of n. For every n, let G

(n) u , G (n) v
be two independent matrices with sizes respectively n×r and m×r, with i.i.d. entries distributed according to a fixed probability measure ν on K = R or C. We introduce the column vectors u 1 , . . . , u r ∈ K n×1 and v 1 , . . . , v r ∈ K m×1 obtained from G (1) Setting u i and v i to equal the i-th column of

1 √ n G (n) u and 1 √ m G (n) v
respectively or, (2) Setting u i and v i to equal to the vectors obtained from a Gram-Schmidt (or QR factorization) of

G (n) u and G (n) v
respectively.

We shall refer to the model (1) as the i.i.d. model and to the model (2) as the orthonormalized model. With the u i 's and v i 's constructed as above, we define the random perturbing matrix P n ∈ K n×m as:

P n = r i=1 θ i u i v * i .
In the orthonormalized model, the θ i 's are the non zero singular values of P n and the u i 's and the v i 's are the left and right associated singular vectors.

We make the following hypothesis on the law ν of the entries of

G (n) u and G (n) v
(see [START_REF] Anderson | An Introduction to Random Matrices[END_REF]Sect. 2.3.2] for the definition of log-Sobolev inequalities).

Assumption 2.4. The probability measure ν has mean zero, variance one and that satisfies a log-Sobolev inequality.

Remark 2.5. We also note if ν is the standard real or complex Gaussian distribution, then the singular vectors produced using the orthonormalized model will have uniform distribution on the set of r orthogonal random vectors.

Remark 2.6. If X n is random but has a bi-unitarily invariant distribution and P n is non-random with rank r, then we are in same setting as the orthonormalized model for the results that follow. More generally, our idea in defining both of our models (the i.i.d. one and the orthonormalized one) was to show that if P n is chosen independently from X n in a somehow "isotropic way" (i.e. via a distribution which is not faraway from being invariant by the action of the orthogonal group by conjugation), then a BBP phase transition occurs, which is governed by a certain integral transform of the limit empirical singular values distribution of X n , namely µ X .

Remark 2.7. We note that there is small albeit non-zero probability that r i.i.d. copies of a random vector are not linearly independent. Consequently, there is a small albeit non-zero probability that the r vectors obtained as in (2) via the Gram-Schmidt orthogonalization may not be well defined. However, in the limit of large matrices, this process produces well-defined vectors with overwhelming probability (indeed, by Proposition 8.2, the determinant of the associated r × r Gram matrix tends to one). This is implicitly assumed in what follows.

2.2. Notation. Throughout this paper, for f a function and d ∈ R, we set

f (d + ) := lim z↓d f (z) ; f (d -) := lim z↑d f (z),
we also let a.s.

-→ denote almost sure convergence. The (ordered) singular values of an n×m Hermitian matrix M will be denoted by σ 1 (M) ≥ • • • ≥ σ n (M). Lastly, for a subspace F of a Euclidian space E and a unit vector x ∈ E, we denote the norm of the orthogonal projection of x onto F by x, F .

2.3.

Largest singular values and singular vectors phase transition. In Theorems 2.8, 2.9 and 2.10, we suppose Assumptions 2.1, 2.3 and 2.4 to hold.

We define θ, the threshold of the phase transition, by the formula

θ := (D µ X (b + )) -1/2 ,
with the convention that (+∞) -1/2 = 0, and where D µ X , the D-transform of µ X is the function, depending on c, defined by

D µ X (z) := z z 2 -t 2 dµ X (t) × c z z 2 -t 2 dµ X (t) + 1 -c z for z > b,
In the theorems below, D -1 µ X (•) will denote its functional inverse on [b, +∞). Theorem 2.8 (Largest singular value phase transition). The r largest singular values of the n × m perturbed matrix X n exhibit the following behavior as n, m n → ∞ and n/m n → c. We have that for each fixed

1 ≤ i ≤ r, σ i ( X n ) a.s. -→      D -1 µ X (1/θ 2 i ) if θ i > θ, b otherwise.
Moreover, for each fixed i > r, we have that σ i ( X n ) a.s.

-→ b.

Theorem 2.9 (Norm of projection of largest singular vectors). Consider indices i 0 ∈ {1, . . . , r} such that θ i 0 > θ . For each n, define σ i 0 = σ i 0 ( X n ) and let u and v be left and right unit singular vectors of X n associated with the singular value σ i 0 . Then we have, as

n -→ ∞, a) | u, Span{u i s.t. θ i = θ i 0 } | 2 a.s. -→ -2ϕ µ X (ρ) θ 2 i 0 D ′ µ X (ρ) , (2) b 
) | v, Span{v i s.t. θ i = θ i 0 } | 2 a.s. -→ -2ϕ µ X (ρ) θ 2 i 0 D ′ µ X (ρ) , (3) 
where ρ = D -1 µ X (1/θ 2 i 0 ) is the limit of σ i 0 and µ X = cµ X + (1 -c)δ 0 and for any probability measure µ, ϕ µ (z) := z z 2 -t 2 dµ(t). (4) 
c) Furthermore, in the same asymptotic limit, we have

| u, Span{u i s.t. θ i = θ i 0 } | 2 a.s. -→ 0, and | v, Span{v i s.t. θ i = θ i 0 } | 2 a.s.
-→ 0,

and ϕ µ X (ρ)P n v -u , Span{u i s.t. θ i = θ i 0 } a.s.
-→ 0.

