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PARAPRODUCTS AND PRODUCTS OF FUNCTIONS IN

BMO(Rn) AND H1(Rn) THROUGH WAVELETS

ALINE BONAMI, SANDRINE GRELLIER, AND LUONG DANG KY

Abstract. In this paper, we prove that the product (in the distribution
sense) of two functions, which are respectively in BMO(Rn) and H1(Rn),
may be written as the sum of two continuous bilinear operators, one from
H1(Rn)×BMO(Rn) into L1(Rn), the other one from H1(Rn)×BMO(Rn)
into a new kind of Hardy-Orlicz space denoted by Hlog(Rn). More precisely,
the space Hlog(Rn) is the set of distributions f whose grand maximal func-
tion Mf satisfies

∫

Rn

|Mf(x)|

log(e+ |x|) + log(e+ |Mf(x)|)
dx < ∞.

The two bilinear operators can be defined in terms of paraproducts. As a
consequence, we find an endpoint estimate involving the space Hlog(Rn) for
the div -curl lemma.

1. Introduction

Products of functions in H1 and BMO have been considered by Bonami,
Iwaniec, Jones and Zinsmeister in [2]. Such products make sense as distribu-
tions, and can be written as the sum of an integrable function and a function
in a weighted Hardy-Orlicz space. To be more precise, for f ∈ H1(Rn) and
g ∈ BMO(Rn), we define the product (in the distribution sense) fg as the
distribution whose action on the Schwartz function ϕ ∈ S(Rn) is given by

(1.1) 〈fg, ϕ〉 := 〈ϕg, f〉 ,

where the second bracket stands for the duality bracket between H1(Rn) and
its dual BMO(Rn). It is then proven in [2] that

(1.2) fg ∈ L1(Rn) +HΦ
ω (R

n).

Here HΦ
ω (R

n) is the weighted Hardy-Orlicz space related to the Orlicz function

(1.3) Φ(t) :=
t

log(e + t)

and with weight ω(x) := (log(e+ |x|))−1.

Key words and phrases. Hardy-Orlicz spaces, Musielak-Orlicz spaces, paraproducts,
renormalization product, BMO-multipliers, div-curl Lemma, wavelet decomposition.
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Our aim is to improve this result in many directions. The first one con-
sists in proving that the space HΦ

ω (R
n) can be replaced by a smaller space.

More precisely, we define the Musielak-Orlicz space Llog(Rn) as the space of
measurable functions f such that

∫

Rn

|f(x)|

log(e + |x|) + log(e+ |f(x)|)
dx <∞.

The spaceHlog(Rn) is then defined, as usual, as the space of tempered distribu-
tions for which the grand maximal function is in Llog(Rn). This is a particular
case of a Hardy space of Musielak-Orlicz type, with a variable (in x) Orlicz
function that is also called a Musielak-Orlicz function (see [13]). This kind
of space had not yet been considered. A systematic study of Hardy spaces
of Musielak-Orlicz type has been done separately by the last author [13]. It
generalizes the work of Janson [12] on Hardy-Orlicz spaces. In particular, it
is proven there that the dual of the space Hlog(Rn) is the generalized BMO
space that has been introduced by Nakai and Yabuta (see [19]) to characterize
multipliers of BMO(Rn). Remark that by duality with our result, functions
f that are bounded and in the dual of Hlog(Rn) are multipliers of BMO(Rn).
By the theorem of Nakai and Yabuta there are no other multipliers, which, in
some sense, indicates that Hlog(Rn) could not be replaced by a smaller space.

Secondly we answer a question of [2] by proving that there exists continuous
bilinear operators that allow to split the product into an L1(Rn) part and a
part in this Hardy Orlicz spaceHlog(Rn). More precisely we have the following.

Theorem 1.1. There exists two continuous bilinear operators on the product
space H1(Rn)×BMO(Rn), respectively S : H1(Rn)×BMO(Rn) 7→ L1(Rn) and
T : H1(Rn)× BMO(Rn) 7→ Hlog(Rn) such that

(1.4) fg = S(f, g) + T (f, g).

The operators S and T are defined in terms of a wavelet decomposition.
The operator T is defined in terms of paraproducts. There is no uniqueness,
of course. In fact, the same decomposition of the product fg has already been
considered by Dobyinsky and Meyer (see [9, 7, 8], and also [4, 5]). The action of
replacing the product by the operator T was called by them a renormalization

of the product. Namely, T preserves the cancellation properties of the factor,
while S does not. Dobyinsky and Meyer considered L2 data for both factors,
and showed that T (f, g) is in the Hardy space H1(Rn). What is surprising in
our context is that both terms inherit some properties of the factors. Even if
the product fg is not integrable, the function S(f, g) is, while T (f, g) inherits
cancellation properties of functions in Hardy spaces without being integrable.
So, in some way each term has more properties than expected at first glance.

