Etude expérimentale du transport solide de grandes particules en conduite horizontale

F. Ravelet, A. Lemaire, F. Bakir

Laboratoire Dyn*Fluid* Arts et Métiers ParisTech Paris FRANCE

28 août 2011

Remontée de minerai des abysses

Problématique :

- Suspensions \Rightarrow OK. Mais :
- Transport de grandes particules (5 15% du tuyau) :
 - Ecoulement vertical \Rightarrow Modèles prédictifs et données;
 - Ecoulement horizontal/inclinés ⇒ Peu de modèles, effets de taille et de densité peu étudiés.

Objectifs :

- Etude des régimes d'écoulement et des pertes de charges;
- Conduite horizontale et coudée (S);
- Trois tailles, deux densités;
- Mélanges, solides réels.

Boucle d'essai Particules & paramètres

Boucle d'essai

- Section horizontale, diamètre 100 mm, longueur 10 m;
- Retour en forme de S vertical, diamètre 100 mm;
- Utilisation de deux cuves (séparation et mélange) ⇒ contrôle indépendant des débits volumiques d'eau Q_i et de particules solides Q_s.

Boucle d'essai Particules & paramètres

Particules utilisées

Type	Glass beads	Alumina beads	Mixture 1 (alumina)	Mixture 2 (alumina)	Mixture 3 (alumina/glass)	Stones
Size	5 mm 10 mm 16 mm	6 mm 15 mm	50% 6 mm 50% 15 mm D_{50} :10.5 mm	75% 6 mm 25% 15 mm D_{50} :8.25 mm	50% 6 mm alumina 50% 5 mm glass D ₅₀ :5.5 mm	8 - 18 mm D_{50} :10 mm
Density	$2500 \text{ kg}.\text{m}^{-3}$	$3650 \text{ kg}.\text{m}^{-3}$	$3650 \text{ kg}.\text{m}^{-3}$	$3650 \text{ kg}.\text{m}^{-3}$	3075 kg.m ⁻³	$2700 \rm kg.m^{-3}$
Picture	**		·			S.

Paramètres de contrôle

- Vitesse de mélange $V_{mix} = \frac{Q_l + Q_s}{A}$ (A section du tuyau);
- Concentration de transport ou concentration délivrée $C = \frac{Q_s}{Q_s + Q_s}$.

AKIS

Régimes d'écoulement Concentration, taille & densité Mélanges Résumé

FIGURE: Gradient hydraulique $l(m/m) = \frac{\Delta P}{\rho_{I}gL}$ vs. V_{mix} , Verre de 5 mm, C = 5%. Ligne noire : eau seule, • : l_{p} (horizontal), \blacksquare : l_{s} . Ligne verte : modèle vertical. Courbe de pertes de charge en cloche \Rightarrow transition entre différents régimes d'écoulement :

- A faible vitesse, lit stationnaire compact au fond, voire à contre-courant en partie inclinée;
- Autour du minimum (*V*_{crit}), lit compact mouvant;
- A haute vitesse, écoulement pseudo-homogène.

Pertes de charges en horizontal inférieures au cas vertical, mais V_{crit} plus grande.

Régimes d'écoulement Concentration, taille & densité Mélanges Résumé

Effets de concentration, taille et densité

- (a) Effets de concentration. I_h vs. V_{mix} pour billes d'Alumine 6 mm. $\circ: C = 5\%$, $\bigtriangledown: C = 10\%$, $\lhd: C = 15\%$ et $\triangleright: C = 20\%$.
- (b) Effets de taille. I_h (symboles ouverts) et I_s (symboles fermés) vs. V_{mix}, Alumine, C = 5%. : 6 mm et □ : 15 mm. En rouge : modèle vertical pour 6 mm (--) et 15 mm (--).
- (c) Effets de densité. I_h vs. V_{mix} , 5/6 mm, C = 5%. \circ : Alumine et \bigstar : Verre.

Régimes d'écoulement Concentration, taille & densité **Mélanges** Résumé

 Motivations
 Régimes d'écoulement

 Dispositif expérimental
 Concentration, taille & densité

 Résultats
 Mélanges

 Modélisation
 Résumé

Résumé des résultats constatés

- Les pertes de charge
 - augmentent avec la concentration et la densité;
 - diminuent avec la taille des particules;
- La vitesse critique V_{crit}
 - varie peu avec la concentration et la taille;
 - augmente avec la densité;
- Les mélanges : une « combinaison linéaire des constituants »?
 - Non pour mélanges de tailles ;
 - $\bullet \pm$ Oui pour mélange de densités ;

Vertical

Corrélations empiriques pour l'horizontal Modèle analytique en couches

Modèle pour écoulement vertical

 $\begin{array}{l} \mbox{Figure: Validation du modèle vertical.}\\ \mbox{Symboles noirs : données de Yoon et al. (2008),}\\ \mbox{$d_p=20$ mm, $D=100$ mm, $\rho_s=2150$ kg.m^{-3} ($\Box: $C=0\%$, $o: $C=5\%$, $\nabla: $C=10\%$ & $k>: $C=15\%$). \\ \mbox{\star : données de Xia et al. (2004), $d_p=15$ mm,}\\ \mbox{$D=100$ mm, $\rho_s=2000$ kg.m^{-3}$.}\\ \mbox{$\diamond$: données de Hong et al. (2002), $d_p=5$ mm,}\\ \mbox{$D=50$ mm, $\rho_s=2500$ kg.m^{-3}$.} \end{array}$

• $I_v = I_{stat} + I_f$ (contributions hydrostatique et du frottement pariétal).