Theorem 2.10 (Largest singular vector phase transition). When r = 1, let the sole singular value of P n be denoted by θ. Suppose that

θ ≤ θ and ϕ ′ µ X (b + ) = -∞. (5) 
For each n, let u and v denote, respectively, left and right unit singular vectors of X n associated with its largest singular value. Then u, ker(θ 2 I n -

P n P * n ) a.s.
-→ 0, and v, ker(θ 2 I m -P * n P n ) a.s.

-→ 0, as n -→ ∞.

The following proposition allows to assert that in many classical matrix models, the threshold θ of the above phase transitions is positive. The proof relies on a straightforward computation which we omit.

Proposition 2.11 (Edge density decay condition for phase transition). Assume that the limiting singular distribution µ X has a density f µ X with a power decay at b, i.e., that, as t → b with t < b, f µ X (t) ∼ M(bt) α for some exponent α > -1 and some constant M. Then:

θ = (D µ X (b + )) -1/2 > 0 ⇐⇒ α > 0 and ϕ ′ µ X (b + ) = -∞ ⇐⇒ α ≤ 1
, so that the phase transitions in Theorems 2.8 and 2.10 manifest for α = 1/2. Remark 2.12 (Necessity of singular value repulsion for the singular vector phase transition). Under additional hypotheses on the manner in which the empirical singular distribution of X n a.s.

-→ µ X as n -→ ∞, Theorem 2.10 can be generalized to any singular value with limit b such that D ′ µ X (ρ) is infinite. The specific hypothesis has to do with requiring the spacings between the singular values of X n to be more "random matrix like" and exhibit repulsion instead of being "independent sample like" with possible clumping. We plan to develop this line of inquiry in a separate paper.

2.4.

Smallest singular values and vectors for square matrices. We now consider the phase transition exhibited by the smallest singular values and vectors. We restrict ourselves to the setting where X n is a square matrix; this restriction is necessary because the non-monotonicity of the function D µ X on [0, a) when c = lim n/m < 1, poses some technical difficulties that do not arise in the square setting. Moreover, in Theorems 2.13, 2.14 and 2.15, we suppose Assumptions 2.1, 2.2 and 2.4 to hold.

We define θ, the threshold of the phase transition, by the formula

θ := (ϕ µ X (a -)) -1 ,
with the convention that (+∞) -1 = 0, and where ϕ µ X (z) = z z 2 -t 2 dµ(t), as in Equation ( 4). In the theorems below, ϕ -1 µ X (•) will denote its functional inverse of the function ϕ µ X (•) on (0, a). Theorem 2.13 (Smallest singular value phase transition for square matrices). When a > 0 and m = n, the r smallest singular values of X n exhibit the following behavior. We have that for each fixed

1 ≤ i ≤ r, σ n+1-i ( X n ) a.s. -→      ϕ -1 µ X (1/θ i ) if θ i > θ, a otherwise.
Moreover, for each fixed i > r, we have that σ n+1-i ( X n ) a.s.

-→ a.

Theorem 2.14 (Norm of projection of smallest singular vector for square matrices).

Consider indices i 0 ∈ {1, . . . , r} such that θ i 0 > θ. For each n, define σ i 0 = σ n+1-i 0 ( X n ) and let u and v be left and right unit singular vectors of X n associated with the singular value σ i 0 . Then we have, as n -→ ∞,

a) | u, Span{u i s.t. θ i = θ i 0 } | 2 a.s. -→ -1 ϕ ′ µ X (ρ) , (6) b 
) | v, Span{v i s.t. θ i = θ i 0 } | 2 a.s. -→ -1 ϕ ′ µ X (ρ) , (7) 
c) Furthermore, in the same asymptotic limit, we have

| u, Span{u i s.t. θ i = θ i 0 } | 2 a.s. -→ 0, and | v, Span{v i s.t. θ i = θ i 0 } | 2 a.s.
-→ 0,

and ϕ µ X (ρ)P n v -u , Span{u i s.t. θ i = θ i 0 } a.s.
-→ 0, Theorem 2.15 (Smallest singular vector phase transition). When r = 1 and m = n, let the smallest singular value of X n be denoted by σ n with u and v representing associated left and right unit singular vectors respectively. Suppose that

a > 0, θ ≤ θ and ϕ ′ µ X (a -) = -∞. Then u, ker(θ 2 I n -P n P * n ) a.s.
-→ 0, and v, ker(θ 2 I m -P * n P n ) a.s.

-→ 0,

as n -→ ∞.
The analogue of Remark 2.12 also applies here.

2.5. The D-transform in free probability theory. The C-transform with ratio c of a probability measure µ on R + , defined as:

C µ (z) = U z(D -1 µ (z)) 2 -1 , (8) 
where the function U, defined as:

U(z) = -c-1+[(c+1) 2 +4cz] 1/2 2c when c > 0, z when c = 0,
is the analogue of the logarithm of the Fourier transform for the rectangular free convolution with ratio c (see [START_REF] Benaych-Georges | On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions[END_REF][START_REF] Benaych-Georges | Rectangular R-transform at the limit of rectangular spherical integrals[END_REF] for an introduction to the theory of rectangular free convolution) in the sense described next.