Another implicit conjecture of [2] concerns bilinear operators with cancella-
tions, such as the ones involved in the div -curl lemma for instance. In this case
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it is expected that there is no L1 term. To illustrate this phenomenon, it has
been proven in [1] that, whenever F and G are two vector fields respectively in
H1(Rn,Rn) and BMO(Rn,Rn) such that F is curl -free and G is div -free, then
their scalar product F ·G is in HΦ

w(R
n,Rn) (in fact there is additional assump-

tion on the BMO factor). By using the same technique as Dobyinsky to deal
with the terms coming from S, we give a new proof, without any additional
assumption. Namely, we have the following.

Theorem 1.2. Let F and G be two vector fields, one of them in H1(Rn,Rn)
and the other one in BMO(Rn,Rn), such that curlF = 0 and divG = 0.Then
their scalar product F ·G (in the distribution sense) is in Hlog(Rn).

In Section 2 we introduce the spaces Llog(Rn) andHlog(Rn) and give the gen-
eralized Hölder inequality that plays a central role when dealing with products
of functions respectively in L1(Rn) and BMO(Rn). In Sections 3 and 4 we give
prerequisites on wavelets and recall the L2 estimates of Dobyinsky. We prove
Theorem 1.1 in Section 5 and Theorem 1.2 in Section 6.

2. The space Hlog(Rn) and a generalized Hölder inequality

We first define the (variable) Orlicz function

θ(x, t) :=
t

log(e+ |x|) + log(e+ t)

for x ∈ Rn and t > 0. For fixed x it is an increasing function while t 7→ θ(x, t)/t
decreases. We have p < 1 in the following inequalities satisfied by θ.

θ(x, st) ≤ Cps
pθ(x, t) 0 < s < 1(2.1)

θ(x, st) ≤ sθ(x, t) s > 1.(2.2)

These two properties are among the ones that are usually required for (con-
stant) Orlicz functions in Hardy Theory, see for instance [12, 3, 13]. They
guarantee, in particular, that Llog(Rn), defined as the set of functions f such
that

∫

Rn

θ(x, |f(x)|)dx <∞

is a vector space. For f ∈ Llog(Rn), we define

‖f‖Llog := inf{λ > 0 ;

∫

Rn

θ(x, |f(x)|/λ)dx ≤ 1}.

It is not a norm, since it is not sub-additive. In place of sub-additivity, there
exists a constant C such that, for f, g ∈ Llog(Rn),

‖f + g‖Llog ≤ C(‖f‖Llog + ‖g‖Llog).

On the other hand, it is homogeneous.
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The space Llog(Rn) is a complete metric space, with the distance given by

dist (f, g) := inf{λ > 0 ;

∫

Rn

θ(x, |f(x)− g(x)|/λ)dx ≤ λ}

(see [20], from which proofs can be adapted, and [13]). Because of (2.1), a
sequence fk tends to 0 in Llog(Rn) for this distance if and only if ‖fk‖Llog tends
to 0.

Before stating our first proposition on products, we need some notations
related to the space BMO(Rn). For Q a cube of Rn and f a locally integrable
function, we note fQ the mean of f on Q. We recall that a function f is in
BMO(Rn) if

‖f‖BMO := sup
Q

1

|Q|

∫

Q

|f − fQ|dx <∞.

We note Q := [0, 1)n and, for f a function in BMO(Rn),

‖f‖BMO+ := |fQ|+ ‖f‖BMO.

This is a norm, while the BMO norm is only a norm on equivalent classes
modulo constants.

The aim of this section is to prove the following proposition, which replaces
Hölder Inequality in our context.

Proposition 2.1. Let f ∈ L1(Rn) and g ∈ BMO(Rn). Then the product fg
is in Llog(Rn). Moreover, there exists some constant C such that

‖fg‖Llog ≤ C‖f‖L1‖g‖BMO+.

Proof. It is easy to adapt the proof given in [2], which leads to a weaker
statement. We prefer to give a complete proof here, which has the advantage
to be easier to follow than the one given in [2]. We first restrict to functions f
of norm 1 and functions g such that gQ = 0 and ‖g‖BMO ≤ α for some uniform
constant α. Let us prove in this case the existence of a uniform constant δ
such that

(2.3)

∫

Rn

θ(x, |f(x)g(x)|)dx ≤ δ.

