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Non-equilibrium and local detection of the normal fraction of a trapped

two-dimensional Bose gas
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We propose a method to measure the normal fraction of a two-dimensional Bose gas, a quantity
that generally differs from the Bose-Einstein condensed fraction. The idea is based on applying a
spatially oscillating artificial gauge field to the atoms. The response of the atoms to the gauge field
can be read out either mechanically from the deposited energy into the cloud, or optically from the
macroscopic optical properties of the atomic gas. The local nature of the proposed scheme allows one
to reconstruct the spatial profile of the superfluid component; furthermode, the proposed method
does not require having established a thermal equilibrium condition in the gas in the presence of
the gauge field. The theoretical description of the system is based on a generalization of the Dum-
Olshanii theory of artificial gauge fields to the many-body context. The efficiency of the proposed
measurement scheme is assessed by means of classical field numerical simulations. An explicit atomic
level scheme minimizing disturbing effects such as spontaneous emission is proposed for 87Rb atoms.

PACS numbers: 67.85.-d, 47.37.+q, 37.10.Vz, 42.50.Gy,

I. INTRODUCTION

One of the most striking features of degenerate Bose
gases in two dimensions is the possibility of having a
superfluid behavior in the absence of a macroscopically
populated Bose-Einstein condensate. The transition
to the superfluid state is of the Berezinskii-Kosterlitz-
Thouless type, characterized by a sudden jump of the
superfluid density from 0 to the universal value 4 (in
units of the inverse square of the de Broglie thermal wave-
length), independent from the details of the system [1, 2].
At the transition point, the asymptotic behavior of the
field correlation function changes from an exponential to
a power-law decay at large distances. In contrast to the
three-dimensional case, superfluidity is then not related
to the appearance of a macroscopically occupied Bose-
Einstein condensate in the thermodynamic limit.
Pioneering experiments have addressed the mechanical

properties of two-dimensional layers of liquid Helium ad-
sorbed on a substrate [3] and have characterized the uni-
versal jump of the superfluid fraction at the Berezinskii-
Kosterlitz-Thouless critical point. On the other hand,
liquid Helium experiments have limited access to the mo-
mentum distribution and the correlation functions of the
fluid. The situation of ultracold atom experiments is al-
most the opposite: evidence of the BKT transition has
been obtained from the coherence functions [4], the num-
ber of observed vortices [5], and the density profile after
time-of-flight [6], while the macroscopic mechanical prop-
erties of the fluid have not been characterized yet.
Quite some effort has been recently devoted to the con-

ceptual problem of how to experimentally detect genuine
superfluidity in a quantum gas of ultracold atoms and
not simply Bose-Einstein condensation [7]. A possibil-
ity explored in [8] is to look at the response of a gas
in a toroidal trap to a static azimuthal artificial gauge
field: a spectroscopic signature is proposed which should

provide direct information on the total superfluid mass
of the system. A different strategy proposed in [9] con-
sists of looking at the evolution of the density profile of
a trapped gas when this is set into rotation.

In the present paper we propose two experimental pro-
tocols to measure the superfluid fraction of a gas in a local
way, so to extract its spatial dependence in a trapped ge-
ometry. This feature is most relevant for atomic samples,
as the superfluid core co-exists with an external ring of
normal gas [10]. In particular, the proposed diagnostic
technique does not require to relate experimental obser-
vations after time of flight to in-trap quantities. Fur-
thermore, in contrast to [9] our technique does not re-
quire thermodynamic equilibrium in the gas in presence
of rotation [53] and may be applied to more general, non-
equilibrium conditions.

The basic idea of our proposal is based on the definition
of normal and superfluid fractions of a quantum fluid in
terms of its current response to a transverse gauge field
in the low-frequency and long-wavelength limit [14, 15].
A spatially oscillating artificial gauge field [16, 17, 20, 21]
with a spatially localized envelope can be applied to the
atomic gas using a suitable combination of laser beams.
The response of the fluid to the gauge field can be de-
tected either mechanically or optically. In the former
case, one has to measure the amount of energy that is
deposited in the atomic gas at the end of a suitable tem-
poral sequence of gauge field. In the latter case, one can
observe e.g. the phase shift that is experienced by the
laser fields while crossing the atomic cloud.

The structure of the paper is as follows. In Sec.II we re-
view the definition of the normal and superfluid fractions
that we adopt throughout the whole paper. The strategy
to generate the artificial gauge field with the suitable spa-
tial geometry is presented in Sec.III. The first method to
mechanically measure the normal fraction by detecting
the deposited energy at the end of a suitable temporal
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sequence of gauge field is discussed in Sec.IV: after pre-
senting the general idea, the efficiency of the method is
validated on classical field numerical simulations. The
second, all-optical method is presented in Sec.V. A rig-
orous derivation of the optical polarization of the atomic
cloud under the effect of the laser beams is presented and
applied to our geometry. Clear signatures of superfluidity
are identified in the macroscopic transmission and scat-
tering properties of the atomic cloud. Conclusions are
drawn in Sec.VI. The Appendices provide more details
on the calculations as well as some realistic estimates for
87Rb atoms in a specific, most promising configuration
of atomic levels and laser fields.

II. PRINCIPLE OF THE METHOD

Our proposal to quantitatively assess the superfluidity
of the two-dimensional atomic gas is based on the tra-
ditional definition of the normal fraction fn in terms of
the response to a transverse gauge field coupling to the
atomic current operator [14, 15]. The interaction Hamil-
tonian has the form:

V = −
∫

d2rA(r) · j(r) (1)

with the current operator defined as usual as

j(r) =
~

2im

[

φ̂†(r)∇φ̂(r) − h.c.
]

(2)

in terms of the bosonic field operator φ̂ for the two-
dimensional gas. For a spatially homogeneous system,
the linear response susceptibility relating the average cur-
rent [54] to the applied gauge field can be easily written
in momentum space as

〈j〉(q, ω) = χ(q, ω)A(q, ω). (3)

If the system is also invariant under reflection with
respect to the direction of q, the susceptibility ten-
sor χ(q, ω) turns out to be diagonal in the longitudi-
nal/transverse basis with respect to q, with elements
χL,T (q, ω), respectively.
For a system of density ρ, the normal fraction fn of

the system is then defined as the low-momentum, low-
frequency limit of the susceptibility to transverse gauge
fields:

fn = lim
q→0

lim
ω→0

m

ρ
χT (q, ω). (4)

Note that the order of the limits is here important. A
well-known sum rule based on gauge invariance imposes
that the same limit for the longitudinal susceptibility
χL(q, ω) gives exactly unity,

1 = lim
q→0

lim
ω→0

m

ρ
χL(q, ω). (5)

The definition (4) can then be extended to large but finite
systems using the standard local density approximation.
In what follows we will propose two methods to exploit

the definition (4). The first method is an all-mechanical
one, where one measures the deposited energy after a
suitable excitation sequence by a spatially modulated
gauge field. The second method is based on the opti-
cal detection of the current induced by the gauge field.

III. HOW TO GENERATE THE GAUGE FIELD
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FIG. 1: Scheme of the set-up under consideration. Left panel:
generic sketch of the Λ configuration of atomic levels and laser
beams involved in the optical processes. Center panel: view
from above of the two-dimensional atomic pancake and of the
laser beams. Right panel: side view. kc and k±

p are the
wavevectors of the coupling and probe beams, respectively.
In practice, k±

p = (k2
p − q2/4)1/2 ez ± (q/2) ex with q ≪ kp.

We consider a three-dimensional gas of bosonic atoms
in a strongly anisotropic, pancake-shaped trap. The axial
confinement frequency ωz is much higher than the one ω‖

along the xy plane; both the temperature T (times the
Boltzmann constant kB) and the chemical potential µ
of the gas are assumed to be smaller than ~ωz. In this
regime, the gas will be eventually described in terms of
a two-dimensional Hamiltonian.
Building on an idea originally introduced in [16], an

artificial gauge field coupling to the atomic current can
be obtained by illuminating the atoms with several laser
beams with suitably chosen frequencies, wavevectors, and
waist profiles. Several schemes to generate artificial
gauge fields for neutral atoms have been proposed in the
last years [16, 17, 20]. The last proposal [20] was recently
implemented on an atomic Bose-Einstein condensate: for
sufficiently strong gauge fields, a disordered ensemble of
vortices appeared in the gas [21].
In the present paper, we shall focus our attention on

the level configuration shown in Fig.1. Three internal
atomic levels in a Λ configuration are connected by three
laser fields according to the sketch given in the left panel
of Fig.1: a coupling beam resonantly drives the b → e
atomic transition, while a pair of probe beams resonantly
drive the a→ e one. The artificial gauge field originates
from the spatial and temporal dependence of the optically
dark state. All other atomic states are assumed to be far-
off resonance; a complete discussion of their effect in the
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specific case of 87Rb atoms will be given in Appendix A.
The geometrical arrangement of the laser beams is

sketched in the center and right panels of Fig.1. The
continuous-wave control c beam propagates along the y
direction with a wavevector kc and a frequency ωc close
to resonance with the b → e transition, and has a peak
Rabi frequency Ωo

c . Its waist profile is much wider than
the size of the atomic cloud, so that it can be safely ap-
proximated by a plane wave.
The two probe beams share the same carrier frequency

ωp close to resonance with the a → e transition. The
frequencies of the coupling and probe beams are chosen
exactly on resonance with the Raman transition a→ e→
b, ωp − ωc = ωb − ωa. The probe beams impinge on the
atomic cloud with wavevectors k±

p ≃ kpez ± q/2 close to
the z direction and symmetrically located with respect
to it. The difference q = k+

p −k−
p lies along the xy plane

and is in magnitude q ≪ kp = ωp/c. Their spatial profile
is taken to be a Gaussian, centered at r0 in the z = 0
plane, with a waist w.
In what follows, we shall always assume that w ≫ q−1,

so to ensure that the volume of the gas within the waist
is “macroscopic”: in this way, the relation Eq.(4) for the
normal fraction can be used. At the same time, the waist
w is assumed to be much smaller than the atomic cloud
radius, so to allow for a local measurement of the normal
fraction. The peak Rabi frequencies of the two probe
beams are Ω±

p (t), respectively (see Appendix B for the
definition of the Rabi frequencies). The spatial depen-
dence of the Rabi frequencies of both the coupling and
the probe beams is then summarized by the following
expressions [55],

Ωc(r, t) = Ω0
ce

−i∆ct eikc·r (6)

Ωp(r, t) ≃ [Ω+
p e

ik+
p ·r +Ω−

p e
ik−

p ·r]

×e−[(x−x0)
2+(y−y0)

2]/w2

. (7)

where we have allowed for the coupling beam to have a
small detuning ∆c from Raman resonance on top of its
carrier frequency at ωc. On the contrary, Ωp does not
have a time dependent phase factor, but only contains a
purely real non-negative switch-on and switch-off func-
tion f(t),

Ωp(r, t) = Ω0
p(r)[f(t)]

1/2. (8)

In what follows, we shall restrict our attention to the
non-saturating regime |Ωc|, |Ω±

p | ≪ |δ+ iΓ/2|, where Γ is
the decay rate of |e〉 due to spontaneous emission, and δ
is the common detuning of the probe and control beam
carrier frequencies from the transitions |a〉 → |e〉 and
|b〉 → |e〉 respectively. We shall also concentrate on the
limit |Ω±

p | ≪ |Ωc| where the structure of the gauge field
is the simplest.
As the transitions driven by the probe and control

beams share the excited state, for each spatial and tem-
poral position (r, t) an internal non-coupled state exists

for which the two excitation channels interfere destruc-
tively. In terms of the local Rabi frequencies Ωp(r, t) and
Ωc(r, t), this non-coupled state reads

|NC(r, t)〉 = |a〉 − Ωp(r, t)/Ωc(r, t) |b〉
(1 + |Ωp(r, t)|2/|Ωc(r, t)|2)1/2

. (9)

Eliminating the excited state |e〉, one sees that the bright
orthogonal state, the so-called coupled state,

|C(r, t)〉 = [Ωp(r, t)/Ωc(r, t)]
∗|a〉+ |b〉

(1 + |Ωp(r, t)|2/|Ωc(r, t)|2)1/2
(10)

is separated from |NC(r, t)〉 by a (complex) energy gap

~[δ′(r, t)− iΓ′(r, t)/2] ≡ ~[|Ωc(r, t)|2 + |Ωp(r, t)|2]
4(δ + iΓ/2)

, (11)

where δ′ and Γ′ are the lightshift and the decay rate of
the coupled state. If the energy gap is large enough as
compared to both the motional coupling between |NC〉
and |C〉 due to the spatio-temporal dependence of Ωc

and Ω±
p , and to the quantum of oscillation ~ωz along the

tightly confined z direction, we can restrict the dynamics
to the |NC〉 internal state.
Generalizing the single-particle theory of [16] to the

many-body context, one gets to an effective Hamilto-

nian for the component φ̂3D(r, t) of the three-dimensional
atomic field operator in the (spatially and temporally-
dependent) non-coupled state |NC〉,

φ̂3D(r, t) = 〈NC(r, t)|a〉 Ψ̂a(r, t) + 〈NC(r, t)|b〉 Ψ̂b(r, t)
(12)

in the simple form [56]:

H =

∫

d3r

{

φ̂†3D

[

−~
2∇2

2m
+ U(r) +W3D(r, t)

]

φ̂3D

−j3D(r) ·A3D(r, t) +
1

2
g(r, t) φ̂†3Dφ̂

†
3Dφ̂3Dφ̂3D

}

(13)

where the vector gauge potential

A3D(r, t) =
i~

2

[

〈NC(r, t)[∇|NC(r, t)〉] − c.c.
]

(14)

couples to the atomic current operator

j3D(r) =
~

2im

[

φ̂†3D(r)∇φ̂3D(r) − h.c.
]

. (15)

and the scalar potential

W3D(r, t) = − i~
2

[

〈NC(r, t) [∂t|NC(r, t)〉] − c.c.
]

+

+
~
2

2m

∑

i=x,y,z

[∂ri〈NC(r, t)]|[∂ri |NC(r, t)〉] (16)

couples to the density

n3D(r) = φ̂†3D(r) φ̂3D(r). (17)
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The derivation of the Hamiltonian (13) is based on
the Quantum Stochastic Differential Equations formal-
ism [25]; the details are given in the Appendix B.
The spatial and temporal dependence of the a, b

weights of the non-coupled state (9) reflects into a similar
variation of the coupling constant describing the atomic
interaction within the internal state |NC〉:

g3D(r) =
|Ωc|4 gaa + 2|Ωp(r)|2 |Ωc|2 gab + |Ωp|4 gbb

(|Ωc|2 + |Ωp(r)|2)2
,

(18)
where the coupling constants gaa, gab and gbb originate
from the a − a, a − b and b − b elastic s-wave interac-
tions. In what follows, we shall be interested in isolating
the response of the system to the gauge field A. To this
purpose, it will be useful to minimize the effect of all un-
wanted couplings to the density introduced by the scalar
potential W3D and by the spatial dependence of the in-
teraction constant g3D. This latter effect is minimized if
one chooses states a, b with similar scattering properties
gaa ≃ gab ≃ gbb. In the limit |Ωp/Ωc| ≪ 1, one simply
needs to have gaa ≃ gab, as it is assumed from now on.
The atomic wavefunction along z is assumed to be

frozen in the ground state of the harmonic confinement
of wavefunction φ0(z). This allows to express the three-

dimensional bosonic field φ̂3D in terms of the bosonic
field for a two-dimensional gas, setting

φ̂3D(x, y, z) = φ0(z)φ̂(x, y). (19)

Correspondingly, the two-dimensional coupling constant
g has the expression

g =
~
2

m
g̃ =

g3D√
2π aho

(20)

in terms of the three-dimensional coupling constant g3D
and the size azho =

√

~/mωz of the ground state along
z. Note that the dimensional reduction (19) does not
require being in the Lamb-Dicke limit kp,ca

z
ho ≪ 1.

The effective two-dimensional gauge and scalar poten-
tials A and W then result from an average of the Hamil-
tonian (13) over the motional ground state along z. In-
cluding in (14) and (16) the explicit form of the beam
profiles and restricting ourselves to zeroth order in the
small parameters q/kp,c, 1/wkp,c, and to second order
in Ω±

p /Ωc, the resulting two-dimensional gauge potential
turns out to be directed along the y axis and have the
form

Ay(r) ≃ ~kc

∣

∣Ω+
p e

iq·r/2 +Ω−
p e

−iq·r/2
∣

∣

2

|Ωc|2
e−2|r−r0|

2/w2

= ~kc
|Ω+

p |2 + |Ω−
p |2 + [Ω+

p Ω
−∗
p eiq·r + c.c.]

|Ωc|2

× e−2|r−r0|
2/w2

. (21)

To the same level of approximation, the scalar potential

has the form

W (r) =

[

~
2(k2c + k2p)

2m
+ ~∆c

]

×
∣

∣Ω+
p e

iq·r/2 +Ω−
p e

−iq·r/2
∣

∣

2

|Ωc|2
e−2|r−r0|

2/w2

, (22)

which can be made to vanish by choosing a detuning ∆c

that exactly compensates the recoil of the atoms after
the Raman process a→ e→ b:

W ≡ 0 for ∆c = −
~(k2c + k2p)

2m
. (23)

It is worth pointing out that the real switch-on and
switch-off function f(t) of the probe beam Eq.(8) has an
exactly vanishing contribution to the temporal derivative
term in the right-hand side of Eq.(16) [57].
After expansion of the squared modulus as done in the

second line of (21), two kinds of terms are immediately
identified: (i) a slowly varying Gaussian term of size w
and peak amplitude |Ω+

p |2 + |Ω−
p |2 that follows the laser

envelopes, and (ii) an oscillating term at wavevector q

with a Gaussian envelope of size w and peak amplitude
|Ω+

p Ω
−
p |. This spatially modulated term is indeed the one

that we need to probe the normal fraction of the gas ac-
cording to the definition (4): when q is taken along the
x axis (y axis), it provides an almost purely transverse
(longitudinal) contribution to the gauge field A. On the
other hand, the slowly varying term always includes both
longitudinal and transverse vector field components. Ex-
perimental procedures to subtract the effect of this un-
wanted term will be discussed in the next sections.

IV. DEPOSITED ENERGY MEASUREMENT

A. General idea

In this section we shall present a method to extract
the value of the normal fraction from a measurement of
the energy that is deposited in the system by a suitably
designed gauge field sequence. The coupling beam is as-
sumed to be always on. On the other hand, both probe
beam intensities |Ω±

p |2 are varied in time according to
the (dimensionless) real envelope function f(t). This is
chosen to be 0 for t < 0 and to rapidly tend back to 0 at
long times.
As already mentioned, we assume that the atomic in-

teraction constants satisfy gaa ≃ gab [58]. As soon as
qw ≫ 1, the deposited energy is the sum of two inde-
pendent contributions ∆E1,2 corresponding to the de-
composition (21) of the gauge field as the sum of a non-
modulated term and a modulated one at the wavevector
q. Using standard linear response theory within the lo-
cal density approximation as discussed in the Appendix
C, the contribution ∆E2 of the modulated term can be
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written in the simplified form

∆E2 ≃ π

4
w2

( ǫgauge
2

)2
∫ +∞

−∞

dω

π
ω |f(ω)|2 Im[χyy(q, ω)]

(24)
where we have introduced the amplitude of the spatially
modulated part of the gauge field,

ǫgauge = 2 ~kc
|Ω+

p Ω−
p |(t = 0+)

|Ωc|2
. (25)

A similar expression for the contribution ∆E1 of the non-
modulated term is given in the Appendix C as (C8).
The expression (24) for the deposited energy involves

the imaginary part of the susceptibility, while the normal
fraction (4) involves the real part. To relate the two, one
can make use of the well-known Kramers-Kronig relation
of linear response theory,

lim
ω→0

Re[χ(q, ω)] =

∫ +∞

−∞

dω′

π

Im[χ(q, ω′)]

ω′
. (26)

For a suitably chosen envelope of the form f(t) =
e−γtΘ(t), whose Fourier transform has the form f(ω) =
i/(ω+ iγ), the integral in (24) indeed reduces to the real
part of the susceptibility (26) in the γ → 0 limit.
As a consequence, the deposited energy ∆E2 for small

q perpendicular (parallel) to kc can be related to the
normal (total) density ρn (ρ) at position r0 by

∆E2 ≃ π

4

w2

m

(ǫgauge
2

)2

×
{

ρn(r0) for q ⊥ kc

ρ(r0) for q ‖ kc
. (27)

For intermediate angles α between q and kc, δE2 is pro-
portional to cos2 α ρ+ sin2 αρn [27].
In an actual experiment, the undesired contribution

∆E1 can be eliminated by noting its independence on
the relative orientation of q and kc [see Eqs.(C8) and
(C9)], as well as its different dependence on the probe
amplitudes Ω±

p , proportional to [|Ω+
p |2 + |Ω−

p |2]2 rather

than |Ω+
p Ω

−
p |2. By measuring the deposited energy for at

least two different values of the Ω+
p /Ω

−
p ratio, one is able

to isolate the relevant contribution (27).

B. How fast is the q, γ → 0 limit reached ?

An important point in view of experiments is to char-
acterize how small q and γ have actually to be taken
to obtain a quantitatively accurate measurement of the
normal fraction fn. To answer this question, we consider
in this subsection the simplest case of a spatially homo-
geneous system in a square box of size L with periodic
boundary conditions, excited by a gauge field in a plane
wave form, i.e. in the limit w → ∞. We also limit our-
selves to the case of a transverse gauge field with q = q ex
perpendicular to kc = kc ey,

Aideal(r, t) = Θ(t)e−γtey
ǫgauge
2

(

eiqx + e−iqx
)

. (28)

The deposited energy at the end of the gauge field se-
quence can be evaluated by means of the Bogoliubov
theory of dilute Bose gases. The main steps of the calcu-
lation are sketched in Appendix D. The final result reads

∆E2 =
( ǫgauge

2

)2 N

m
f eff
n (29)

in terms of the wavevector- and γ-dependent effective
normal fraction fn

eff

f eff
n =

1

N

∑

k 6=0,−q

~
2k2y
m

×

Re
[ nk − nk+q

ǫk+q − ǫk − i~γ
(UkUk+q − VkVk+q)

2

+
1 + nk + nk+q

ǫk+q + ǫk − i~γ
(UkVk+q − VkUk+q)

2
]

. (30)

Here N = ρL2 is the total particle number,

ǫk =

[

~
2k2

2m

(

~
2k2

2m
+ 2ρg

)]1/2

(31)

is the usual Bogoliubov dispersion relation and the am-
plitudes of the Bogoliubov modes satisfy

Uk + Vk =
1

Uk − Vk
=

(

~
2k2/2m

~2k2/2m+ 2ρg

)1/4

(32)

The nk are the mean occupation number of Bogoliubov
modes, nk = 1/[exp(ǫk/kBT )− 1].
The thermodynamic limit L → ∞ at fixed N/L2 can

be worked out analytically by first taking the γ → 0 limit
and then the q → 0 limit in the expression (30) for f eff

n .
In this way one recovers the usual Bogoliubov expression
for the normal fraction, which in dimension two reads:

fn =
1

ρ

∫

d2k

(2π)2
~
2k2y
m

(−∂ǫknk). (33)

For a finite size system, the dependence of f eff
n on γ and q

is explored in Fig.2. For the smallest non-zero wavevector
value allowed by the chosen box, the relative error on f eff

n

is already on the order of 10% for γ/csq = 0.15.
Another interesting result of Bogoliubov theory ap-

plied to our system is a sufficient condition on the ampli-
tude of the gauge field to be within the linear response
regime. To this purpose, we can write the equations of
motion for the Bogoliubov mode operators bk in the in-
teraction picture in the presence of the time-dependent
gauge field, and impose that the amplitude change be
small as compared to the initial value.
The condition is most stringent for modes such that

ǫk = ǫk±q, where the real part of the energy denominator
can vanish. For the maximal value of k set by the thermal
occupation, this leads to the sufficient condition

ǫgauge
(mkBTd)1/2

.

(

Td
T

)1/2
2~γ

kBTd
, (34)
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FIG. 2: Bogoliubov prediction (30) for the effective normal
fraction feff

n : dependence of feff
n on γ for two different values

of the gauge field wavevector q = (2π/L) ex (solid, qξ ≃ 0.1)
and q = 10 × (2π/L) ex (dashed, qξ ≃ 1). System parame-
ters: square box of size L/ξ ≃ 63 containing N ≃ 40000 parti-
cles with interaction constant g = 0.1 ~2/m at a temperature
T/Td = 0.1. Td = 2π~2ρ/m is the degeneracy temperature.
The healing length ξ of the gas is defined by ~

2mξ2 = ρg.
The dashed line corresponds to the same value of qξ ≃ 1
as in Fig.4 and the vertical dotted lines indicate the values of
γ/csq considered in that figure. The horizontal thin line is the
prediction (40) of Bogoliubov theory in the thermodynamic
limit [28]. The quadratic rather than linear dependence of
feff
n on γ for small values of γ is a finite-size effect.

in terms of the degeneracy temperature kBTd = 2π~2ρm.
This naive argument is however not able to determine to
which extent this condition is actually necessary. This
would require a higher order calculation which falls be-
yond the scope of the present work.

C. Numerical investigation

To further assess the validity and accuracy of our pro-
posed scheme we have performed full scale numerical sim-
ulations of the response of a two-dimensional Bose gas at
finite temperature to the complete gauge field (21), in-
cluding the Gaussian envelope of the gauge field and a
circular well trapping potential. A very useful tool to this
purpose is the classical field model developed and applied
in a number of recent works [13, 29]. For this model both
the thermal equilibrium state and the temporal dynamics
can in fact be easily addressed with standard numerical
tools and provide reliable results for the physics of the
degenerate Bose gas.
We consider a classicalC-field defined on a square grid.