Let A n and B n be independent n × m rectangular random matrices that are invariant, in law, by conjugation by any orthogonal (or unitary) matrix. Suppose that, as n, m → ∞ with n/m → c, the empirical singular values distributions µ An and µ Bn of A n and B n satisfy µ An -→ µ A and µ Bn -→ µ B . Then by [START_REF] Benaych-Georges | Rectangular random matrices, related convolution[END_REF], the empirical singular values distribution µ An+Bn of A n + B n satisfies µ An+Bn -→ µ A ⊞ c µ B , where µ A ⊞ c µ B is a probability measure which can be characterized in terms of the C-transform as

C µ A ⊞µ B (z) = C µ A (z) + C µ B (z).
The coefficients of the series expansion of U(z) are the rectangular free cumulants with ratio c of µ (see [START_REF] Benaych-Georges | Rectangular random matrices, related free entropy and free Fisher's information[END_REF] for an introduction to the rectangular free cumulants). The connection between free rectangular additive convolution and D -1 µ (via the C-transform) and the appearance of D -1 µ in Theorem 2.8 could be of independent interest to free probabilists: the emergence of this transform in the study of isolated singular values completes the picture of [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF], where the transforms linearizing additive and multiplicative free convolutions already appeared in similar contexts.

2.6. Fluctuations of the largest singular value. Assume that the empirical singular value distribution of X n converges to µ X faster than 1/ √ n. More precisely, Assumption 2.16. We have

n m n = c + o( 1 √ n ), r = 1, θ := θ 1 > θ and 1 n Tr(ρ 2 I n -X n X * n ) -1 = 1 ρ 2 -t 2 dµ X (t) + o( 1 √ n ) for ρ = D -1 µ X (1/θ 2 ) the limit of σ 1 ( X n ).
We also make the following hypothesis on the law ν (note that it doesn't contains the fact that ν is symmetric). In fact, wouldn't it hold, we would still have a limit theorem on the fluctuations of the largest singular value, like in Theorem 3.4 of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF], but we chose not to develop this case.

Assumption 2.17. If ν is entirely supported by the real line, x 4 dν(x) = 3. If ν is not entirely supported by the real line, the real and imaginary parts of a ν-distributed random variables are independent and identically distributed with |z| 4 dν(z) = 2.

Note that we do not ask ν to be symmetric and make no hypothesis about its third moment. The reason is that the main ingredient of the following theorem is Theorem 6.4 of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF] (or Theorem 7.1 of [START_REF] Bai | Yao Central limit theorems for eigenvalues in a spiked population model[END_REF]), where no hypothesis of symmetry or about the third moment is done.

Theorem 2.18. Suppose Assumptions 2.1, 2.3, 2.4, 2.16 and 2.17 to hold. Let σ 1 denote the largest singular value of X n . Then as n -→ ∞,

n 1/2 ( σ 1 -ρ) D -→ N (0, s 2 ),
where ρ = D -1 µ X (c, 1/θ 2 ) and

s 2 =            f 2 2β for the i.i.d. model, f 2 -2 2β
for the orthonormalized model, with β = 1 (or 2) when X is real (or complex) and

f 2 := dµ X (t) (ρ 2 -t 2 ) 2 dµ X (t) ρ 2 -t 2 2 + d µ X (t) (ρ 2 -t 2 ) 2 d µ X (t) ρ 2 -t 2 2 + 2 t 2 dµ X (t) (ρ 2 -t 2 ) 2 ρdµ X (t) ρ 2 -t 2 ρd µ X (t) ρ 2 -t 2 , with µ X = cµ X + (1 -c)δ 0 .
2.7. Fluctuations of the smallest singular value of square matrices. When m n = n so that c = 1, assume that: Assumption 2.19. For all n, m n = n, r = 1, θ := θ 1 > θ and

1 n Tr(ρ 2 I n -X n X * n ) -1 = 1 ρ 2 -t 2 dµ X (t) + o( 1 √ n )
for ρ := ϕ -1 µ X (1/θ) the limit of the smallest singular value of X n . Theorem 2.20. Suppose Assumptions 2.1, 2.2, 2.4, 2.19 and 2.17 to hold. Let σ n denote the smallest singular value of X n . Then as n -→ ∞

n 1/2 ( σ n -ρ) D -→ N (0, s 2 ),
where

s 2 =            f 2 2β
for the i.i.d. model

f 2 -2 2β
for the orthonormalized model with β = 1 (or 2) when X is real (or complex) and f 2 := 2θ 2 κ 2 +t 2 (κ 2 -t 2 ) 2 dµ X (t).

Examples

3.1.

Gaussian rectangular random matrices with non-zero mean. Let X n be an n×m real (or complex) matrix with independent, zero mean, normally distributed entries with variance 1/m. It is known [START_REF] Marčenko | Distribution of eigenvalues in certain sets of random matrices[END_REF][START_REF] Bai | Silverstein Spectral analysis of large dimensional random matrices[END_REF] that, as n, m -→ ∞ with n/m → c ∈ (0, 1], the spectral measure of the singular values of X n converges to the distribution with density

dµ X (x) = 4c -(x 2 -1 -c) 2 πcx ½ (a,b) (x)dx,
where a = 1 -√ c and b = 1 + √ c are the end points of the support of µ X . It is known [START_REF] Bai | Silverstein Spectral analysis of large dimensional random matrices[END_REF] that the extreme eigenvalues converge to the bounds of this support.