The constant α is chosen so that, by John-Nirenberg inequality, one has the
inequality

∫

Rn

e|g|

(e + |x|)n+1
dx ≤ κ,

with κ a uniform constant that depends only of the dimension n (see [21]).
Our main tool is the following lemma.
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Lemma 2.1. Let M ≥ 1. The following inequality holds for s, t > 0,

(2.4)
st

M + log(e+ st)
≤ et−M + s.

Proof. By monotonicity it is sufficient to consider the case when s = et−M .
More precisely, it is sufficient to prove that

t

M + log(e + tet−M)
≤ 1.

This is direct when t ≤ M . Now, for t ≥ M , the denominator is bounded
below by M + t−M , that is, by t. �

Let us go back to the proof of the proposition. We choose M := (n +
1) log(e+ |x|). Then

|f(x)g(x)|

(n+ 1)(log(e+ |x|) + log(e+ |f(x)g(x)|))
≤

e|g(x)|

(e+ |x|)n+1
+ |f(x)|.

After integration we get (2.3) with δ = (n + 1)(κ + 1). Let us then assume
that |gQ| ≤ α while the other assumptions on f and g are the same. We
then write fg = fgQ + f(g − gQ) and find again the estimate (2.3) with
δ = (n + 1)(κ + 1) + α. Using (2.1), this means that, for ‖f‖L1 = 1 and
‖g‖BMO+ = α and for p < 1, we have the inequality ‖fg‖Llog ≤ (δCp)

1/p. The
general case follows by homogeneity, with C = δα−1.

�

Remark that we only used the fact that g is in the exponential class for the
weight (e+ |x|)−(n+1).

Finally let us define the space Hlog(Rn). We first define the grand maximal
function of a distribution f ∈ S ′(Rn) as follows. Let F be the set of functions
Φ in S(Rn) such that |Φ(x)| + |∇Φ(x)| ≤ (1 + |x|)−(n+1). For t > 0, let
Φt(x) := t−nΦ(x

t
). Then

(2.5) Mf(x) := sup
Φ∈F

sup
t>0

|f ∗ Φt(x)|.

By analogy with Hardy-Orlicz spaces, we define the space Hlog(Rn) as the
space of tempered distributions such that Mf in Llog(Rn). We need the fact
that Hlog(Rn) is a complete metric space. Convergence in Hlog(Rn) implies
convergence in distribution. The space H1(Rn), that is, the space of functions
f ∈ L1(Rn) such that Mf in L1(Rn), is strictly contained in Hlog(Rn).

3. Prerequisites on Wavelets

Let us consider a wavelet basis of R with compact support. More explic-
itly, we are first given a C1(R) wavelet in Dimension one, called ψ, such that
{2j/2ψ(2jx− k)}j,k∈Z form an L2(R) basis. We assume that this wavelet basis
comes for a multiresolution analysis (MRA) on R, as defined below (see [17]).
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Definition 3.1. A multiresolution analysis (MRA) on R is defined as an in-
creasing sequence {Vj}j∈Z of closed subspaces of L2(R) with the following four
properties

i)
⋂

j∈Z Vj = {0} and
⋃

j∈Z Vj = L2(R),

ii) for every f ∈ L2(R) and every j ∈ Z, f(x) ∈ Vj if and only if f(2x) ∈
Vj+1,

iii) for every f ∈ L2(R) and every k ∈ Z, f(x) ∈ V0 if and only if f(x−k) ∈
V0,

iv) there exists a function φ ∈ L2(R), called the scaling function, such that
the family {φk(x) = φ(x− k) : k ∈ Z} is an orthonormal basis for V0.

It is classical that, when given an (MRA) on R, one can find a wavelet ψ
such that {2j/2ψ(2jx − k)}k∈Z is an orthonormal basis of Wj , the orthogonal
complement of Vj in Vj+1. Moreover, by Daubechies Theorem (see [6]), it is
possible to find a suitable (MRA) so that φ and ψ are C1(R) and compactly
supported, ψ has mean 0 and

∫

xψ(x)dx = 0, which is known as the moment
condition. We could content ourselves, in the following theorems, to have φ and
ψ decreasing sufficiently rapidly at ∞, but proofs are simpler with compactly
supported wavelets. More precisely we assume that φ and ψ are supported in
the interval 1/2 +m(−1/2,+1/2), which is obtained from (0, 1) by a dilation
by m centered at 1/2.