The real space lattice constant b is chosen in terms of
the thermal de Broglie wavelength λ =

√

2π~2/mkBT

as b/λ =
√

π/4ζ. The value ζ ≃ 0.8 [59] of the nu-
merical coefficient is chosen in such way that the classi-
cal field model correctly reproduces the total number of
non-condensed particles for an ideal gas at zero chemical

0 0.1 0.2 0.3
T / T

d

  0

  0.2

  0.4

  0.6

  0.8

  1

f n

gaz avec interaction canonique
g=0.1

FIG. 3: Classical field simulation of the normal fraction fn for
a two-dimensional, spatially homogeneous interacting Bose
gas as a function of temperature. The calculation has been
performed using the thermodynamic expression (40) for the
normal fraction. The coupling constant is g = 0.1 ~2/m. The
different curves refer to simulations performed with different
numbers of grid points M = 162 (green, dotted), 322 (red,
dashed), 642 (black, solid). The number of classical field re-
alizations is nreal = 1000. The dot-dashed line is the classical
field prediction for the normal fraction fn of an ideal gas in
the thermodynamic limit: as discussed in the text, the de-
crease at high temperatures is an artifact of the classical field
model. The blue circle indicates the result of a numerical sim-
ulation of the deposited energy scheme as in Fig.4b but for
a homogeneous system with an infinite beam waist w = ∞,
a number of grid points M = 322, a gauge field wavevector
q = 2π/L ≃ 0.2/ξ, and including a careful extrapolation of
ǫgauge → 0 (numerics down to ǫgauge = 0.01) and of γ → 0
(numerics down to γ/(csq) = 0.05) extrapolation.

potential in the thermodynamic limit. This choice cor-
responds to setting the ultra-violet momentum cut-off
kmax = π/b at ~2k2max/2m = ζkBT .

In the grand canonical ensemble, the thermal probabil-
ity distribution for the interacting classical field follows a
Boltzmann exp(−E/kBT ) law with the Gross-Pitaevskii
energy functional [60].

E[Ψ] = b2
∑

r

Ψ∗

[

− ~
2

2m
∆+ U(r) +

g

2
|Ψ|2

]

Ψ. (35)

This probability distribution can be sampled by the long
time limit of a Ito stochastic differential equation includ-
ing a drift term and a noise term [30, 31]. The thermal
distribution in the canonical ensemble can be sampled by
adding projectors to the stochastic differential equation
in order to keep the norm constant ‖Ψ‖2 = N . This leads
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FIG. 4: Classical field simulation of the deposited energy measurement scheme in a realistic geometry. We start from a
thermal equilibrium state at T/Td = 0.1 with g = 0.1 ~2/m, and a system size L/ξ ≃ 63. Beam waist w = 30ξ. Excitation
wavevector qξ ≃ 1. The real time evolution is followed up to a time τ = 3/γ. The gauge field intensity is measured in
terms of ǫgauge as defined in (25). In the right (b) panel, only the modulated component is applied. In the left (a) panel, the
complete form Eq.(21) is considered, and for each value of ǫgauge, two calculations are performed to extract the contribution
∆E2 of the modulated component (see text): the first with |Ω+

p |
2(0+)/|Ωc|

2 = ǫgauge/(~kc) and Ω−
p ≡ 0, the second with

|Ω±
p |2(0+)/|Ωc|

2 = ǫgauge/(2~kc). Dashed lines correspond to spatially homogeneous system with periodic boundary conditions
of side L, which corresponds to N ≃ 40000 atoms. Solid lines correspond to the same system in a circular potential well. The
total number of atoms is adjusted in a way to have the same central density ρ and hence the same degeneracy temperature
Td and healing length ξ in both cases. Black (red) lines correspond to an excitation sequence with γ/csq = 0.4 (γ/csq = 0.2).
Extrapolating linearly to γ = 0 for the lowest value of the gauge field gives feff

n ≃ 0.17, which is less than 20% away from the
actual value. Simulations are performed using 1000 realizations of the classical field. The number of grid points is M = 642.
The region between the horizontal dotted lines indicates the confidence interval of the thermodynamic prediction shown in
Fig.3.

to the Ito equation

dΨ = −1

2
dτ QΨ

[

− ~
2

2m
∆Ψ+ U Ψ+ g|Ψ|2 Ψ

]

+

√
kBT

b
QΨdξ −

M − 1

2N
kBT dτ Ψ. (36)

whereM is the number of grid points, QΨ is the projector
onto the subspace orthogonal to the classical field Ψ, dξ
is a complex Gaussian, zero-mean, delta-correlated noise
such that dξdξ = 0 and

dξ∗(ri) dξ(rj) = dτ δri,rj . (37)

Our numerical procedure consists in first generating a
number nreal of independent wavefunctions distributed
according to the thermal Boltzmann law with energy
functional (35) and then to let them evolve in real time
according to the time-dependent Gross-Pitaevskii equa-
tion including the gauge potential (21).
For the real time evolution, the kinetic, external po-

tential, and interaction energy terms are treated with the
usual splitting technique. The evolution operator under
the gauge potential (21) during the time-step dt involves
numerical evaluation of objects of the form

Ψ′ = eiλ(x,t) [py−h(y))]2 Ψ, (38)

where the generic function h(y) has a zero spatial mean
over y. This requires a bit more care as the evolution
operator is diagonal neither in the real-space nor in the
k-space. The trick is to perform a local gauge transform
on Ψ of the form

UΨ = e−iH(y)/~Ψ (39)

with dH/dy = h(y). In this way, the operator within
the exponential in (38) is reduced to a combination of
diagonal operators in respectively y and py. Since h(y)
has a zero mean, H(0) = H(L) and the gauge transform
is compatible with the periodic boundary conditions.
As a first application of the classical field method, we

have determined the normal fraction of a spatially ho-
mogeneous two-dimensional interacting gas at thermal
equilibrium. This is done using the thermodynamic for-
mula

f thermo
n =

〈P 2
y 〉

NmkBT
(40)

in terms of the thermal variance of the total momentum
Py of the gas [32, 33]. The temperature dependence of
the normal fraction is shown in Fig.3 for increasing sys-
tem sizes. The sudden variation around T/Td ≃ 0.13



8

becomes sharper and sharper as the system size is in-
creased and should eventually correspond to a discontin-
uous jump in the superfluid fraction at the BKT tran-
sition [1, 2, 34]. The slow decrease for larger values of
T/Td is instead an artifact of the ultraviolet cut-off that
has to be imposed to the classical field model in any di-
mension d ≥ 2. Indeed, the same decrease is visible also
in the case of an ideal gas, for which one can show that
fn = 1 − T/Td + O(e−Td/TT/Td) in the thermodynamic
limit.

The experimental estimation of the normal fraction
obtained by the deposited energy method discussed in
Sec.IVA is simulated in Fig.4. The value of the deposited
energy is extracted from the classical field simulation by
taking the energy difference at the end of two evolutions
from the same initial wavefunction using the same value
of |Ω+

p |2+ |Ω−
p |2 but different relative magnitudes of Ω±

p .
This protocol aims at isolating the effect of the spatially
modulated gauge potential: in the linear response limit,
it is able to provide the exact value of ∆E2 alone. The
effective normal fraction is then extracted from the de-
posited energy via (27). In Fig.4, this quantity plotted
as a function of the gauge field amplitude for different
values of the switch-off rate γ/csq = 0.4, 0.2 (black, red
curves) and different geometries (solid, dashed) [61].

The ǫgauge-dependence allows to estimate the interval
where the linear response approximation is reasonable,
e.g. for ǫgauge/

√
mkBTd . 0.15. As expected, the esti-

mate (34) gives a more pessimistic bound around 0.04.
For larger values of the gauge field amplitude ǫgauge, non-
linear effects set in and the two contributions ∆E1,2 no
longer simply add up, which disturbs our protocol to iso-
late ∆E1 and introduces spurious corrections to the es-
timated value of fn. By comparing the left (a) and right
(b) panels of Fig.4 one can see that the marked peaks
and the rapid growth for small ǫgauge that are visible in
(a) are mainly due to a cross-talk effect of the modulated
and non-modulated terms. As expected the correspond-
ing curves in the two panels tend to the same value in
the small ǫgauge limit, which confirms the validity of our
protocol to extract ∆E2. From an experimental point
of view, we expect that values of the gauge field ampli-
tude as high as ǫgauge/(ρkBTd)

1/2 = 0.15 should be well
achievable in practice, see Table I.

For the sake of completeness, it is important to note
that for the weak gauge field amplitude that are required
to be in the linear regime, the deposited energy ∆E2 is
less than 1% of the total energy of the system, which may
be experimentally challenging to measure. This value is
however larger than the statistical uncertainty of the en-
ergy in the canonical ensemble with nreal = 1000 realiza-
tions. As we shall see better in the next subsection, such
a large number of realization turned out necessary in the
small ǫgauge regime to compensate the fluctuations of the
current j(t = 0) at the initial time.

The residual disagreement of fn with the thermody-
namic result indicated by the dotted lines is of the same
order of the finite q and γ correction predicted by Bo-

goliubov theory, see Fig.2. On a smaller system with
M = 322 modes, we have checked by taking smaller val-
ues of q and γ that the thermodynamical prediction is
recovered within error bars, see the blue circle in Fig.3.
The deviation observed in Fig.4 is therefore not a sys-
tematic error of the proposed method.
As a final check, we have validated the locality of the

proposed measurement scheme by performing the simu-
lation for two different geometries. Dashed lines in Fig.4
correspond to a spatially homogeneous system with pe-
riodic boundary conditions, while the solid lines corre-
spond to a system trapped in a circular well with steep
walls of the form U(r) = ζkBT {tanh[(r − L/2)/(ξ/2)] +
1}. The probed region is at the center of the potential
well, r0 = 0. Exception made for the strongly nonlinear
regime when ǫgauge is large, the effective normal fractions
are the same in both geometries within error bars.

D. The noise on the deposited energy

In the previous section, while presenting the numerical
results, we mentioned the fact that the statistical noise
on the deposited energy was larger for smaller values of
the gauge field amplitude ǫgauge.
To understand this feature, it can be useful to rewrite

the deposited energy for a single realization of the clas-
sical field simulation in the form

δE = −
∫

d2r j(r, 0) ·A(r, 0+)

−
∫ +∞

0+
dt

∫

d2r j(r, t) ∂tA(r, t). (41)

The first term comes from the abrupt switch-on of the
gauge field. For each realization, it is of order ǫgauge
but averages to zero in the limit of an infinite number
of realizations of the experiment as 〈j(r, 0)〉 = 0. In any
actual calculation, an average over a finite number nreal

of realizations is taken, which gives a non-zero random
value scaling as ǫgauge/

√
nreal.

The relevant signal 〈δE〉 is given by the second
term, obtained from the classical Hamiltonian identity
dH/dt = ∂tH . For small values of γ, this term is of or-
der O(ǫ2gauge) as in this limit j adiabatically follows the
thermal equilibrium value for the instantaneous value of
the gauge field. As a result, the number of realizations
that are needed to extract the signal out of the statisti-
cal noise due to the first term grows as |ǫgauge|−2, which
perfectly explains the numerical observation.
However, it has been demonstrated by a number of re-

cent cold atom experiments that noise is not always just
an hindrance but can be also a source of useful physical
information [35, 36]. As a simple example, we consider
here the amplitude of the noise on the energy that is
deposited in the system at each realization of the exper-
iment. This quantity is quantified by the average 〈δE2〉
of the square of the deposited energy in the γ → 0 limit.
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Looking at (41), it is immediate to see that in the small
ǫgauge limit the dominant contribution comes from the
square of the first term, which suggests that the noise
on the deposited energy is related to the variance of
the instantaneous fluctuations of the current operator.
From the fluctuation-dissipation theorem, this quantity
can then be related to the normal fraction of the gas.
This idea can be put on solid grounds by developing a

full quantum calculation. The linear response theory cal-
culation performed along the lines of Appendix D leads
to the expression in Heisenberg picture

lim
γ→0

〈[H0(+∞)−H0(0)]
2〉 ≃

〈[
∫

d2r j(r) ·A(r, 0+)]2〉 (42)

where H0 is the unperturbed Hamiltonian. This relation
connects the variance of the quantum equivalent of the
deposited energy to the instantaneous fluctuations of the
current operator and confirms our expectation based on
the classical field model.
In view of experiments, it is however crucial to note

that the definition of the deposited energy adopted in
(42) involves taking expectation values of the Hamilto-
nian operator at different times. This may be experimen-
tally challenging as it requires either a non-destructive
measurement of the initial energy of the system at t = 0
before switching on the gauge field, or a very precise a

priori knowledge of its value in a sort of microcanonical
ensemble [62].
For a generic hermitian operator V with vanishing

diagonal matrix elements in the eigenbasis of H0, the
fluctuation-dissipation theorem of linear response theory
relates the imaginary part of the susceptibility χ to the
Fourier transform of the correlation function SV V (t) =
〈V (t)V (0)〉,

Im[χV V (ω)] =
1

2~
SV V (ω)

[

1− e−~ω/kBT
]

. (43)

The Fourier transform SV V (ω) of the correlation function
in the thermodynamical equilibrium state is defined as
usual as

SV V (ω) =

∫ ∞

−∞

dt eiωt 〈V (t)V (0)〉. (44)

Under the assumption that most of the spectral weight of
the V operator lies in the low-energy region ~ω ≪ kBT ,
we can approximate 1 − e−~ω/kBT ≃ ~ω/kBT . This is a
quite standard approximation of many-body theory and
is generally accurate in the small q limit [37]. After a few
manipulations, it leads to the general expression

SV V (t = 0) =

∫

dω

2π
SV V (ω) ≃

∫

dω

2π

2kBT

ω
Im[χV V (ω)] =

kBT Re[χV V (ω = 0)], (45)

where the equivalent of Eq.(26) was used to obtain
the last identity. An application of the fluctuation-
dissipation relation (45) to the susceptibility and the fluc-
tuations of the mass current in liquid He can be found
in [15].
The link between the variance of the deposited

energy and the normal fraction is immediately ob-
tained by applying (45) to the specific operator V =
∫

d2r j(r)A(r, 0+) and isolating the contribution of the
spatially modulated gauge field proportional to Ω+

p Ω
−
p .