Associated with this singular measure, we have, by an application of the result in [10, Sect. 4.1] and Equation (8),

D -1 µ X (z) = (z+1)(cz+1) z , D µ X (z) = z 2 -(c+1)- √ (z 2 -(c+1)) 2 -4c 2c , D µ X (b + ) = 1 √ c .
Thus for any n×m deterministic matrix P n with r non-zero singular values θ 1 ≥ • • • ≥ θ r (r independent of n, m), for any fixed i ≥ 1, by Theorem 2.8, we have

σ i (X n + P n ) a.s. -→ (1+θ 2 i )(c+θ 2 i ) θ 2 i if i ≤ r and θ i > c 1/4 1 + √ c otherwise. ( 9 
)
as n -→ ∞. As far as the i.i.d. model is concerned, this formula allows us to recover some of the results of [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF].

Now, let us turn our attention to the singular vectors. In the setting where r = 1, let P n = θuv * . Then, by Theorems 2.9 and 2.10, we have

| u, u | 2 a.s. -→    1 - c(1 + θ 2 ) θ 2 (θ 2 + c) if θ ≥ c 1/4 , 0 otherwise. ( 10 
)
The phase transitions for the eigenvectors of X * n X n or for the pairs of singular vectors of X n can be similarly computed to yield the expression:

| v, v | 2 a.s. -→    1 - (c + θ 2 ) θ 2 (θ 2 + 1) if θ ≥ c 1/4 , 0 otherwise. (11) 
3.2. Square Haar unitary matrices. Let X n be Haar distributed unitary (or orthogonal) random matrix. All of its singular values are equal to one, so that it has limiting spectral measure

µ X (x) = δ 1 ,
with a = b = 1 being the end points of the support of µ X .

Associated with this spectral measure, we have (of course, c = 1)

D µ X (z) = z 2 (z 2 -1) 2 for z ≥ 0, z = 1,
thus for all θ > 0,

D -1 µ X (1/θ 2 ) = θ+ √ θ 2 +4 2
if the inverse is computed on (1, +∞),

-θ+ √ θ 2 +4 2
if the inverse is computed on (0, 1).

Thus for any n × n, rank r perturbing matrix P n with r non-zero singular values θ 1 ≥ • • • ≥ θ r where neither r, nor the θ i 's depend on n, for any fixed i = 1, . . . , r, by Theorem 2.8 we have

σ i (X n + P n ) a.s. -→ θ i + θ 2 i + 4 2 and σ n+1-i (X n + P n ) a.s.
-→ -θ i + θ 2 i + 4 2 while for any fixed i ≥ r + 1, both σ i (X n + P n ) and σ n+1-i (X n + P n ) a.s.

-→ 1.

Proof of Theorems 2.8 and 2.13

The proofs of both theorems are quite similar. As a consequence, we only prove Theorem 2.8. The sequence of steps described below yields the desired proof (which is very close to the one of Theorem 2.1 of [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF]):

(1) The first, rather trivial, step in the proof of Theorem 2.8 is to use Weyl's interlacing inequalities to prove that any fixed-rank singular value of X n which does not tend to a limit > b tends to b. (2) Then, we utilize Lemma 4.1 below to express the extreme singular values of X n as the z's such that a certain random 2r × 2r matrix M n (z) is singular. (3) We then exploit convergence properties of certain analytical functions (derived in the appendix) to prove that almost surely, M n (z) converges to a certain deterministic matrix M(z), uniformly in z. (4) We then invoke a continuity lemma (see Lemma 8.1 in the appendix) to claim that almost surely, the z's such that M n (z) is singular (i.e. the extreme singular values of X n ) converge to the z's such that M(z) is singular. ( 5) We conclude the proof by noting that, for our setting, the z's such that M(z) is singular are precisely the z's such that for some i ∈ {1, . . . , r}, D µ X (z) = 1

θ 2 i
. Part (ii) of Lemma 8.1 , about the rank of M n (z), will be useful to assert that when the θ i 's are pairwise distinct, the multiplicities of the isolated singular values are all equal to one.

Firstly, up to a conditioning by the σ-algebra generated by the X n 's, one can suppose them to be deterministic and all the randomness supported by the perturbing matrix P n .

Secondly, by [START_REF] Horn | Topics in matrix analysis[END_REF]Th. 3.1.2], one has, for all i ≥ 1,

σ i+r (X n ) ≤ σ i ( X n ) ≤ σ i-r (X n )
with the convention σ j (X n ) = +∞ for i ≤ 0 and 0 for i > n. By the same proof as in [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF]Sect. 6.2.1], it follows that for all i ≥ 1 fixed, lim inf σ i ( X n ) ≥ b [START_REF] Benaych-Georges | Rectangular random matrices, related free entropy and free Fisher's information[END_REF] and that for all fixed i > r,

σ i ( X n ) -→ n→∞ b (13) 
(we insist here on the fact that i has to be fixed, i.e. not to depend on n: of course, for i = n/2, (13) is not true anymore in general).