Going back to Rn, we recall that a wavelet basis of Rn is found as follows.
We call E the set E = {0, 1}n \ {(0, · · · , 0)} and, for λ ∈ E, state ψλ(x) =
φλ1(x1) · · ·φ

λn(xn), with φ
λj(xj) = φ(xj) for λj = 0 while φλj (xj) = ψ(xj) for

λj = 1. Then the set {2nj/2ψλ(2jx− k)}j∈Z,k∈Zn,λ∈E is an orthonormal basis of
L2(Rn). As it is classical, for I a dyadic cube of Rn, which may be written as
the set of x such that 2jx− k ∈ (0, 1)n, we note

ψλ
I (x) = 2nj/2ψλ(2jx− k).

We also note φI = 2nj/2φ(0,1)n(2
jx − k), with φ(0,1)n the scaling function in

n variables, given by φ(0,1)n(x) = φ(x1) · · ·φ(xn). In the sequel, the letter I
always refers to dyadic cubes. Moreover, we note kI the cube of same center
dilated by the coefficient k. Because of the assumption on the supports of φ
and ψ, the functions ψλ

I and φI are supported in the cube mI.
The wavelet basis {ψλ

I }, obtained by letting I vary among dyadic cubes and
λ in E, comes from an (MRA) in Rn, which we still note {Vj}j∈Z, obtained by
taking tensor products of the one dimensional ones. The functions φI , taken
for a fixed length |I| = 2−jn, form a basis of Vj. As in the one dimensional
case we noteWj the orthogonal complement of Vj in Vj+1. As it is classical, we
note Pj the orthogonal projection onto Vj and Qj the orthogonal projection
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onto Wj. In particular,

f =
∑

i∈Z

Qif

= Pjf +
∑

i≥j

Qif.

4. The L2 estimates for the product of two functions

We summarize here the main results of Dobyinsky [8].
Let us consider two L2 functions f and g, which we express through their

wavelet expansions, for instance

f =
∑

λ∈E

∑

I

〈f, ψλ
I 〉ψ

λ
I .

Then, when f and g have a finite wavelet expansion, we have

fg =
∑

j∈Z

(Pjf)(Qjg) +
∑

j∈Z

(Qjf)(Pjg) +
∑

j∈Z

(Qjf)(Qjg)(4.1)

:= Π1(f, g) + Π2(f, g) + Π3(f, g).

The two operators Π1 and Π2 are called paraproducts. A posteriori each term
of Formula (4.1) can be given a meaning for all functions f, g ∈ L2(Rn). Indeed
the two operators Π1 and Π2, which coincide, up to permutation of f and g,
extend as bilinear operators from L2(Rn) × L2(Rn) to H1(Rn), see [8], while
the operator Π3 extends to an operator from L2(Rn)× L2(Rn) to L1(Rn).

The two L2 estimates are given in the following two lemmas. We sketch
their proof for the convenience of the reader as this will be the basis of our
proofs in the context of H1(Rn) and BMO(Rn). Details may be found in [8].

Lemma 4.1. The bilinear operator Π3 is a bounded operator from L2(Rn) ×
L2(Rn) into L1(Rn).

Proof. The series
∑

j∈ZQjfQjg is normally convergent in L1(Rn), with
∑

j∈Z

‖QjfQjg‖L1 ≤
∑

j∈Z

‖Qjf‖L2‖Qjg‖L2

≤
(

∑

j∈Z

‖Qjf‖
2
L2

)1/2(∑

j∈Z

‖Qjg‖
2
L2

)1/2

≤ C‖f‖L2‖g‖L2.

This concludes for Π3. �

Lemma 4.2. The bilinear operator Π1, a priori well defined for f and g having
a finite wavelet expansion, extends to L2(Rn)×L2(Rn) into a bounded operator
to H1(Rn).
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Proof. Let us recall that one can write

Pjf =
∑

|I|=2−jn

〈f, φI〉φI .

This means that PjfQjg can be written as a linear combination of ψλ
I φI′, with

|I| = |I ′| = 2−jn. As before, for fixed I, this function is non zero only for a
finite number of I ′. More precisely, such I ′s can be written as k2−j + I, with
k ∈ K, where K is the set of points with integer coordinates contained in
(−m,+m]n. So Π1(f, g) can be written as a sum in λ ∈ E and k ∈ K of

Fλ,k :=
∑

j∈Z

∑

|I|=2−jn

〈f, φk2−j+I〉〈g, ψ
λ
I 〉φk2−j+Iψ

λ
I .