In this way, using Eq.(C10), one is led to the final ex-
pression

πw2

4

ρ

m

( ǫgauge
2

)2

fn ≃

≃ 1

2kBT
lim
γ→0

〈[H0(+∞)−H0(0)]
2〉, (46)

which demonstrates an alternative way of extracting the
value of the normal fraction fn from a measurement of
the statistical variance of the deposited energy in a series
of experiments.

V. OPTICAL MEASUREMENT

The proposal that we have illustrated in the previous
section was based on the measurement of atomic quanti-
ties, namely the deposited energy in the atomic cloud at
the end of the gauge field sequence. The present section
is devoted to the presentation and the characterization
of an alternative, all-optical route to measure the normal
fraction fn: information on the response of the atomic
cloud to the gauge field can be retrieved from the trans-
mitted probe beams once they have crossed the atomic
cloud. Recent works have in fact pointed out that the
strong frequency-dependence of the dielectric constant of
an optically dressed medium in the electromagnetically
induced transparency (EIT), already used experimentally
to strongly reduce the light group velocity [38–40], can
be exploited for velocimetry experiments: Information
on the current profile of an atomic cloud was predicted
to be imprinted onto the phase of the transmitted probe
beam [41, 42]. In the present case, the probe and cou-
pling light consists of the beams respectively oscillating
at angular frequencies ωp,c, as sketched in Fig.1. Dif-
ferently from the case of [41, 42], the current pattern is
generated here by the same beams that are then used for
probing.

A. Atomic polarization due to non-adiabatic

coupling

The transmission and reflection of probe light from the
two-dimensional atomic cloud can be described in terms
of Maxwell equations. In particular, the dipole polariza-
tion of the atoms provides a source term for probe electric
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field Ep at ωp: for the positive frequency parts, one has
in the paraxial approximation with respect to the z axis:

(∆ + k2p) Ep = −
k2p
ǫ0

Pp, (47)

where kp = ωp/c.
Within a perturbative picture, we need to calculate the

mean atomic polarization Pp induced by the unperturbed
laser fields. In terms of the three-dimensional atomic field
operators, this reads

Pp(r) = dae 〈Ψ̂†
a(r) Ψ̂e(r)〉. (48)

After adiabatic elimination, as shown in the Appendix
B, the atomic field in the excited state can be written in
terms of the atomic field operator χ̂3D in the coupled |C〉
state,

χ̂3D(r, t) = 〈C(r, t)|a〉 Ψ̂a(r, t)+ 〈C(r, t)|b〉 Ψ̂b(r, t) (49)

as

Ψ̂e ≃
Ωc

2(δ + iΓ/2)
[1 + |Ωp/Ωc|2]1/2 χ̂3D + Γ1/2B̂e. (50)

From the explicit form of the noise term B̂e given in the
Appendix B, it is immediate to see that it gives a zero
contribution to the mean in Eq.(48). Since the atoms
are mostly in the uncoupled |NC〉 state, we can approx-
imate the atomic field Ψa in the |a〉 state by its |NC〉
component. To lowest order in Ωp/Ωc we then have

Pp(r) ≃
daeΩc

2(δ + iΓ/2)
〈φ̂†3D(r) χ̂3D(r)〉. (51)

The next step is to perturbatively evaluate the field χ̂3D

that is created in the coupled |C〉 state by the motional
coupling [43] of |C〉 to |NC〉. The details of the procedure
are given in the Appendix B. To first order in Ωp/Ωc and
for the magic choice Eq.(23) of ∆c, one obtains after
adiabatic elimination

χ̂3D ≃ −4~(δ + iΓ/2)

m|Ωc|2
∇ φ̂3D · ∇ Ωp

Ωc
+ Γ

′1/2B̂χ. (52)

An explicit expression for the noise term B̂χ is given in
the Appendix B: again, the noise term has a zero ex-
pectation value and does not contribute to the optical
polarization. The final form of the optical polarization
in terms of the atomic density and current operators (17)
and (15) reads:

Pp(r) = −4 |dae|2
~ |Ωc|2

×

× (kp − kc) ·
[

〈j3D(r)〉+ ~

2im
∇〈n3D(r)〉

]

Ep(r), (53)

where the Rabi frequency of the probe beam has been
eliminated in favor of the electric field using the defi-
nition −deaEp = ~Ωp/2 and the detuning δ has disap-
peared from the formula. The first term proportional to

the atomic current operator has a simple semi-classical
interpretation in terms of the reduced group velocity in
the Electromagnetically Induced Transparency regime,
as anticipated in [41, 42]: in this regime, the refractive
index strongly depends on the Raman detuning, which in
turn depends on the atomic speed because of the Doppler
effect.
However, the expression (53) differs from the semi-

classical one that was used in [42] in two ways. First,
the current operator in Eq.(53) differs from the physical
current of atoms by the gauge field

jphys = j3D − 1

m
n3D A3D. (54)

As the proposal in [42] addressed a pre-existing current
profile and the weak probe beam induced a vanishingly
small gauge field, the difference was irrelevant in that
case. Here, on the contrary, the mean current is itself
proportional to the gauge field so that the difference be-
tween the two operators really matters. Second, the ex-
pression (53) contains an extra term proportional to the
average density gradient. In contrast to the first term,
this one is purely imaginary. As a result, it only affects
the intensity of the transmitted light via a combination
of absorption and/or amplification effects. In particular,
as it does not induce any phase shift on the light, it does
not interfere with the proposal of [42].

B. Extracting fn from transmitted light

In order to calculate the modification δEp induced by
the atoms on the transmitted electric field of the probe,
one has to insert the polarization (53) as a source term
into the Maxwell equation (47). Within a standard ap-
proximation, we can neglect diffraction effects stemming
from the in-plane part of the Laplace operator in (47)
and integrate the z dependence across the atomic cloud.
Taking into account the appropriate boundary conditions
for δEp, this leads to the expression

δEp(x, y, z) ≃ eikpz
ikp
2ǫ0

∫ ∞

−∞

dz′ e−ikpz
′ Pp(x, y, z

′) (55)

for the transmitted field in the z > 0 region. In order
for the approximation to be accurate, z has to be much
larger than the thickness azho of the atomic pancake, but
at the same time much smaller than the diffraction length
kp/q

2, where q is the characteristic wavevector of the in-
plane modulation of the atomic density and current.
Along z, the atomic field varies as the harmonic oscil-

lator ground state wavefunction φ0(z), see Eq.(19). Per-
forming the integral over z′, this gives the final expression
for the variation of the transmitted field

δEp(r) =
2ikp |dae|2
~ǫ0 |Ωc|2

kc ·
[

〈j(r)〉 + ~

2im
∇〈n(r)〉

]

Ep(r)
(56)



11

in terms of the two-dimensional density n(r) and current
j(r) operators. The first contribution proportional to the
atomic current gives a phase shift, while the second con-
tribution proportional to the atomic density gradient is
responsible for absorption and amplification of the probe
beam.
The atomic current profile created by the gauge field

is evaluated using the linear response formulas (3) and
(4) as discussed in detail in the previous sections. The
gauge field is assumed to be switched on slowly enough
as compared to the characteristic frequencies of all the
excitation modes of the gas at wavevector q. Within the
linear response regime, the contribution to the current
due to the spatially modulated gauge field at q may be
isolated by a suitable combination of measurements with
different values of Ω±

p , which gives

〈j〉2(r) =
~ρkc

mq|Ωc|2
(q cosα+ fnez × q sinα)

×
(

Ω+
p Ω

−∗
p eiq·r +Ω+∗

p Ω−
p e

−iq·r
)

e−2|r−r0|
2/w2

, (57)

where r is now in the xy plane and α is the oriented
angle that kc makes with q [27]. Inserting this expression
into (56) and recalling the form (7) of the incident probe
field, one can extract the phase shift experienced by the
central part of the probe beams after crossing the atomic
pancake,

∆φ±2 =
6π~ρ

m

|Ω∓
p |2

|Ωc|4
BΓ [cos2 α+ fn sin

2 α], (58)

where we have assumed kp ≃ kc. The total decay rate
of the e state by spontaneous emission is indicated by
Γ and B is the branching ratio for the decay to the a
state, so thatBΓ = |dae|2k3c/(3π~ǫ0). As we have already
mentioned above, the density gradient term in (56) only
introduces an intensity modulation and is not responsible
for any phase shift.
From a nonlinear optics point of view, the phase shift

(58) can be interpreted as arising from a χ(3) optical non-
linearity of opto-mechanical origin similar to the one that
was demonstrated in the experiment [44]: the nonlinear
modulation of the optical response of the atoms is deter-
mined by the mechanical distortion of the cloud by the
optical forces.
Inserting into (58) the values of Table I for the 87Rb

case, for the first choice of level scheme reported in the
Appendix A, one has a branching ratio B = 1/4 and one
finds a small, yet appreciable phase shift on the order of

∆φchoice 1
2 ≃ 6 · 10−4 × [cos2 α+ fn sin

2 α]. (59)

For the second choice of level scheme in the Appendix
A, the branching ratio is slightly larger, B = 1/3, but
for the compromise choice Eq.(A24) |Ωc|2/Γ2 is larger so
that one finds a smaller phase shift

∆φchoice 2
2 ≃ 3 · 10−4 × [cos2 α+ fn sin

2 α]. (60)

In addition to the phase shift of the transmitted beam
that we have discussed so far, Bragg diffraction on the
spatially modulated current profile produces a pair of ad-
ditional beams of in-plane wavevector respectively±3q/2
via a sort of four-wave mixing process. The relative in-
tensity of these beams as compared to the incident probe
beams is of the order of |∆φ2|2. For transverse gauge
fields such that q ·kc = 0 the contribution of the induced
density gradient term of (56) vanishes by symmetry. In
the case of longitudinal gauge fields, the relative correc-
tion is on the order of qξ.

C. Current fluctuations and the angular

distribution of scattered light

All the calculations presented in the previous subsec-
tions aimed at evaluating the expectation value of the
transmitted field amplitude. At this level of the theory,
we were allowed to describe the probe beam as a coher-
ent, classical field and we could neglect the fluctuations
around the expectation value of both the light field ampli-
tude and the atomic current and density operators. The
formalism can be straightforwardly extended to quantum
optical fields so to include the fluctuations of the atomic
density and current. This is crucial when one aims at
investigating the spontaneous scattering of light off the
current fluctuations in the atomic gas. In this subsec-
tion, we shall in particular show how information on the
normal fraction of the gas can be inferred from the an-
gular distribution of scattered light. We shall make the
approximation of replacing temporal derivatives of the
electromagnetic field ∂tE by −ickpE in Maxwell’s equa-
tion. In particular, this misses retardation effects in the
expression of the scattered fields in terms of the atomic
dipoles, which is accurate since the system size is much
smaller than c/Γ.

z

x

k
p

k
scθ

sc

FIG. 5: Scheme of the scattering geometry under exami-
nation. Probe light is incident at wavevector kp = kpez

and the scattered light is collected at a wavevector ksc =
(k2

p −Q2)1/2 ez +Q.

We consider the geometry sketched in Fig.5: a single
Gaussian probe beam is incident onto the atoms with a
wavevector kp exactly orthogonal to the atomic plane,
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waist w centered at r0 and a weak peak amplitude E0
p .

Inserting this form into (56) and taking the Fourier trans-
form along the xy plane, one obtains the following opera-
tor equation for the scattered field component at in-plane
wavevector Q [47],

E(Q, z) ≃ 2i kp |dae|2
ǫ0 ~ |Ωc|2

π w2 E0
p

∫

d2q

(2π)2
e−q2w2/4 e−iq·r0

×
{

kc ·
[

jQ−q +
~(Q− q)

2m
nQ−q

]}

eikz(Q) z . (61)

Here, jQ and nQ are the spatial Fourier transforms of
the two-dimensional current j(r) and density n(r) opera-
tors; the Fourier transform of a product of two functions
has been rewritten in terms of the convolution of their
Fourier transforms. The z component of the propaga-
tion wavevector is determined by the photon dispersion
as kz = (k2p −Q2)1/2.