Our approach is based on the following lemma, which reduces the problem to the study of 2r × 2r random matrices. Recall that the constants r, θ 1 , . . . , θ r , and the random column vectors (which depend on n, even though this dependence does not appear in the notation) u 1 , . . . , v r , v 1 , . . . , v r have been introduced in Section 2.1 and that the perturbing matrix P n is given by

P n = r i 1 θ i u i v * i .
Recall also that the singular values of X n are denoted by

σ 1 ≥ • • • ≥ σ n . Let us define the matrices Θ = diag(θ 1 , . . . , θ r ) ∈ R r×r , U n = u 1 • • • u r ∈ K n×r , V m = v 1 • • • v r ∈ K m×r .
Lemma 4.1. The positive singular values of X n which are not singular values of X n are the z / ∈ {σ 1 , . . . , σ n } such that the 2r × 2r matrix

M n (z) := U * n (z 2 I n -X n X * n ) -1 U n U * n (z 2 I n -X n X * n ) -1 X n V m V * m X * n (z 2 I n -X n X * n ) -1 U n V * m (z 2 I m -X * n X n ) -1 V m - 0 Θ -1 Θ -1 0 is not invertible.
For the sake of completeness, we provide a proof, even though several related results can be found in the literature (see e.g. [START_REF] Arbenz | Restricted rank modification of the symmetric eigenvalue problem: theoretical considerations[END_REF][START_REF] Benaych-Georges | Large deviations of the extreme eigenvalues of random deformations of matrices[END_REF]).

Proof. Firstly, [START_REF] Horn | Matrix analysis[END_REF]Th. 7.3.7] states that the non-zero singular of X n are the positive eigenvalues of 0 X n X * n 0 . Secondly, for any z > 0 which is not a singular value of X n , by [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF]Lem. 6.1],

det zI n - 0 X n X * n 0 = det zI n - 0 X n X * n 0 -1 × r i=1 θ 2 i × det M n (z),
which allows to conclude, since by hypothesis, det

zI n+m - 0 X n X * n 0 -1 = 0.
Note that by Assumption 2.1,

1 n Tr z z 2 I n -X n X * n -→ n→∞ z z 2 -t 2 dµ X (t), 1 m Tr z z 2 I m -X * n X n -→ n→∞ z z 2 -t 2 d µ X (t) ( µ X = cµ X + (1 -c)δ 0 ),
uniformly on any subset of {z ∈ C s.t. ℜ(z) > b + η}, η > 0. It follows, by a direct application of Ascoli's Theorem and Proposition 8.2, that almost surely, we have the following convergence (which is uniform in z)

U * n z z 2 I n -X n X * n U n -→ n→∞ z z 2 -t 2 dµ X (t) • I r , V * m z z 2 I m -X * n X n V m -→ n→∞ z z 2 -t 2 d µ X (t) • I r .
In the same way, almost surely

U * n (z 2 I n -X n X * n ) -1 X n V m -→ n→∞ 0 and V * m X * n (z 2 I n -X n X * n ) -1 U n -→ n→∞ 0.
It follows that almost surely,

M n (z) -→ n→∞ M(z) := ϕ µ X (z)I r 0 0 ϕ µ X (z)I r - 0 Θ -1 Θ -1 0 , (14) 
where ϕ µ X and ϕ µ X are the functions defined in the statement of Theorem 2.9. Now, note that once [START_REF] Benaych-Georges | Rectangular random matrices, related free entropy and free Fisher's information[END_REF] has been established, our result only concerns the number of singular values of X n in [b + η, +∞) (for any η > 0), hence can be proved via Lemma 8.1. Indeed, by Hypothesis 2.3, for n large enough, X n has no singular value > b + η, thus numbers > b + η cannot be in the same time singular values of X n and X n .

In the case where the θ i 's are pairwise distinct, Lemma 8.1 allows to conclude the proof of Theorem 2.8. Indeed, Lemma 8.1 says that exactly as much singular values of X n as predicted by the theorem have limits > b and that their limits are exactly the ones predicted by the Theorem. The part of the theorem to singular values tending to b can then be deduced from ( 12) and ( 13).

In the case where the θ i 's are not pairwise distinct, an approximation approach allows to conclude (proceed for example as in Section 6.2.3 of [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF], using [START_REF] Horn | Matrix analysis[END_REF]Cor. 7.3.8 (b)] instead of [START_REF] Horn | Matrix analysis[END_REF]Cor. 6.3.8]).

5. Proof of Theorems 2.9 and 2.14

The proofs of both theorems are quite similar. As a consequence, we only prove Theorem 2.9.

As above, up to a conditioning by the σ-algebra generated by the X n 's, one can suppose them to be deterministic and all the randomness supported by the perturbing matrix P n .

Firstly, by the Law of Large Numbers, even in the i.i.d. model, the u i 's and the v i 's are almost surely asymptotically orthonormalized. More specifically, for all i = j, u i , u j -→ n→∞ ½ i=j (the same being true for the v i 's). As a consequence, it is enough to prove that a')

i s.t. θ i =θ i 0 | u, u i | 2 a.s. -→ -2ϕ µ X (ρ) θ 2 i 0 D ′ µ X (ρ) , (15) b' 
) i s.t. θ i =θ i 0 | v, v i | 2 a.s. -→ -2ϕ µ X (ρ) θ 2 i 0 D ′ µ X (ρ) , (16) c' 
) i s.t. θ i =θ i 0 | u, u i | 2 + | v, v i | 2 a.s. -→ 0, (17) d' 
) i s.t. θ i =θ i 0 |ϕ µ X (ρ)θ i 0 v, v i -u, u i | 2 a.s. -→ 0, (18) 
Again, the proof is based on a lemma which reduces the problem to the study of the kernel of a random 2r × 2r matrix. The matrices Θ, U n and V m are the ones introduced before Lemma 4.1.