At this point, we use the fact that the functions |I|1/2φk2−j+Iψ
λ
I are of mean

zero because of the orthogonality of Vj and Wj. Moreover they are of class
C1(Rn) and are obtained from the one for which I = (0, 1)n through the same
process of dilation and translation as the wavelets. So they form what is called
a system of molecules. It is well-known (see Meyer’s book [17]) that such a
linear combination of molecules has its H1 norm bounded by C times the H1

norm of the linear combination of wavelets with the same coefficients. Namely,
we are linked to prove that

‖
∑

j

∑

|I|=2−jn

∑

λ∈E

〈f, φk2−j+I〉〈g, ψ
λ
I 〉2

nj/2ψλ
I ‖H1 ≤ C‖f‖L2 ‖g‖L2.

We use the characterization of H1(Rn) through wavelets to bound this norm
by the L1 norm of its square function, given by





∑

j

∑

|I|=2−jn

∑

λ∈E

|〈f, φk2−j+I〉〈g, ψ
λ
I 〉|

22nj|I|−1χI





1/2

.

This function is bounded at x by

sup
I∋x

|〈f, |I|−1/2φI〉| ×





∑

j

∑

|I|=2−jn

∑

λ∈E

|〈g, ψλ
I 〉|

2|I|−1χI(x)





1/2

.

The first factor is bounded, up to a constant, by the Hardy Littlewood maximal
function of f , which we note Mf . We conclude by using Schwarz inequality,
then the maximal theorem to bound the L2 norm of Mf by the L2 norm of f ,
then the fact that the L2 norm of the second factor is the L2 norm of g. �

We will need the expression of Π1(f, g) and Π2(f, g) when f has a finite
wavelet expansion while g in only assumed to be in L2(Rn). The following
lemma is immediate for g with a finite wavelet expansion, then by passing to
the limit otherwise.
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Lemma 4.3. Assume that f has a finite wavelet expansion and Qjf = 0 for
j /∈ [j0, j1). For g ∈ L2(Rn), one has

Π1(f, g) =

j1−1
∑

j=j0

PjfQjg + f
∑

j≥j1

Qjg(4.2)

Π2(f, g) = fPj0g +

j1−1
∑

j=j0

Qjf

(

∑

j0≤i≤j−1

Qig

)

.(4.3)

5. Products of functions in H1(Rn) and BMO(Rn)

Let us first recall the wavelet characterization of BMO(Rn): if g is in
BMO(Rn), then for all (not necessarily dyadic) cubes R , we have that

(

|R|−1
∑

λ∈E

∑

I⊂R

|〈g, ψλ
I 〉|

2
)1/2

≤ C‖g‖BMO,

and the supremum over all cubes R of the left hand side is equivalent to the
BMO norm of g.

Remark that the wavelet coefficients of a function g in BMO are well defined
since g is locally square integrable. The 〈g, φI〉’s are well defined as well. So
Qjg makes sense, as well as Pjg. Indeed, they are sums of the corresponding
series in ψλ

I or φI with |I| = 2−jn, and at each point only a finite number of
terms are non zero.

Moreover, we claim that (4.2) and (4.3) are well defined for f with a finite
wavelet expansion and g in BMO(Rn). This is direct for Π2(f, g). For Π1(f, g),
it is sufficient to see that the series

∑

j≥j1
Qjg converges in L2(R), where R

is a large cube containing the support of f . This comes from the wavelet
characterization of BMO(Rn). Indeed, on R one has

∑

j1≤j≤k

Qjg =
∑

λ∈E

∑

I⊂mR,2−nk≤|I|≤2−nj1

〈g, ψλ
I 〉ψ

λ
I .

This is the partial sum of an orthogonal series, that converges in L2(Rn).
As a final remark, we find the same expressions for Π1(f, g), Π2(f, g), Π3(f, g)

and fg when g is replaced by ηg, where η is a smooth compactly supported
function such that η is equal to 1 on a large cube R. Just take R sufficiently
large to contain the supports of f , Qjf , and all functions φI and ψλ

I that lead
to a non zero contribution in the expressions of the four functions under con-
sideration. Since ηg is in L2(Rn), we have the identity (4.1). This leads to the
identity

(5.1) fg = Π1(f, g) + Π2(f, g) + Π3(f, g).

So Theorem 1.1 will be a consequence of the boundedness of the operators
Π1(f, g), Π2(f, g) and Π3(f, g).
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Before considering this boundedness, we describe the atomic decomposition
of the Hardy space H1(Rn), which will play a fundamental role in the proofs.