The intensity of the scattered light at in plane wavevec-
tor Q is quantified by [47]

〈E†(Q)E(Q)〉 =
[

2πkp |dae|2 w2 |E0
p |

ǫ0 ~ |Ωc|2

]2

×
∫

d2q

(2π)2

∫

d2q′

(2π)2

〈{

kc ·
[

j
†
Q−q +

~(Q− q)

2m
n†
Q−q

]}

×
{

kc ·
[

jQ−q′ +
~(Q− q′)

2m
nQ−q′

]}〉

× ei(q−q′)·r0e−(q2+q′2)w2/4 (62)

Since the system size is much larger than the waist w
of the probe beam, we can for simplicity assume an ef-
fective translational symmetry along the xy plane. As
a consequence, the correlation function that appears in
(62) has a delta-function shape around equal wavevectors
Q− q = Q− q′ (see e.g. the next Eq.(63)).

In contrast to the schemes proposed in the previous
sections, where the duration 1/γ of the experiment had
to be at least on the order of 1/(csq), the light scattering
experiment discussed here can be performed on a much
faster time scale, only limited by the characteristic rate
Γ′ of the internal atomic evolution time, Eq.(B7). As
a result, the experiment can be performed in the small
wavevector region Qξ ≪ 1 where the contribution to (62)
of the terms involving the density fluctuations nQ is neg-
ligible [63]. Of course, efficient isolation of the scattered
light from the incident beam requires that the scatter-
ing angle θsc ≃ Q/kp be much larger than the diffraction
cone of the probe beam, i.e. Q≫ 1/w.

The instantaneous correlation function of the current
in the y direction parallel to kc can be evaluated applying
the fluctuation-dissipation relation (45) to the current

operator jq in an infinite space geometry. This gives

〈j†Q,y jQ′,y〉 = (2π)2 δ2(Q−Q′)kBT Re[χyy(Q
′, ω = 0)]

≃
Q→0

(2π)2 δ2(Q−Q′)
kBT ρ(r0)

m

× [cos2 φsc + fn sin
2 φsc], (63)

where φsc is now the azimuthal angle between kc and
Q. Inserting this expression into (62) and taking the
thermodynamic limit, one gets to the final expression for
the scattered intensity in the momentum Q-space [47],

〈E†
QEQ〉 =

[

kp kc |dae|2
ǫ0 ~ |Ωc|2

]2

2πw2 |E0
p |2

× kBT ρ(r0)

m
[cos2 φsc + fn sin

2 φsc]. (64)

To estimate the relative intensity of scattered light, it
is useful to rewrite the expression (64) for the momen-

tum space intensity 〈E†
QEQ〉 in terms of physically more

transparent quantities such as the angular distribution
I(θsc, φsc) of scattered intensity. For small scattering
angles |θsc| ≪ 1, the infinitesimal solid angle and mo-
mentum space volume elements are related by dΩ =
sin θsc dθsc dφsc ≃ θsc dθsc dφsc ≃ d2Q/k2p, so that

Isc(θsc, φsc) ≃
k2p

(2π)2
〈E†

QEQ〉. (65)

This immediately leads to the final expression for the
angular distribution of the scattering intensity [47]

Isc(θsc, φsc)

Iinc
=

[

k2p kc |dae|2
πǫ0 ~ |Ωc|2

]2
kBTρ(r0)

m
×

[cos2 φsc + fn sin
2 φsc] (66)

in units of the incident intensity,

Iinc =

∫

d2r |Ep(r)|2 =
πw2

2
|E0

p |2 (67)

From this expression, it is immediate to see that informa-
tion on the normal fraction of the gas can be retrieved
from the azimuthal dependence of the scattered inten-
sity. In terms of the spontaneous emission decay rate Γ
of the e state and the branching ratio B, Eq.(66) can be
rewritten in the more transparent form [47],

Isc
Iinc

=
9

2π

k2BTTd
~2

B2Γ2

|Ωc|4
[cos2 φsc + fn sin

2 φsc]. (68)

To estimate the feasibility of the proposed light scat-
tering experiment, we now derive an upper bound on
the number of useful scatterered photons in a single shot
of duration τ . Calculating the Poynting’s vector of the
probe beam, and using (67), we find an incident flux of
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probe photons Φinc = (kpw)
2|Ω0

p|2/(12BΓ). Integrating
in (66) the term proportional to fn over solid angles in
the cone θsc ≤ 1/(kpξ), we obtain the flux Φuse

sc of use-
ful scattered photons. As a maximal duration, we take
τ = 1/Γnon−ad

fluo where the fluorescence rate of the atoms
due to motional coupling between the non-coupled and
the coupled states is given by Eq.(A2) (with 2|Ω+

p |2 re-

placed here with |Ω0
p|2). The number of single shot useful

scattered photons is thus bounded by

Nuse
ph ≤ 3πB

16

kBT

~ωz
ρw2fn

1

(kcξ)2
. (69)

Remarkably the Rabi frequencies Ωc and Ω0
p have can-

celled out in the ratio of the scattered flux to the fluores-
cence rate. One recognizes in the right-hand side of (69)
the effective mean number of atoms N eff

at = πρw2fn/4 in
the normal component illuminated by the probe beam,
as in Eq.(27). There is however a severe geometrical re-
duction factor, 1/(kcξ)

2, due to the small aperture of the
useful scattering cone. For the parameters of Table I,
with B = 1/3, and taking a waist w = 30ξ and fn = 0.2
as in Fig.4, we find N eff

at ≃ 1400, 1/(kcξ) ≃ 0.15, which
leads to Nuse

ph ≤ 5. This remains accessible to current

quantum optics experiments. For kBT/~ωz fixed, the
upper bound in Eq.(69) scales as ρ2, since 1/ξ2 scales as
ρ, so that larger values of photon numbers for a given
waist may be obtained by increasing the density ρ of the
bidimensional Bose gas.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have proposed and validated two
methods to measure the superfluid fraction of a quantum
fluid of ultracold atoms. The idea is to apply an artificial
gauge field to the atoms with spatial oscillations within
a localized envelope and to detect, within the linear re-
sponse regime, the current pattern that is generated in
the fluid. This can be done either in a mechanical way by
measuring the energy that is deposited in the fluid at the
end of a gauge field sequence, or in an all-optical way by
observing the phase shift experienced by the same laser
beams that are used to generate the artificial gauge field
or the angular pattern of scattered light.
The interest of the proposed methods is twofold: they

do not require that the gas reaches thermal equilibrium
in presence of the gauge field, and furthermore they give
the possibility of reconstructing in a local way the spa-
tial profile of the superfluid fraction of a trapped gas,
independently from the presence or the absence of a Bose-
Einstein condensate. This last feature is attractive in the
study of the Berezinskii-Kosterlitz-Thouless transition to
a superfluid state in two-dimensional Bose gases and of
the superfluidity properties of Bose gases in disordered
environments. It would also be interesting to extend the
method to the study of superfluidity in multi-component
atomic fermionic gases, which may require identification
of suitable level schemes.
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Appendix A: Experimental issues

2D density ρλ2
c = 9 ρ = 14µm−2

degeneracy
temperature

kBTd ≡ 2π~2ρ/m Td = 500 nK

temperature T = 0.1 Td T = 50 nK

2D interaction
constant

g̃ = mg/~2 g̃ = 0.1

transverse
confinement

~ωz = 0.23 ~2k2
c/m

= 0.16 kBTd

ωz
2π

= 1.65 kHz

healing length ξ ≡ (ρg̃)−1/2 ξ = 0.84µm

reduced gauge
field amplitude

ǫ̃gauge ≡
ǫgauge

(mkBTd)
1/2 ǫ̃gauge = 0.15

probe beam
Rabi frequencies

(|Ω+
p |2+|Ω−

p |2)
t=0+

2|Ωc|2
0.09

gauge field
switch-off rate

γ = 0.2 csq
with q = 1/ξ

1/γ = 4.8 ms
q = 0.15kc

first choice second choice

coupling Rabi frequency
|Ωc|

2/Γ2
0.21 0.5

minimum detuning
δ/Γ

1 1.5

fluorescence probability
Pfluo

0.22 0.045

spurious deposited energy
∆EU/∆E2 (for fn = 0.2)

33 0.16

TABLE I: Suggested values of the physical parameters for an
experimental measurement of the normal fraction of a two-
dimensional Bose gas of 87Rb using an artificial gauge field
produced by laser (coupling and probe beam) excitation on
the D1 line at λc = 795 nm. The first block characterizes the
thermal equilibrium of the gas. The second block determines
the gauge field. The third block deals with the issues related
to the spontaneous emission and the spurious lightshift. The
three-dimensional scattering length is estimated to be a3D =
100 Bohr radii and is related to the two-dimensional coupling
constant by Eq.(20). A useful relation is mΓ/(~k2

c ) ≃ 792.

In this Appendix we review some issues that may hin-
der an experimental implementation of our proposal. Our
attention will be concentrated onto the most relevant case
of 87Rb atoms considered in the experiment of [45, 46]
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FIG. 6: Scheme of the internal levels of 87Rb atom involved in the D1 transition (J = 1/2 → J ′ = 1/2). The hyperfine
splitting of the ground (excited) state is ∆hf,g = 2π × 6.834GHz (∆hf,e = 2π × 814MHz). The natural linewidth of the
excited state is Γ = 2π × 5.75MHz. Narrow (thick) lines indicate transitions that are induced by the coupling (probe)
beams. Solid (dashed) lines indicate the desired (main undesired) transitions. The relevant dipole matrix elements are shown
in units of the reduced dipole element 〈J = 1/2||er||J ′ = 1/2〉 of the D1 line, in boldface for the desired transitions and
in italic for the undesired ones. Our first choice for the Λ system |a〉, |e〉, |b〉 states is shown in the left (a) panel, with
|a〉 = |F = 1,mF = −1〉, |e〉 = |F ′ = 2, mF ′ = −1〉, |b〉 = |F = 2, mF = −2〉. The second choice is shown in the right (b) panel,
with |a〉 = |F = 2, mF = −2〉, |e〉 = |F ′ = 2,mF ′ = −2〉, |b〉 = |F = 1,mF = −1〉. Note that we have taken the y axis as the
quantization axis of angular momenta.

and, in a two-dimensional context, in [4]. The level struc-
ture of this atomic species is sketched in Fig.6. A possibly
important advantage of this atom in view of an experi-
mental implementation of the present proposal is that
the singlet and triplet scattering lengths of ground state
atoms are equal within a few percent [49]. We thus ex-
pect that all scattering lengths between arbitrary F = 1
or F = 2 sublevels of the ground state have all almost the
same values [50], which leads to gaa ≃ gab and therefore
to a suppression of the spatio-temporal variation of the
effective interaction constant g3D(r, t) defined in (18). In
the deposited energy method proposed in Sec.IV, this is
important to reduce emission of phonons in the atomic
gas by the temporal modulation of the interaction con-
stant. In the optical detection scheme of Sec.V, this is
also important to suppress the contribution of the in-
teraction term to the field χ̂3D and then to the optical
polarization. Other atomic species such as Yb [17] or
metastable He [18, 19] and/or different laser beam con-
figurations [20, 21] are expected to be useful for other
purposes, e.g. to suppress spontaneous emission and/or
generate artificial gauge fields with different geometries
[64]

Two possible choices for the three states |a〉, |b〉, |e〉
forming the Λ system on the D1 line of 87Rb are con-
sidered, as sketched in the two panels of Fig.6. For each
choice, we determine the undesired effects (spontaneous
emission, lightshifts, Raman leaks) stemming from de-
viations from the perfect adiabatic following of the non-
coupled state by the moving atoms and from optical tran-
sitions to other levels not included in the Λ system. An

eye will also be kept on trying to maximize the e to a
branching ratio so as to reinforce the optical signal of
Sec.V. To minimize spontaneous emission within the low
saturation regime, we shall allow for a small detuning δ
of both the probe and coupling beam carrier frequencies
from the |a〉 → |e〉 and |b〉 → |e〉 transitions, respectively.
The detuning of the two beams is taken in a way to al-
ways fulfill the magic Raman condition (23).

a. First choice

The coupling beam propagates along the y axis and is
taken with a σ+ polarization (along y axis). The probe
beam is taken as linearly polarized along y. For the three
atomic levels forming the Λ system, we take |a〉 ≡ |F =
1,mF = −1〉, |b〉 ≡ |F = 2,mF = −2〉 and |e〉 ≡ |F ′ =
2,mF ′ = −1〉 [65]. This scheme of levels and lasers is
illustrated in the left panel (a) of Fig.6.
To estimate the importance of the non-adiabatic cou-

pling between the |NC〉 and the |C〉 states due to the
atomic motion, we can evaluate the ratio ρC/ρNC of the
two-dimensional densities in the two states close to the
center of the laser spot. This is done using the explicit
formula (52) for the field in the |C〉 state [66]. Using
the fact that for quasi-2D samples the gradient is mostly
along the harmonically trapped z direction and assuming
Ω+

p = Ω−
p , we obtain for kp ≃ kc:

ρC
ρNC

≃
∣

∣

∣

∣

4(δ + iΓ/2)kcΩ
+
p

Ω3
c

∣

∣

∣

∣

2
~ωz

m
. (A1)
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Accuracy of the adiabatic approximation requires that
this ratio is much smaller than unity.
The finite population that is present in the |C〉 state as

a consequence of non-perfect adiabaticity is responsible
for the spontaneous emission of photons at a single atom
rate:

Γnon−ad
fluo = Γ′ ρNC

ρC
= 4Γ

|Ω+
p |2

|Ωc|4
~k2c
m

ωz, (A2)

where the fluorescence rate Γ′ of the coupled state |C〉 is
defined by Eq.(11) and a spatial average has been per-

formed. Remarkably, Γnon−ad
fluo does not depend on the

detuning δ.
Other contributions to the fluorescence rate come from

non-resonant excitation processes. Dominating among
these are the excitation of the |a〉 state to the states |F ′ =
1 or 2,mF ′ = 0〉 by the coupling beam at a rate

Γc
fluo = Γ

|Ωc|2
4∆2

hf,g

, (A3)

and the excitation of the non-coupled state |NC〉 to
|e′〉 = |F ′ = 1,mF ′ = −1〉 by the total probe plus cou-

pling field with an effective Rabi frequency −2Ωp/
√
3,

which results in the fluorescence rate on the parasitic Λ′

configuration |a〉 → |e′〉 → |b〉:

ΓΛ′

fluo =
2

3
Γ
|Ω+

p |2
∆2

hf,e

. (A4)

In these expressions, we have taken into account the tab-
ulated hyperfine dipole matrix elements of the various
optical transitions, and we have introduced the hyperfine
splittings ∆hf,g and ∆hf,e given for 87Rb in the caption
of Fig.6. Limiting ourselves to the most relevant regime
where |Ω+

p /Ωc|2 > 1/100, we see that in the present case

of 87Rb atoms, ΓΛ′

fluo ≫ Γc
fluo.