Lemma 5.1. Let z be a singular value of X n which is not a singular value of X n and let (u, v) be a corresponding singular pair of unit vectors. Then the column vector

ΘV m * v ΘU n * u
belongs to the kernel of the 2r × 2r matrix M n (z) introduced in Lemma 4.1. Moreover, we have

v * P * n z 2 (z 2 I n -X n X * n ) 2 P n v + u * P n X * n X n (z 2 I m -X * n X n ) 2 P * n u +v * P * n z (z 2 I n -X n X * n ) 2 X n P * n u + u * P n X * n z (z 2 I n -X n X * n ) 2 P n v = 1. ( 19 
)
Proof. The first part of the lemma is easy to verify with the formula X

* n f (X n X * n ) = f (X * n X n )X *
n for any function f defined on [0, +∞). For the second part, use the formulas

X n X * n u = z 2 u and X * n u = zv -P * n u, to establish u = (z 2 I n -X n X * n ) -1 (zP n v + X n P * n u)
, and then use the fact that u * u = 1. Let us consider z n , ( u, v) as in the statement of Theorem 2.9. Note firstly that for n large enough, z n > σ 1 (X n ), hence Lemma 5.1 can be applied, and the vector

ΘV m * v ΘU n * u = θ 1 v 1 , v , . . . , θ r v r , v , θ 1 u 1 , u , . . . , θ r u r , u T (20) 
belongs to ker M n (z n ). As explained in the proof of Theorem 2.8, the random matrixvalued function M n (•) converges almost surely uniformly to the matrix-valued function M(•) introduced in Equation ( 14). Hence M n (z n ) converges almost surely to M(ρ), and it follows that the orthogonal projection on (ker M(ρ)) ⊥ of the vector of [START_REF] Capitaine | Strong asymptotic freeness for Wigner and Wishart matrices[END_REF] tends almost surely to zero.

Let us now compute this projection. For x, y column vectors of K r ,

M(ρ) x y = 0 ⇐⇒ ∀i, y i = θ i ϕ µ X (ρ)x i and x i = θ i ϕ µ X (ρ)y i ⇐⇒ ∀i, x i = y i = 0 if θ 2 i ϕ µ X (ρ)ϕ µ X (ρ) = 1, y i = θ i ϕ µ X (ρ)x i if θ 2 i ϕ µ X (ρ)ϕ µ X (ρ) = 1. Note that ρ is precisely defined by the relation θ 2 i 0 ϕ µ X (ρ)ϕ µ X (ρ) = 1. Hence with β := -θ i 0 ϕ µ X (ρ), we have, ker M(ρ) = { x y ∈ K r+r s.t. ∀i, x i = y i = 0 if θ i = θ i 0 and y i = -βx i if θ i = θ i 0 }, hence (ker M(ρ)) ⊥ = { x y ∈ K r+r s.t. ∀i, x i = βy i if θ i = θ i 0 }
and the orthogonal projection of any vector x y on (ker M(ρ)) ⊥ is the vector x ′ y ′ such that for all i,

(x ′ i , y ′ i ) = (x i , y i ) if θ i = θ i 0 , βx i +y i β 2 +1 (β, 1) if θ i = θ i 0 .
Then, ( 17) and ( 18) are direct consequences of the fact that the projection of the vector of ( 20) on (ker M(ρ)) ⊥ tends to zero.

Let us now prove [START_REF] Benaych-Georges | Large deviations of the extreme eigenvalues of random deformations of matrices[END_REF]. By [START_REF] Capitaine | Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to beta random matrices[END_REF], we have

a n + b n + c n + d n = 1, (21) 
with

a n = v * P * n z 2 n (z 2 n I n -X n X * n ) 2 P n v = r i,j=1 θ i θ j v i , v v j , v u i * z 2 n (z 2 n I n -X n X * n ) 2 u j (22) b n = u * P n X * n X n (z 2 n I m -X * n X n ) 2 P * n u = r i,j=1 θ i θ j u i , u u j , u v i * X * n X n (z 2 n I m -X * n X n ) 2 v j ( 23 
)
c n = v * P * n z n (z 2 n I n -X n X * n ) 2 X n P * n u = r i,j=1 θ i θ j v i , v u j , u u i * z n (z 2 n I n -X n X * n ) 2 X n v j d n = u * P n X * n z n (z 2 n I n -X n X * n ) 2 P n v = r i,j=1 θ i θ j u i , u v j , v v i * X * n z n (z 2 n I n -X n X * n ) 2 u j
Since the limit of z n is out of the support of µ X , one can apply Proposition 8.2 to assert that both c n and d n have almost sure limit zero and that in the sums ( 22) and ( 23), any term such that i = j tends almost surely to zero. Moreover, by [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF], these sums can also be reduced to the terms with index i such that θ i = θ i 0 . Tu sum up, we have

a n = θ 2 i 0 i s.t. θ i =θ i 0 | v i , v | 2 u i * z 2 n (z 2 n I n -X n X * n ) 2 u i + o(1) b n = θ 2 i 0 i s.t. θ i =θ i 0 | u i , u | 2 v i * X * n X n (z 2 n I m -X * n X n ) 2 v i + o(1)
Now, note that since z n tends to ρ,