We recall that a function a is called a (classical) atom of H1(Rn) related to
the (not necessarily dyadic) cube R if a is in L2(Rn), is supported in R, has
mean zero and is such that ‖a‖L2 ≤ |R|−1/2.

For simplicity we will consider atoms that are adapted to the wavelet basis
under consideration. More precisely, we call the function a a ψ-atom related
to the dyadic cube Q if it is an L2 function that may be written as

(5.2) a =
∑

I⊂R

∑

λ∈E

aI,λψ
λ
I

such that, moreover, ‖a‖L2 ≤ |R|−1/2. Remark that a is compactly supported
in mR and has mean 0, so that it is a classical atom related to mR, up to the
multiplicative constant mn/2. It is standard that an atom is in H1(Rn) with
norm bounded by a uniform constant. The atomic decomposition gives the
converse.

Theorem 5.1 (Atomic decomposition). There exists some constant C such
that all functions f ∈ H1(Rn) can be written as the limit in the distribution
sense and in H1 of an infinite sum

(5.3) f =
∑

ℓ

µℓaℓ

with aℓ ψ-atoms related to some dyadic cubes Rℓ and µℓ constants such that
∑

ℓ

|µℓ| ≤ C‖f‖H1 .

Moreover, for f with a finite wavelet series, we can choose an atomic decom-
position with a finite number of atoms aℓ, which have also a finite wavelet
expansion extracted from the one of f .

This theorem is a small variation of a standard statement. The second part
may be obtained easily by taking the atomic decomposition given in [11], Sec-
tion 6.5. Remark that the interest of dealing with finite atomic decompositions
has been underlined recently, for instance in [15, 16].

We want now to give sense to the decomposition (4.1) for f ∈ H1(Rn) and
g ∈ BMO(Rn). We will do it when f has a finite wavelet expansion.

Let us first consider that two operators Π1 and Π3.

Theorem 5.2. Π3 extends into a bounded bilinear operator from H1(Rn) ×
BMO(Rn) into L1(Rn).

Proof. We consider f with a finite wavelet expansion and g ∈ BMO(Rn), so
that Π3(f, g) is well defined as a finite sum in j. Let us give an estimate of
its L1-norm. We use the atomic decomposition of f given in (5.3), that is,
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f =
∑L

ℓ=1 µℓaℓ where each aℓ is a ψ-atom related to the dyadic cube Rℓ and
∑L

ℓ=1 |µℓ| ≤ C‖f‖H1. Recall that each atom has also a finite wavelet expansion
extracted from the one of f . From this, it is sufficient to prove that, for a ψ-
atom a, which is supported in R and has L2 norm bounded by |R|−1/2, we
have the estimate

(5.4) ‖Π3(a, g)‖L1 ≤ C‖g‖BMO.

We claim that Π3(a, g) = Π3(a, b), where b :=
∑

λ∈E

∑

I∈2mR〈g, ψ
λ
I 〉ψ

λ
I . Indeed,

in the wavelet expansion of g we only have to consider at each scale j the terms
ψλ
I for which ψλ

Iψ
λ′

I′ is not identically 0 for all I ′ contained in R such that
|I| = |I ′| = 2−jn. In other words we want mI ∩mI ′ 6= ∅, which is only possible
for I in 2mR. Now let us recall the wavelet characterization of BMO(Rn): for
all cubes Q, we have that

(

|Q|−1
∑

λ∈E

∑

I⊂Q

|〈g, ψλ
I 〉|

2
)1/2

≤ C‖g‖BMO,

and the supremum on all cubes Q of the left hand side is equivalent to the BMO
norm of g. It follows that the L2 norm of b is bounded by Cmn/2|R|1/2‖g‖BMO.
This allows to conclude for the proof of (5.4), using Lemma 4.1. �

Next we look at Π1.

Theorem 5.3. Π1 extends into a bounded bilinear operator from H1(Rn) ×
BMO(Rn) into H1(Rn).

Proof. Again, we consider Π1(f, g) for f with a finite wavelet expansion, so
that it is well defined by (4.2). As in the previous theorem we can consider
separately each atom. So, as before, let a be such a ψ-atom. One can estimate
Π1(a, g) as in the previous theorem. We again claim that Π1(f, g) = Π1(f, b),
where b :=

∑

λ∈E

∑

I∈2mR〈g, ψ
λ
I 〉ψ

λ
I . We then use Lemma 4.2 to conclude that

(5.5) ‖Π1(a, g)‖H1 ≤ C‖g‖BMO,

which we wanted to prove. �

We now consider the last term.

Theorem 5.4. Π2 extends into a bounded bilinear operator from H1(Rn) ×
BMO+(Rn) into Hlog(Rn).