The total fluorescence rate can then be approximated
as the sum of ΓΛ′

fluo and Γnon−ad
fluo . For a given value of the

gauge field (proportional to |Ω+
p /Ωc|2), the total fluores-

cence rate is minimized to

Γmin
fluo ≃ 4

√
6

3

∣

∣

∣

∣

Ω+
p

Ωc

∣

∣

∣

∣

2
Γ

∆hf,e

(

~k2cωz

m

)1/2

(A5)

by a careful choice of the coupling beam Rabi frequency

∣

∣Ωopt
c

∣

∣

2
= ∆hf,e

√

6~k2c ωz

m
=

√
3∆hf,e

2π1/2

~kc
ma3D

g̃. (A6)

Here, we have expressed ωz in terms of the three-
dimensional scattering length a3D and the reduced two-
dimensional coupling constant as given by Table I and
Eq.(20). Inserting the actual parameters of the 87Rb
atom, and taking g̃ = 0.1, we obtain |Ωopt

c |2/Γ2 ≃ 0.21.
It remains to adjust the detuning δ to be in the weak
saturation regime,

s ≡ |Ωc|2/2
|δ + iΓ/2|2 .

1

10
. (A7)

Let us take the same values of the gauge field se-
quence as in Fig.4: γ/csq = 0.2 and qξ = 1 and
ǫgauge ≃ 0.15(mkBTd)

1/2. This choice of ǫgauge leads to

|Ω+
p (0

+)/Ωc|2 ≃ 0.03(ρλ2c)
1/2: as this quantity has to be

much smaller than 1 in order for the gauge field descrip-
tion of Sec.III to be valid, it is safe to impose ρλ2c < 10.
Integrating over the exponential switch-off ramp of Ωp

and eliminating g in terms of ωz and a3D, this gives for
the total fluorescence probability per atom,

Pfluo =

√
6

2

Γ

∆hf,e

(

kBTd~ωz

ρ2g2

)1/2

=

√
6

4

Γ

∆hf,e

1

(ρa23D)1/2
.

(A8)
For 87Rb with the choice ρλ2c = 9, we obtain the not very
impressive result,

Pfluo ≃ 0.20 . (A9)

For the sake of completeness, it is important to note that
for this choice, kBT = 0.1kBTd remains smaller than ~ωz,
so that the Bose gas retains a two-dimensional character.
The existence of other atomic levels in addition to the

ones strictly needed to create the gauge field is respon-
sible not only for dissipative effects such as fluorescence,
but also creates reactive effects such as a spatially and
temporally-dependent light shift of the non-coupled state
|NC〉. Among the dominating processes, the parasitic Λ′

scheme creates a modulated light-shift potential

UΛ′

(r) =
~ |Ωp(r)|2
3∆hf,e

. (A10)

A shift of the same order of magnitude arises from the
coupling of the a state to the |F ′ = 2 or 1,mF ′ = 0〉 by
the coupling beam.
An estimate of the energy deposited in the system by

the UΛ′

term as compared to the one ∆E2 due to the
gauge field can be obtained with Bogoliubov theory: Us-
ing Eq.(D15) with U0 = ~(Ω+

p Ω
−∗
p )(0+)/(3∆hf,e), η = γ

and Q = q, one gets for ~γ ≪ ǫq ≪ ρg:

∆EUΛ′

∆E2
=

|Ωc|4
9fn(kccs)2∆2

hf,e

. (A11)

For actual parameters, the energy change due to ∆UΛ′

turns out to be non negligible. For the optimal value of
the Rabi frequency Ωopt

c from Eq.(A6), the ratio is

∆EUΛ′

∆E2
=

2~ωz

3fn ρg
. (A12)

For 87Rb, one finds the discouraging result
∆EUΛ′ /∆E2 ≃ 600g̃/(ρλ2cfn), which remains much
larger than unity even for ρλ2c = 9.
Even if the deposited energy by the spurious potential

UΛ′

is much larger than the desired one of the gauge field,
a suitable extrapolation procedure may take advantage of
the different dependence on the laser intensities to isolate
the effect of the gauge potential. An alternative possibil-
ity is to exploit the fact that the ∆EΛ′

U contribution does
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not depend on the direction of q: Within the regime of
linear response, this contribution can therefore be elimi-
nated by taking the difference of the energy changes for
respectively longitudinal and transverse gauge fields.

Another possible nuisance is the existence of stimu-
lated Raman processes that may out couple the non-
coupled |NC〉 state to atomic ground state sublevels |c〉
other than |a〉 and |b〉, via excited state sublevels other
than |e〉 [67]. One may however check that for the pro-
posed scheme these leaky Raman coupling are detuned
from resonance by a frequency amount at least ∆hf,g in
absolute value and therefore harmless.

b. Second choice

Another possible choice for 87Rb atoms is to take a
σ− polarization for the coupling beam propagating along
the y axis. The probe beam is again linearly polarized
along y. The atomic levels forming the Λ system are now
|a〉 ≡ |F = 2,mF = −2〉, |b〉 ≡ |F = 1,mF = −1〉 and
|e〉 ≡ |F ′ = 2,mF ′ = −2〉. The strong two-body losses
that are generally experienced by the upper hyperfine
manifold of the ground state are here suppressed by the
choice of a maximal mF state for |a〉: as collisions be-
tween ultra-cold atoms mostly occur in the s-wave scat-
tering channel, conservation of the sum of the mF ’s then
prevents transition to the lower hyperfine manifold.

The fluorescence rate per atom due to the motional
coupling between |NC〉 and |C〉 is still given by Γnon−ad

fluo
as defined in Eq.(A2). As there is no longer any parasitic
Λ′ system, the fluorescence due to laser excitation of |a〉
or |b〉 to excited state sublevels other than |e〉 is now dom-
inated by the transitions |b〉 → |F ′ = 1 or 2,mF ′ = −1〉
due to the probe beam. Thanks to the reduced occu-
pation probability ≃ |Ωp|2/|Ωc|2 of sublevel |b〉 in the
atomic state |NC〉 and to the larger hyperfine splitting
∆hf,g of the ground state, the fluorescence rate is strongly
suppressed. After spatial averaging it amounts to

Γp
fluo =

3

2
Γ

|Ω+
p |4

∆2
hf,g|Ωc|2

. (A13)

Other fluorescence processes on the D2 line (e.g. the
transition |a〉 → |J ′ = 3/2, F ′ = 3,mF ′ = −3〉 excited
by the coupling beam) are several orders of magnitude
weaker than Γp

fluo thanks to the huge fine structure split-
ting of (2π) 7 THz.

Since the two terms in the sum Γnon−ad
fluo + Γp

fluo expe-
rience different switch-off functions e−γt and e−2γt, we
first integrate over time to calculate the total fluores-
cence probability, and then optimize over the coupling
beam intensity. The minimal fluorescence probability

Pmin
fluo =

2
√
3

γ

Γ

∆hf,g

∣

∣

∣

∣

Ω+
p (0

+)

Ωc

∣

∣

∣

∣

3 (
~k2c
m

ωz

)1/2

(A14)

is obtained for a coupling beam Rabi frequency such that

|Ωopt
c |4 =

16

3

|Ωc|2
|Ω+

p |2
∆2

hf,g

~k2c
m

ωz. (A15)

Introducing the reduced quantities γ̃ = ~γ/(ρg) and
ǫ̃gauge = ǫgauge/(mkBTd)

1/2, and eliminating ωz in terms
of g and a3D, we finally obtain

Pmin
fluo =

(

9

128π

)1/4
ǫ̃
3/2
gauge

γ̃

Γ

∆hf,g

λc
a3D

(ρλ2c)
−1/4. (A16)

For the parameters of Table I, in particular ρλ2c = 9, one
finds |Ωopt

c |2/Γ2 ≃ 5.5 so that a detuning |δ| > 5Γ is
required to remain in the weak saturation regime. This
resulting probability of spontaneous emission per atom
in the deposited energy measurement is very small,

Pfluo ≃ 0.008. (A17)

As compared to the first one, this second choice then
provides a strong reduction of the spontaneous emission
rate by a factor almost 30.
Another advantage of this second choice is that there

are no longer resonant leaky Raman processes and that
lightshift effects are potentially smaller thanks to the ab-
sence of the parasitic Λ′ scheme. The probe beam on the
|b〉 → |F ′ = 1 or 2,mF ′ = −1〉 transitions produces a
lightshift which, after average in the |NC〉 state, leads to
the spurious potential

Up(r) = − ~|Ωp|4
4|Ωc|2∆hf,g

. (A18)

The amount of energy that is deposited in the gas by
this spurious potential can be estimated using twice
Eq.(D15), first with U0 = −~|Ω+

p (t = 0+)|4/(|Ωc|2∆hf,g),
η = 2γ, Q = q, and second with U0 four times smaller,
η = 2γ, Q = 2q. Neglecting 2~γ with respect to ǫq, and
taking qξ = 1, we obtain the following estimate for the
spurious deposited energy

∆EUp =
133

160

N

ρg

~
2|Ω+

p (0
+)|8

|Ωc|4∆2
hf,g

. (A19)

For the coupling beam Rabi frequency (A15) minimizing
spontaneous emission, the ratio of the energies deposited
by the gauge field and the spurious potential amounts to:

∆EUp

∆E2
=

133
√
2

960π3/2

g̃ ǫ̃gauge
fn

λc
ρ1/2a23D

. (A20)

For g̃ = 0.1 and ǫ̃gauge = 0.15 and using the 87Rb pa-
rameters summarized in Table I, one finds the still quite
unfortunate result

∆EUp

∆E2
≃ 4

fn
≫ 1. (A21)
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A possibility to overcome this difficulty and separate ∆E2

from ∆Up is to use the same strategy proposed to sep-
arate ∆E2 from ∆E1 by exploiting the different depen-
dence of the two quantities on the ratio |Ω+

p /Ω
−
p |(0+).

Another option is to look for a compromise value of
|Ωc|2/Γ2 that allows to effectively suppress the lightshift
potential without introducing a too large spontaneous
emission rate.
To this purpose, we fix ǫ̃gauge = 0.15, γ = 0.2ρg/~,

qξ = 1, g̃ = 0.1 and we take as free parameters X = ρλ2c
and Y = |Ωc|2/Γ2. Inserting the relevant parameters for
87Rb as in Table I, we obtain

Pfluo =
6.86 · 10−2

X1/2Y
+ 7.46 · 10−4Y, (A22)

∆EUp

∆E2
=

0.132Y 2

fn
. (A23)

A reasonable compromise between the two competing ef-
fects is to choose X = 9 and Y = 0.5, which corresponds
to

ρλ2c = 9 and
|Ωc|2
Γ2

= 0.5 . (A24)

As a result, for the same parameters T/Td = 0.1 and
fn = 0.2 used in the classical field simulations of section
IV, we obtain the quite encouraging values

Pfluo ≃ 0.045 (A25)

∆EUp

∆E2
≃ 0.16 . (A26)

To conclude, we have checked that at the resulting tem-
perature kBT/~ωz = 0.62 the Bose gas retains a two-
dimensional and that the validity of the gauge field model
of Sec.III is guaranteed by the resulting probe beam Rabi
frequency |Ω+

p (0
+)|2/|Ωc|2 = 0.03X1/2 = 0.09 ≪ 1.