1 n Tr z 2 n (z 2 n I n -X n X * n ) 2 -→ n→∞ ρ 2 (ρ 2 -t 2 ) 2 dµ X (t), 1 m n Tr X * n X n (z 2 n I m -X * n X n ) 2 -→ n→∞ t 2 (ρ 2 -t 2 ) 2 d µ X (t),
hence by Proposition 8.2, almost surely,

a n = θ 2 i 0 ρ 2 (ρ 2 -t 2 ) 2 dµ X (t) i s.t. θ i =θ i 0 | v i , v | 2 + o(1), b n = θ 2 i 0 t 2 (ρ 2 -t 2 ) 2 d µ X (t) i s.t. θ i =θ i 0 | u i , u | 2 + o(1).
Moreover, by [START_REF] Capitaine | Additive/multiplicative free subordination property and limiting eigenvectors of spiked additive deformations of Wigner matrices and spiked sample covariance matrices[END_REF], for all i such that θ i = θ i 0 ,

| u i , u | 2 = θ 2 i 0 (ϕ µ X X (ρ)) 2 | v i , v | 2 + o(1). It follows that b n = θ 4 i 0 (ϕ µ X X (ρ)) 2 t 2 (ρ 2 -t 2 ) 2 d µ X (t) i s.t. θ i =θ i 0 | v i , v | 2 + o(1) Since a n + b n = 1 + o(1), we get i s.t. θ i =θ i 0 | v i , v | 2 -→ n→∞ θ 2 i 0 ρ 2 (ρ 2 -t 2 ) 2 dµ X (t) + θ 4 i 0 (ϕ µ X (ρ)) 2 t 2 (ρ 2 -t 2 ) 2 d µ X (t) -1
The relations

θ 2 i 0 ϕ µ X (ρ)ϕ µ X (ρ) = 1 2 ρ 2 (ρ 2 -t 2 ) 2 dµ X (t) = 1 ρ ϕ µ X (ρ) -ϕ ′ µ X (ρ) 2 t 2 (ρ 2 -t 2 ) 2 d µ X (t) = - 1 ρ ϕ µ X (ρ) -ϕ ′ µ X (ρ)
allow to recover the RHS of ( 16) easily. Via [START_REF] Capitaine | Additive/multiplicative free subordination property and limiting eigenvectors of spiked additive deformations of Wigner matrices and spiked sample covariance matrices[END_REF], one easily deduces (15).

6. Proof of Theorems 2.10 and 2.15

Again, we shall only prove Theorem 2.10 and suppose the X n 's to be non random.

Let us consider the matrix M n (z) introduced in Lemma 4.1. Here, r = 1, so one easily gets, for each n, lim

z→+∞ det M n (z) = -θ -2 .
Moreover, for b n := σ 1 (X n ) the largest singular value of X n , looking carefully at the term in 1

z 2 -b 2 n
in det M n (z), it appears that with a probability which tends to one as n -→ ∞, we have lim

z→bn det M n (z) = +∞.
It follows that with a probability which tends to one as n -→ ∞, the largest singular value σ 1 of X n is > b n .

Then, one concludes using the second part of Lemma 5.1, as in the proof of Theorem 2.3 of [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF].

Proof of Theorems 2.18 and 2.20

We shall only prove Theorem 2.18, because Theorem 2.20 can be proved similarly.

We have supposed that r = 1. Let us denote u = u 1 and v = v 1 . Then we have As a consequence, for any real number x, for n large enough,

P n = θuv * , with u ∈ K n×1 , v ∈ K m×1
√ n( σ 1 -ρ) < x ⇐⇒ det M n ρ + x √ n > 0. (24) 
Therefore, we have to understand the limit distributions of the entries of M n ρ + x √ n . They are given by the following Lemma 7.1. For any fixed real number x, as n -→ ∞, the distribution of

Γ n := √ n M n ρ + x √ n - ϕ µ X (ρ) -θ -1 -θ -1 ϕ µ X (ρ)
converges weakly to the one of

x ϕ µ X (ρ) 0 0 ϕ µ X (ρ) + c 1 X dZ dZ c 2 Y ,
for X, Y, Z (resp. X, Y, ℜ(Z), ℑ(Z)) independent standard real Gaussian variables if β = 1 (resp. if β = 2) and for c 1 , c 2 , d some real constants given by the following formulas: 

c 2 1 = 2 
d 2 = 1 β t 2 (ρ 2 -t 2 ) 2 dµ X (t). ( (26) 
) 27 
Proof. Let us define z n := ρ + x √ n . We have

Γ n = √ n 1 n u * zn z 2 n In-XnX * n u -ϕ µ X (ρ) 1 √ nmn u * (z 2 n I n -X n X * n ) -1 X n v 1 √ nmn v * X * n (z 2 n I n -X n X * n ) -1 u 1 mn v * zn z 2 n Im-X * n Xn v -ϕ µ X (ρ)
Let us for example expand the upper left entry of Γ n,1,1 of Γ n . We have in the appropriate place and proceed as the proof of Lemma 6.1 in [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF].