Proof. The main point is the following lemma.

Lemma 5.1. let a be a ψ-atom with a finite wavelet expansion related to the
cube R and g ∈ BMO. Then we can write

(5.6) Π2(a, g) = h(1) + κgRh
(2)

where ‖h(1)‖H1 ≤ C‖g‖BMO and h(2) is an atom related to mR. Here gR is the
mean of g on R and κ a uniform constant, independent of a and g.
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Let us conclude from the lemma, which we take for granted for the moment.
Let f =

∑L
ℓ=1 µℓaℓ be the atomic decomposition of the function f , which has a

finite wavelet expansion. Let us prove the existence of some uniform constant
C such that

(5.7)

∥

∥

∥

∥

∥

M

(

L
∑

ℓ=1

µℓΠ2(aℓ, g)

)∥

∥

∥

∥

∥

Llog

≤ C‖g‖BMO+

(

L
∑

ℓ=1

|µℓ|

)

.

With obvious notations, we conclude directly for terms h
(1)
ℓ , using the fact that

L1(Rn) is contained in Llog(Rn). So it is sufficient to prove that
∥

∥

∥

∥

∥

M

(

L
∑

ℓ=1

µℓgRℓ
h
(2)
ℓ

)∥

∥

∥

∥

∥

Llog

≤ C‖g‖BMO+

(

L
∑

ℓ=1

|µℓ|

)

.

At this point we proceed as in [2]. We use the inequality

M

(

L
∑

ℓ=1

µℓgRℓ
h
(2)
ℓ

)

≤
L
∑

ℓ=1

|µℓ||gRℓ
|M

(

h
(2)
ℓ

)

.

Then we write gRℓ
= g + (gRℓ

− g). For the first term, that is,

|g|

(

L
∑

ℓ=1

|µℓ|M
(

h
(2)
ℓ

)

)

,

we use the generalized Hölder inequality given in Proposition 2.1. Indeed, g
is in BMO(Rn) and the function M(a), for a an atom, is uniformly in L1, so

that
∑L

ℓ=1 |µℓ|M
(

h
(2)
ℓ

)

has norm in L1 bounded by C
∑L

ℓ=1 |µℓ|. To conclude

for (5.7), it is sufficient to prove that
∥

∥

∥

∥

∥

L
∑

ℓ=1

|µℓ||g − gRℓ
|M

(

h
(2)
ℓ

)

∥

∥

∥

∥

∥

L1

≤ C

L
∑

ℓ=1

|µℓ|.

This is a consequence of the following uniform inequality, valid for g ∈ BMO(Rn)
and a an atom adapted to the cube R:

∫

Rn

|g − gR|M (a) dx ≤ C‖g‖BMO.

To prove this inequality, by using invariance through dilation and translation,
we may assume that R is the cube Q. We conclude by using the following
classical lemma.

Lemma 5.2. Let a be a classical atom related to the cube Q and g be in
BMO(Rn). Then

∫

Rn

|g − gQ|M (a) dx ≤ C‖g‖BMO.
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Proof. We cut the integral into two parts. By Schwarz Inequality and the
boundedness of the operator M on L2(Rn), we have

∫

|x|≤2

|g − gQ|M (a) dx ≤ C





∫

2Q

|g − gQ|
2dx





1/2

‖a‖L2

≤ C‖g‖BMO,

here one used |g2Q − gQ| ≤ C‖g‖BMO. Next, for |x| > 2 we have the inequality

M (a) (x) ≤
C

(1 + |x|)n+1
,

and the classical inequality (see Stein’s book [21])
∫

Rn

|g − gQ|

(1 + |x|)n+1
dx ≤ C‖g‖BMO.

We have proven (5.7). �

It remains to prove Lemma 5.1, which we do now.

Proof of Lemma 5.1. Let a be a ψ-atom which is related to the dyadic cube R.
Let j0 be such that |R| = 2−nj0. We assume that a has a finite wavelet expan-
sion, so that Π2(a, g) is given by (4.2) for some j1 > j0. As before, we can write
Π2(a, g) = aPj0g+Π2(a, b), where b is defined by b :=

∑

λ∈E

∑

I∈2mR〈g, ψ
λ
I 〉ψ

λ
I .

It follows again from the characterization of BMO function through wavelets
that the L2 norm of b is bounded by C‖g‖BMO|R|

1/2. We use the L2 estimate
given by Lemma 4.2 to bound uniformly the H1 norm of Π2(a, b). This term
goes into h(1).