Appendix B: Dum-Olshanii theory for many-body

systems

In a seminal work [16], Dum and Olshanii have shown
that an effective gauge field appears in the theoreti-
cal description of a three-level atom interacting with a
laser field on a Λ transition. Here we use the formalism
of the Quantum Stochastic Differential Equations (see
e.g.§8.3.2 of [25]) to extend this idea to an interacting
Bose gas in second quantized form.
We start with the master equation for the density oper-

ator σ̂ of the many-body system, assuming for simplicity
that spontaneous emission corresponds to a net loss of
atoms,

d

dt
σ̂ =

1

i~
[H, σ̂]

+ Γ

∫

d3r

[

Ψ̂e(r)σ̂Ψ̂
†
e(r) −

1

2
{Ψ̂†

e(r)Ψ̂e(r), σ̂}
]

. (B1)

The Hamiltonian H is the sum of the single-particle ki-
netic and trapping terms, of the interaction terms (that
we formally model as local Dirac-delta interactions), of
the internal energy of the atomic excited state, and of
the coupling terms of the atoms to the laser fields.
Since the loss rate ~Γ greatly exceeds the kinetic, trap-

ping and interaction energies, we can neglect the external
dynamics of the excited state and write

H ≃
∫

d3r
∑

α=a,b

[

− ~
2

2m
Ψ̂†

α∆Ψ̂α + UΨ̂†
αΨ̂α

]

+

∫

d3r
[gaa

2
Ψ̂†2

a Ψ̂2
a +

gbb
2
Ψ̂†2

b Ψ̂2
b + gabΨ̂

†
aΨ̂

†
bΨ̂bΨ̂a

]

+

∫

d3r (−~δ)Ψ̂†
eΨ̂e

+

∫

d3r

[

~Ωp

2
Ψ̂†

eΨ̂a +
~Ωc

2
Ψ̂†

eΨ̂b + h.c.

]

. (B2)

As previously defined, δ is the common value of the
detuning of the probe and coupling beams from the
|a〉 → |e〉 and |b〉 → |e〉 transitions.
In a Heisenberg picture for the open atomic system,

the ground state atomic field operators Ψ̂α=a,b satisfy

the usual evolution equations i~∂tΨ̂α = [Ψ̂α, H ]. On the
other hand, conservation of the canonical commutation
relations of the fields and of the Hermitian conjugation
relation between Ψ̂α and Ψ̂†

α requires including a quan-

tum Langevin term F̂e in the evolution equation for the
excited state field Ψ̂e,

∂tΨ̂e =
1

i~
[Ψ̂e, H ]− 1

2
ΓΨ̂e + Γ1/2F̂e(r, t) . (B3)

Here, the quantum noise term F̂e is δ-correlated in
position and time, e.g. [F̂e(r, t), F̂

†
e (r

′, t′)] = δ(r −
r′)δ(t − t′), and we recall that the expectation value of
normally-ordered products of noise operators vanish, e.g.
〈F̂ †

e F̂e〉 = 0, since the bath does not provide an incoming
flux of e atoms.
The only non-zero contributions to the commutator in

Eq.(B3) originate from the excited state internal energy
and from the atom-laser coupling term. This latter term
can be expressed solely in terms of the atomic field op-
erator χ̂3D in the coupled internal state |C〉, as defined
in Eq.(49). Along the lines of [51], we formally integrate

[∂t + (−iδ + Γ/2)]Ψ̂e = Ŝ neglecting a transient of dura-
tion 1/Γ as

Ψ̂e(r, t) =

∫ +∞

0

dτe−(−iδ+Γ/2)τ Ŝ(r, t− τ). (B4)

The Rabi frequencies Ωc,p and the atomic field χ̂3D have
a negligible variation during 1/Γ and may be replaced
by their values at time t in the integrand. This leads to
Eq.(50) of the main text, where the noise term is defined

as B̂e(r, t) =
∫ +∞

0
dτ e−(−iδ+Γ/2)τ F̂e(r, t− τ).

As explained in section III, we are in a regime where
the atoms are mostly in the non-coupled state and the
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field χ̂3D in the coupled state is small and a perturba-
tion expansion in powers of χ̂3D can be performed. The
gauge field formalism discussed in Sec.III for the evo-

lution of the atomic field φ̂3D in the non-coupled state
[defined in Eq.(12)] is already recovered at zeroth order

in χ̂3D. From this zeroth order approximation of φ̂3D, it
is then easy to obtain the first order contribution to the
field χ̂3D that is required in Sec.V to evaluate the optical
polarization of the moving atoms.

From Eq.(12) the equation of motion for φ̂3D is

∂tφ̂3D =
1

i~
[φ̂3D, H ] +

∑

α=a,b

Ψ̂α∂t〈NC|α〉. (B5)

By the very definition of non-coupled state, the excited
state internal energy and the atom-laser coupling terms
give an exactly vanishing contribution to the commuta-
tor. In the rest of the Hamiltonian as well as in the
last sum in Eq.(B5), we can perform the approxima-

tion Ψ̂α ≃ 〈α|NC〉φ̂3D , which is accurate at zeroth or-
der in χ̂3D. After an integration by part and noting
that 〈NC|∂t|NC〉 and 〈NC|∇|NC〉 are purely imaginary

quantities, we find that up to this order φ̂3D follows a
purely Hamiltonian evolution governed by Eq.(13).
The equation of motion of χ̂3D has the form

∂tχ̂3D =
1

i~
[χ̂3D, H ] +

∑

α=a,b

Ψ̂α∂t〈C|α〉. (B6)

The commutator with the internal excited state energy
term introduces a Ψ̂e term, that we replace with Eq.(50):
in this way, both a noise term and a complex, position
dependent energy term −(iδ′ + Γ′/2)χ̂3D appear in the
equation. The real quantities δ′ and Γ′ are given by
Eq.(11) and correspond to lightshift and damping effects,
respectively.
Since ~Γ′ is much larger than the kinetic, trapping, in-

teraction and recoil energies of the atoms, we can neglect
these latter terms in the evolution equation of the coupled

state, and only keep the coupling to φ̂3D. This amounts
to keeping in Eq.(B6) only the contributions to the ki-
netic, trapping and interaction terms of the Hamiltonian

H that contain one single factor χ̂†
3D and an arbitrary

number of φ̂3D and φ̂†3D factors. In this way, we obtain

∂tχ̂3D ≃ −(iδ′ +
Γ′

2
)χ̂3D + φ̂3D〈C|[−∂t +

i~

2m
∆]|NC〉

+
i~

m
∇φ̂3D · 〈C|∇|NC〉 + 1

i~
Gφ̂†3Dφ̂23D + Γ

′1/2F̂χ (B7)

where we have introduced a complex position and time
dependent coupling constant

G = 〈C|a〉〈a|NC〉[(gaa − gab)〈NC|a〉〈a|NC〉 − a↔ b
(B8)

with the convention gba = gab. The noise term is de-
fined by F̂χ = −i|δ + iΓ/2|(Ω∗

c/|Ωc|)B̂e. Its correlation
properties are determined by the commutation relation

[F̂χ(r, t), F̂
†
χ(r

′, t′)] ≃ |δ+iΓ/2|2

Γ ei(t−t′)δ−Γ|t−t′|/2δ(r − r′).
Since we are working in a low saturation regime in which
Γ ≫ Γ′, the time dependent factor in front of δ(r − r′)

may be replaced with a Dirac of t − t′, so that F̂χ is in
practice a spatio-temporally delta-correlated noise.
The last step is to expand Eq.(B7) to first order in

Ωp/Ωc. Then (i) for gaa ≃ gab, the last contribution in
the right-hand side of Eq.(B7) vanishes [68], and (ii) for
the magic choice Eq.(23), the third contribution vanishes.
With the same adiabatic elimination technique adopted
for Ψ̂e and taking into account the fact that δ′ and Γ′

vary very slowly on the scale of 1/Γ′, we are finally led
to the final equation Eq.(52) with a noise term defined

by B̂χ(r, t) =
∫ +∞

0
dτe−[iδ′+Γ′/2](r,t)τ F̂χ(r, t− τ).

We complete the discussion by giving the back-action

of the field χ̂3D on the field φ̂3D, a back-action that was
already considered for a specific single atom geometry in

[43]. The linear coupling of φ̂3D to χ̂3D originates from
terms in the Hamiltonian that are linear in χ̂3D, leading
to

(

∂tφ̂3D

)

back
= χ̂3D〈NC|[−∂t +

i~

2m
∆]|C〉

+
i~

m
∇χ̂3D·〈NC|∇|C〉+ 1

i~
[Gχ̂†

3Dφ̂
2
3D+2G∗φ̂†3Dφ̂3Dχ̂3D].

(B9)

Expression of the back-action solely in terms of φ̂3D and
noise operators is obtained by replacing χ̂3D in the result-
ing equations of motion with its adiabatic approximation
derived from Eq.(B7). This leads in general to a lengthy
formula. For simplicity, we give the result to leading or-
der in Ωp/Ωc for gaa = gab, we neglect the contribution to
〈C|∂t|NC〉 of the time-dependence of the switch-off func-
tion f(t), and we use the specific form Ωp/Ωc considered
in this paper, so that

(

∂tφ̂3D

)

back
≃ − i~

2

m2

4(δ + iΓ/2)

|Ωc|2
∣

∣

∣

∣

Ωp

Ωc

∣

∣

∣

∣

2

×

× [(kp − kc) · ∇]2 φ̂3D + noise terms. (B10)

After reduction to the xy plane, the deterministic term

gives rise to two corrections to the evolution of φ̂3D: (i)
a complex position dependent energy shift,

~(δ′′ − iΓ′′/2) = −2(δ + iΓ/2)ωz
~
2k2c
m

|Ωp|2
|Ωc|4

, (B11)

and (ii) a complex correction to the mass along y, δmy =
8~k2c |Ωp|2(δ + iΓ/2)/|Ωc|4. ~δ′′ is the lightshift poten-
tial experienced by the non-coupled bidimensional field.
The spatial average of the fluorescence rate Γ′′ of the non-
coupled field coincides with the Γnon−ad

fluo fluorescence rate
previously discussed in (A2), as it should be. For the pa-
rameters of Table I, the reactive corrections δ′′ and δmy

are small provided that the detuning is not too large,
|δ/Γ| < 5. For instance, an estimate for the energy de-
posited by the ~δ′′ potential can be obtained from the Bo-
goliubov theory for a homogeneous system, see Eq.(D15),
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leading to

∆E~δ′′

∆E2
≈ 5 · 10−5

fn
(δ/Γ)2. (B12)

Appendix C: Derivation of the expression for the

deposited energy

We start from a two-dimensional system at thermal
equilibrium with no average current and we apply a gauge
field of the form

A(r, t) = f(t)ey|c+eiq·r/2 + c−e
−iq·r/2|2e−(r−r0)

2/(2σ2),
(C1)

where eα is the unit vector along direction α. The deriv-
able dimensionless envelope function f(t) is assumed to
be zero for t < 0 and to rapidly tend to zero for t→ +∞.
The coefficients c± have the dimension of the square root
of a momentum.
We are interested in evaluating the energy change of

the system from t = 0− to t = +∞ at the lowest order
in c±. We work in Schrödinger picture and we first use
the exact relations:

∆E ≡
∫ +∞

−∞

dt
d〈H(t)〉
dt

(C2)

=

∫ +∞

−∞

dt

∫

d2rA(r, t) · d
dt
〈j(r)〉(t), (C3)

where the second equality comes from a time-dependent
Hellmann-Feynman theorem and a temporal integration
by parts. Calculating 〈j(r)〉(t) by linear response theory
gives

∆E ≃
∫

R

dω

2π

∫

d2r

∫

d2r′ ω

Im





∑

α,β

χex
αβ(r, r

′;ω)Aα(r, ω)
∗Aβ(r

′, ω)



 , (C4)

where χex is the exact current susceptibility in real
space taking into account the spatial inhomogeneity of
the trapped cloud. Note that, contrarily to Eq.(C2),
Eqs.(C3),(C4) still hold when f(t) = 0 for t < 0 and
has a discontinuous jump in t = 0.
We now use the particular form (C1) for A and con-

sider the relevant limiting case qσ ≫ 1, qmin(ξ, λ) ≪ 1,
where ξ is the healing length of the gas and λ is the
thermal de Broglie wavelength. We also assume that σ
is much smaller than the radius of the trapped cloud,
so that the density variation within a region of radius σ
around r0 may be neglected.
Within a local density approximation, we then re-

place χex with the susceptibility χ of a spatially homo-
geneous system with a density equal to the one of the
trapped gas at position r0 and with the same tempera-
ture, χex(r, r′;ω) ≃ χ(r− r′;ω).