Γ n,1,1 = √ n 1 n u * z n z 2 n I n -X n X * n u -ϕ µ X (ρ) = √ n 1 n u * z n z 2 n I n -X n X * n u - 1 n Tr z n z 2 n I n -X n X * n + √ n 1 n Tr z n z 2 n I n -X n X * n -ϕ µ X (z n ) + √ n (ϕ µ X (z n ) -ϕ µ X (ρ)) (28) 
We also need the following proposition. The u i 's and the v i 's are the random column vectors introduced in Section 2.1. Proposition 8.2. Let, for each n, A n , B n be complex n×n, n×m matrices which operator norms, with respect to the canonical Hermitian structure, are bounded independently of n. Then for any η > 0, there exists C, α > 0 such that for all n, for all i, j, k ∈ {1, . . . , r} such that i = j,

P{| u i , A n u i - 1 n Tr(A n )| > η or | u i , A n u j | > η or | u i , B n v k | > η} ≤ Ce -n α .

Assumption 2 . 3 .

 23 Let b be supremum of the support of µ X . The largest singular value of X n converges almost surely to b.

  random vectors whose entries are ν-distributed independent random variables, renormalized in the orthonormalized model, and divided by respectively √ n and √ m in the i.i.d.. model. We also have that the matrix M n (z) defined in Lemma 4.1 is a 2 × 2 matrix. Let us fix an arbitrary b * such that b < b * < ρ. Theorem 2.8 implies that almost surely, for n large enough, det[M n (•)] vanishes exactly once in (b * , ∞). Since moreover, almost surely, for all n, lim z→+∞ det[M n (z)] = -1 θ 2 < 0, we deduce that almost surely, for n large enough, det[M n (z)] > 0 for b * < z < σ 1 and det[M n (z)] < 0 for σ 1 < z.

2 2 i.

 22 a) ϕ i (z) ∈ R ⇐⇒ z ∈ R, b) for all z > b, ϕ i (z) < 0, c) ϕ i (z) -→ 0 as |z| -→ ∞.Let us define the 2r × 2r-matrix-valued functionM(z) (z)I r and denote by z 1 > • • • > z p the z's in (b, ∞) such that M(z) is not invertible, where p ∈ {0, . . . , r} is the number of θ i 's such that lim z↓b ϕ 1 (z)ϕ 2 (z) > 1 θLet us also consider a sequence 0 < b n with limit b and, for each n, a 2r ×2r-matrix-valuedfunction M n (•), defined on {z ∈ C s.t. ℜ(z) > 0}\[0, b n ],which coefficient are analytic functions, such thatd) for all z / ∈ R, M n (z) is invertible, e) for all η > 0, M n (•) converges to the function M(•) uniformly on {z ∈ C s.t. ℜ(z) > b + η}.Then (i) there exists p real sequences z n,1 > • • • > z n,p converging respectively to z 1 , . . . , z p such that for any ε > 0 small enough, for n large enough, the z's in (b + ε, ∞) such that M n (z) is not invertible are exactly z n,1 , . . . , z n,p , (ii) for n large enough, for each i, M n (z n,i ) has rank 2r -1.Proof. To prove this lemma, we use the formula det xI r diag(α 1 , . . . , α r ) diag(α 1 , . . . , α r )

  β ρ 2 (ρ 2 -t 2 ) 2 dµ X (t)in the i.i.d. model,(ρ 2 -t 2 ) 2 dµ X (t) -(ϕ µ X (ρ)) 2 (ρ 2 -t 2 ) 2 d µ X (t)in the i.i.d. model,

		2 β	ρ 2	in the orthonormalized model,	(25)
		2	ρ 2	
	c 2 2 =	β 2	ρ 2	
		β		

(ρ 2 -t 2 ) 2 d µ X (t) -(ϕ µ X (ρ)) 2

in the orthonormalized model,
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The third term of the RHS of (28) tends to xϕ ′ µ X (ρ) as n -→ ∞. By Taylor-Lagrange Formula, there is ξ n ∈ (0, 1) such that the second one is equal to

hence tends to zero, by Assumptions 2.1 and 2.19. To sum up, we have

In the same way, we have

Then the "κ 4 (ν) = 0" case of Theorem 6.4 of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF] allows to conclude.

Let us now complete the proof of Theorem 2.18. By the previous lemma, we have

for some random variables X n , Y n , Z n with converging in distribution to the random variables X, Y, Z of the previous lemma. Using the relation

Thus by [START_REF] Drineas | Clustering large graphs via the singular value decomposition[END_REF], we have

It follows that the distribution of √ n( σ 1ρ) converges weakly to the one of sX, for X a standard Gaussian random variable on R and

One can easily recover the formula given in Theorem 2.18 for s 2 , using the relation

Appendix

We now state the continuity lemma that we use in the proof of Theorem 2.8. We note that nothing in its hypotheses is random. As hinted earlier, we will invoke it to localize the extreme eigenvalues of X n . Lemma 8.1. We suppose the positive real numbers θ 1 , . . . , θ r to be pairwise distinct. Let us fix a real number 0 ≤ b and two analytic functions ϕ 1 , ϕ 2 defined on {z ∈ C s.t. ℜ(z) > 0}\[0, b] such that for all i = 1, 2, Proof. In the i.i.d. model, this result is an obvious consequence of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF]Prop. 6.2]. In the orthonormalized model, one also has to use [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF]Prop. 6.2], which states that the u i 's (the same holds for the v i 's) are obtained from the n × r matrix G (n) u with i.i.d. entries distributed according to ν by the following formula: for all i = 1, . . . , r,

where W (n) is a (random) r × r matrix such that for certain positive constants D, c, κ, for all ε > 0 and all n, P{ W (n) -I r > ε or max