I_{stat} = ρ_x − ρ_W ε_s avec ε_s la concentration *in-situ* : solution du système d'équations non-linéaires 1 & 2 (Newitt et al. (1961), Richardson & Zaki (1957)).

$$V_{slip} = \frac{1-C}{1-\epsilon_s} V_{mix} - \frac{C}{\epsilon_s} V_{mix} \quad (1) \qquad \qquad V_{slip} = (1-\epsilon_s)^{2.4} V_0 \quad (2)$$

• Modèle pour le frottement pariétal : $I_f = \lambda \frac{(V_{mix} \frac{1-C}{1-\epsilon_s})^2}{2gD}$

Vertical Corrélations empiriques pour l'horizontal Modèle analytique en couches

Corrélations basées sur le nombre de Froude

Corrélation de Durand & Condolios (1952) :

$$V_{crit} = F_I \{ 2D g (\rho_s - \rho_w) / \rho_w \}^{1/2}$$

 \Rightarrow correspond à une valeur unitaire pour le nombre de Froude

$$\overline{r} = \frac{V_{mix}}{\sqrt{2gD\frac{\rho_s - \rho_w}{\rho_w}}}$$

	Verre 5 mm	Alumine 6 mm
Expérience	1.8	2.4
Modèle ($F_l = 1$)	1.7	2.3
Modèle ($F_{l} = 1.05$)	1.8	2.4

Excès de perte de charge adimentionnel : $\Phi_t = \frac{l_h - l_w}{l_w}$ Corrélation (Doron *et al.* 1987, Wilson 2006) :

$$\Phi_t = C \ K \ c_d^{-3/4} \ (\sqrt{2} Fr)^{-3}$$
, avec $K = 81$.

 $\begin{array}{l} \mbox{FiGURE: } \Phi_t/C \ \mbox{vs. } Fr \ \mbox{pour :} \\ \bigstar : \ \mbox{verre 5 mm, } C = 5\% \ (K=67) \ ; \\ \diamondsuit : \ \mbox{verre 5 mm, } C = 10\% \ (K=66) \ ; \\ \circ : \ \mbox{alumine 6 mm, } C = 5\% \ (K=64) \ ; \\ \Box : \ \mbox{alumine 15 mm, } C = 5\% \ (K=40) \ . \end{array}$

Vertical Corrélations empiriques pour l'horizontal **Modèle analytique en couches**

 FIGURE: Résultats du modèle (lignes) pour

 C = 5%.

 \bigstar : verre 5 mm. \circ : Alumine 6 mm. \Box :

 Alumine 15 mm. Paramètres du modèle:

 $C_b = 0.52$, $\eta = 0.25$, $\tan \Phi = \infty$.

Modèle de Doron *et al.* (1987). Système nonlinéaire de cinq Eqs. à cinq inconnues :

- Séparation en deux couches
- En bas : lit compact stationnaire ou mouvant. Hauteur y_b, compacité C_b, vitesse U_b.
- En haut : mélange hétérogène. Vitesse U_h, concentration C_h.
- Modèle d'advection/diffusion turbulente pour la dispersion à l'interface.
- Equilibre des forces pour trouver ∇P .

Vertical Corrélations empiriques pour l'horizontal Modèle analytique en couches

Conclusions & Perspectives

- Les pertes de charge sont plus faibles en horizontal qu'en vertical;
- C'est l'inverse pour V_{crit};
- A densité et concentration données, les plus grosses particules sont plus facilement transportées en conduite horizontale, contrairement au cas vertical;
- Les corrélations empiriques sont satisfaisantes, mais les valeurs des constantes suggérées ne s'appliquent pas à de très grandes particules;
- A faible vitesse, de forts effets de ségrégation compliquent la modélisation des mélanges;
- Les modèles analytiques homogènes montrent leurs limites pour de très grandes particules;
- De plus amples études sont prévues dans les parties inclinées;
- Il existe des pistes de modélisations intéressantes, comme des méthodes CFD de pénalisation,...

Vertical Corrélations empiriques pour l'horizontal Modèle analytique en couches

Vertical Corrélations empiriques pour l'horizontal Modèle analytique en couches