This local density approximation leads to

∆E ≃
∫

R

dω

2π
ω |f(ω)|2

∫

d2R

∫

d2u
[

|c+|2 + |c−|2

+ c∗+c−e
−iq·(R+u/2) + c+c

∗
−e

iq·(R+u/2)
]

[

|c+|2 + |c−|2 + c∗+c−e
−iq·(R−u/2) + c+c

∗
−e

iq·(R−u/2)
]

Im[χyy(u;ω)] e
−|R−r0|

2/σ2

e−u2/(4σ2) (C5)

where we have performed the change of variables r =
R + u/2, r′ = R − u/2. As we work in the qσ ≫ 1
regime, we have for example

∫

d2Re−2iq·R e−|R−r0|
2/σ2

=

e−2iq·R0 πσ2 e−q2σ2 ≪ πσ2 (C6)

so that all the oscillating terms in R may be neglected.
Introducing the Fourier transform of χyy(k;ω), which is
an even function of k due to parity or rotational invari-
ance, we obtain

∆E = ∆E1 +∆E2 (C7)

∆E1 ≃
∫ +∞

−∞

dω

2π
ω|f(ω)|2(2πσ2)2

∫

d2k

(2π)2

Imχyy(k;ω)
(

|c+|2 + |c−|2
)2
e−k2σ2

(C8)

∆E2 ≃
∫ +∞

−∞

dω

2π
ω|f(ω)|2(2πσ2)2

∫

d2k

(2π)2

Imχyy(q + k;ω)2|c+|2|c−|2e−k2σ2

. (C9)

The second contribution ∆E2 comes from the spatially
modulated gauge field at q, while the first contribution
∆E1 is due to the non-modulated term which follows
the broad Gaussian envelope. The expression (24) in
the main text is obtained from (C9) by noting that the
integration over k is effectively limited by the Gaussian
factor to a small region of radius 1/σ in which one is
allowed to neglect the k-dependence of the susceptibility.

Naively, one could guess that a necessary condition for
the accuracy of our local density approximation is that
the duration in time of the gauge field γ−1 is short as
compared to the characteristic time R/v for the induced
mechanical perturbation to explore the whole cloud, v
being the fastest between the sound and thermal speeds
in the cloud of radius R.

This condition is actually sufficient, but not neces-
sary within linear response theory. We now show for
f(t) = Θ(t)e−γt that the γ → 0 limit for the deposited
energy scheme exists and coincides with the perturbation
induced by the gauge field in the thermodynamical equi-
librium state. As one can show by inserting the explicit
form of the temporal Fourier transform of the gauge field
into (C4) and performing the integral over ω, the de-
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posited energy can be written in the form

∆E ≃ 1

2
Re

[

∫

d2r d2r′
∑

α,β

Aα(r, t = 0+)

Aβ(r
′, t = 0+)χex

αβ(r, r
′;ω = iγ)

]

(C10)

where we have introduced the Kubo formula for the exact
current-current susceptibility

χex
αβ(r, r

′;ω) =
∑

λ,λ′

(πλ − πλ′ )
〈λ|jα(r)|λ′〉〈λ′|jβ(r′)|λ〉
Eλ′ − Eλ − ~ω − i0+

(C11)
in terms of the thermal equilibrium population πλ of
quantum state λ. This quantity can be simply related
to the susceptibility at thermodynamical equilibrium,

χth
αβ(r, r

′) = lim
γ→0

Re[χex
αβ(r, r

′;ω = iγ)] +

+
1

kBT

∑

λ,λ′;Eλ=Eλ′

πλ 〈λ|jα(r)|λ′〉〈λ′|jβ(r′)|λ〉. (C12)

We recall that the thermodynamic susceptibility relates
the mean current in a thermal equilibrium state at tem-
perature T to the applied (weak) static gauge field via
〈j〉 = χth ∗ A, where ∗ is the convolution product. In
the present case of an interacting gas, one can safely ex-
pect that the second line in (C12) gives a negligible con-
tribution as there is no systematic degeneracy and the
current operator j has no diagonal matrix elements since
the eigenstate wavefunctions may be taken real.
Since application of local density approximation in the

thermodynamical equilibrium state is a standard proce-
dure, we expect that within linear response theory our
deposited energy method is accurately described by a lo-
cal density approximation down to the γ → 0 limit.

Appendix D: Some results of linear response theory

and the Bogoliubov expression of the deposited

energy

A system of time independent Hamiltonian H0 experi-
ences, at times t > 0, a time dependent weak perturba-
tion of Hamiltonian −ǫf(t)V , where ǫ → 0, the dimen-
sionless time dependent factor f(t) is zero for t < 0 and
tends rapidly to zero for t→ +∞, and the operator V is
time independent. At time t = +∞, the system is free
again, with a mean energy modified by the perturbation.
The question is to calculate the mean energy change to
second order in ǫ.
Suppose first that, at t = 0−, the system is prepared in

the eigenstate |λ〉 of H0 of eigenenergy Eλ. The energy
change δE between time 0 and time +∞ is

δE = lim
t→+∞

〈ψ(t)|(H0 − Eλ)|ψ(t)〉 (D1)

where |ψ(t)〉 is the system state vector at time t. The
usual time dependent perturbation theory gives an ex-
pansion in powers of ǫ:

|ψ(t)〉 = |ψ0(t)〉+ ǫ|ψ1(t)〉+ ǫ2|ψ2(t)〉+ . . . (D2)

where |ψ0(t)〉 = exp(−iEλt/~)|λ〉,

|ψ1(t)〉 = −
∫ t

0

dτ

i~
e−iH0(t−τ)/~f(τ)Ve−iEλτ/~|λ〉, (D3)

and the expression of higher order contributions is not
needed. Using (H0 − Eλ)|ψ0(t)〉 = 0 and 〈ψ0(t)|(H0 −
Eλ) = 0, we find to second order in ǫ:

δE ≃ lim
t→+∞

ǫ2 〈ψ1(t)|(H0 − Eλ)|ψ1(t)〉. (D4)

In this paper, f(t) = Y (t) exp(−γt), with γ > 0 and Y (t)
be Heavyside step function Also, the system is prepared
initially in a statistical mixture of eigenstates of H0 with
a probability distribution πλ. After explicit integration
of (D3) over τ and then average over |λ〉, the expression
for the signal to be detected experimentally is

Signal (V) ≡ lim
ǫ→0

〈δE〉
ǫ2

=

1

2
Re

∑

λ,λ′

(πλ − πλ′ )

Eλ′ − Eλ − i~γ
|〈λ′|V|λ〉|2. (D5)

The sum may be restricted to Eλ 6= Eλ′ since the con-
tributions with Eλ = Eλ′ are zero. This also shows that
the signal has a finite limit for γ → 0+. Note that in a
thermal equilibrium state πλ = Z−1 exp(−Eλ/kBT ), the
signal is necessarily positive.
The calculation of the noise on the experimental sig-

nal can be performed along the same lines. One defines
δE2 ≡ limt→+∞〈ψ(t)|(H0 − Eλ)

2|ψ(t)〉 with the initial
state vector |ψ(0)〉 = |λ〉, and one finds after average
over the initial state:

[Noise (V)]2 ≡ lim
ǫ→0

〈δE2〉
ǫ2

=
γ→0

∑

λ,λ′,Eλ 6=E′

λ

πλ|〈λ|V|λ′〉|2 ≃

∑

λ

πλ[〈λ|V2|λ〉 − 〈λ|V|λ〉2], (D6)

where the approximate equality is based on the assump-
tion that there are no systematic degeneracies in the
many-body spectrum. The ǫ2 scaling of the variance
in Eq.(D6) shows that the typical value of the energy
change at the end of the excitation sequence is of order
ǫ. This scaling is to be contrasted with the ǫ2 one of the
expectation value that is suggested by Eq.(D5).
We now apply the general formula Eq.(D5) to the

Bogoliubov analysis of subsection IVB. In this case,
ǫ = ǫgauge/2 and V = Vq + V−q with

Vq =

∫

[0,L]2
d2r eiqxjy(r) =

∑

k

~ky
m

a†k+qak (D7)
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where ak is the annihilation operator of a particle of the
gas of wavevector k, and we have set q = qex. In a
translationally invariant system, the eigenstates |λ〉 can
be taken of well defined total momentum; as the action
of V±q changes this total momentum by ±~q, the two
operators Vq and V−q cannot interfere in the signal and
thus Signal (V) = 2 Signal (Vq). In terms of the annihi-
lation operators bk of Bogoliubov quasiparticles, we can
split

Vq = V(0)
q + V(2)

q + V(−2)
q (D8)

in terms of

V(0)
q =

∑

k 6=0,−q

~ky
m

(UkUk+q − VkVk+q) b
†
k+qbk (D9)

V(2)
q =

′
∑

k 6=0,−q

~ky
m

(VkUk+q − UkVk+q) b
†
k+qb

†
−k(D10)

V(−2)
q =

′
∑

k 6=0,−q

~ky
m

(UkVk+q − VkUk+q) bkb−(k+q).(D11)

The primed sum
∑′

indicates restriction of the sum over
wavevectors such that ky > 0. In Bogoliubov theory, the
eigenstates |λ〉 may be taken in the form of Fock states

of quasiparticles. Since V(n)
q changes the total number of

quasiparticles by the amount n, the terms in the right
hand side of Eq.(D8) cannot interfere in the signal and

Signal (Vq) = Signal (V(0)
q )+Signal (V(2)

q )+Signal (V(−2)
q ).
(D12)

Thanks to the clever writing of V(n)
q with the con-

straint ky > 0 [52], there are no interferences in
Eqs.(D9,D10,D11) between the different terms of the
sums over k. As a result, the whole signal is the sum
over the contribution of the different k’s. The last trick
is to express the ratios πλ′/πλ in terms of the mean oc-
cupation numbers nk of the Bogoliubov modes of energy
ǫk and to make use of the identity

eβǫk =
nk + 1

nk

(D13)

satisfied by the Bose law. A little bit of rewriting taking
advantage of the relation Signal(V) = (N/m)f eff

n and of
the remarks in [52], finally leads to Eq.(30).
An alternative procedure is to calculate the current-

current susceptibility (C11) for a spatially homogeneous
system within the Bogoliubov theory, which for q ⊥ ey

gives in dimension d:

χyy(q;ω) =
1

Ld

∑

k 6=0,−q

~
2k2y
m2

[ nk − nk+q

ǫk+q − ǫk − ~ω − i0+
(

U2
k+qU

2
k − Uk+qVk+qUkVk

)

− 1 + nk + nk+q

−ǫk+q − ǫk − ~ω − i0+
(

V 2
k+qU

2
k − Uk+qVk+qUkVk

)

+
1 + nk + nk+q

ǫk+q + ǫk − ~ω − i0+
(

U2
k+qV

2
k − Uk+qVk+qUkVk

)

+
nk+q − nk

ǫk − ǫk+q − ~ω − i0+
(

V 2
k+qV

2
k − Uk+qVk+qUkVk

)

]

.

(D14)

From Eq.(C4) one then recovers expression Eq.(30) for
the effective normal fraction f eff

n .
Another application of Eq.(D5) is to calculate the

energy deposited by the external potential U(r, t) =
(U0e

iQ·r+c.c)Θ(t)e−ηt in the spatially homogeneous case.
This is useful for Appendix A and Appendix B to esti-
mate the effect of undesired lightshifts. In second quan-
tized form, and to leading order in Bogoliubov theory,

one then has ǫV = N1/2(UQ + VQ)[U0(b
†
Q + b−Q) + h.c.].

These terms do not interfer in Eq.(D5). For non-zero
temperature, using (D13), we then obtain a temperature
independent result

∆EU ≃ 2N |U0|2(UQ + VQ)
2 Re

1

ǫQ − i~η
(D15)

Remarkably, this also allows to calculate the energy
change ∆Eg due to the switch-on-and-off of a spatially
modulated coupling constant, δg(r, t) = (δg0e

iq·r +
c.c.)Θ(t)e−γt. For a spatially homogeneous system, to
leading order of Bogoliubov theory, the relevant oper-
ator is ǫV = N1/2(Uq + Vq)[ρδg0(b

†
q + b−q) + h.c.], so

that one can formally apply Eq.(D15) with U0 = ρδg0.
This can be applied to the variation of the coupling
constant due to gaa 6= gab in Eq.(18). In this case
δg0 = 2g[(gab − gaa)/gaa](Ω

+
p Ω

−∗
p )(0+)/|Ωc|2 so that for

qξ = 1 and γ → 0,

∆Eg

∆E2
≃ 16

5fn

mρg

(~kc)2

(

gab − gaa
gaa

)2

. (D16)

For the values of Table I and |gab − gaa| . 0.1|gaa| as
expected for 87Rb, this gives ∆Eg/∆E2 ≈ 7 · 10−4/fn
which is negligible.
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pairs of phonons by a parametric down-conversion ef-
fect [24]. For suitable atomic species such that gaa ≃ gab
(in particular Rb atoms), the spurious deposited energy
turns out to be smaller than the quantity ∆E2 to be
measured (see Appendix D for the analysis of one of the
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tuations of the density and of the longitudinal current
are related by ωnq = q · jq. For small wavevectors, fluc-
tuations are mostly sound-like with ω ≃ cs q. Inserting
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[68] At the lowest order in Ωp/Ωc, the effect of a non-zero

gaa − gab is to introduce a smooth polarization profile
Pp = −[4|dae|

2/~2|Ωc|
2] (gaa − gab)n

2
3D Ep. As the corre-

sponding phase shift does not depend on Ωp/Ωc, it can
be isolated in the experiment. The contribution of higher

order terms O[|Ωp/Ωc|
3] have a non-trivial spatial struc-

ture and may interfere with the signal to be measured.
Their relative value as compared to ∆φ2 is however a
factor roughly gaa−gab

gaa
g̃ (ρλ2

c)/(2π
2fn) weaker.