It remains to consider aPj0g. By definition of Pj0g, it can be written as
a
∑

I〈g, φI〉φI , where the sum in I is extended to all dyadic cubes such that
|I| = 2−nj0 andmI∩mR 6= ∅. There are at most (2m)n such terms in this sum,
and it is sufficient to prove that each of them can be written as h1 + κ|gR|h2,
with h2 a classical atom related to mQ and h1 such that ‖h1‖H1 ≤ C‖g‖BMO.
Let us first remark that for each of these (2m)n terms, the function h :=
|I|1/2φIa is (up to some uniform constant) a classical atom related to mR:
indeed, it has mean value 0 because of the orthogonality of φI and ψI′ when
|I ′| ≤ |I| and the norm estimate follows at once. In order to conclude, it is
sufficient to prove that h1 = (gR − |I|−1/2〈g, φI〉)h has the required property.
We conclude easily by showing that gR−|I|−1/2〈g, φI〉 is bounded by C‖g‖BMO.
But this difference may be written as 〈γ, g〉, where γ := |R|−1χR − |I|−1/2φI .
The function γ has zero mean, is supported in 2mR and has L2 norm bounded
by 2|R|−1/2. Thus, up to multiplication by some uniform constant, it is a
classical atom related to the cube 2mR. It has an H1 norm that is uniformly
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bounded and its scalar product with g is bounded by the BMO norm of g, up
to a constant, as a consequence of the H1 −BMO duality.

This concludes for the proof.
�

We have finished the proof of Theorem 5.4, and also of the one of Theorem
1.1. Just take S = Π3.

�

6. Div-Curl Lemma

The aim of this section is to prove Theorem 1.2. The methods that we
develop are inspired by the papers of Dobyinsky in the case of L2(Rn). They
are generalized in a forthcoming paper of the last author [14].

Let us first make some remarks. By using the decomposition of each product
FjGj into S(Fj , Gj)+T (Fj , Gj), we already know that all terms T (Fj, Gj) are in
Hlog(Rn). So we claim that it is sufficient to prove that

∑n
j=1 S(Fj, Gj) is also

in Hlog(Rn). We first assume that F is in H1(Rn,Rn) and G in BMO(Rn,Rn).
Since F is curl -free, we can assume that Fj is a gradient, or, equivalently,
Fj = Rjf , where Rj is the j-th Riesz transform and f = −

∑n
j=1Rj(Fj) ∈

H1(Rn) since H1(Rn) is invariant under Riesz transforms. Next, since G is
div -free, we have the identity

∑n
j=1RjGj = 0. So it is sufficient to prove

that S(Rjf,Gj) + S(f, RjGj) is in Hlog(Rn) for each j. So Theorem 1.2 is a
corollary of the following proposition.

Proposition 6.1. Let A be an odd Calderón-Zygmund operator. Then, the
bilinear operator S(Af, g) + S(f, Ag) maps continuously H1(Rn) × BMO(Rn)
into H1(Rn).

Proof. We make a first reduction, which is done by Dobyinsky in [8]. When
considering S(f, g) on H1(Rn) × BMO(Rn), we can write it as S(f, g) = h +
S0(f, g) with h ∈ H1(Rn), where

(6.1) S0(f, g) =
∑

λ∈E

∑

I

〈f, ψλ
I 〉〈g, ψ

λ
I 〉|ψ

λ
I |

2.

Indeed, S(f, g) − S0(f, g) may be written in terms of products ψλ
Iψ

λ′

I′ , with
|I| = |I ′|, (I, λ) 6= (I ′, λ′). These functions are of mean 0 because of the
orthogonality of the wavelet basis, have L2 norm bounded, up to a constant,
by |I|−1/2, and are supported in mI. So they are C times atoms of H1(Rn).
Recall that they are non zero only if I ′ = k|I|1/n + I, with k ∈ K, where K
is the set of points with integer coordinates contained in (−m,+m]n. So, to
prove that S(f, g)− S0(f, g) is in H1(Rn) it is sufficient to use the fact that,
for fixed λ, λ′ and k,

∑

I

|〈f, ψλ
I 〉| |〈g, ψ

λ′

k|I|1/n+I〉| ≤ C‖f‖H1‖g‖BMO.
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This is a consequence of the wavelet characterization of f in H1(Rn) and g in
BMO(Rn) and the following lemma, which may be found in [10].

Lemma 6.1. There exists a uniform constant C, such that, for (aI)I∈D and
(bI)I∈D two sequences that are indexed by the set D of dyadic cubes , one has
the inequality

∑

I∈D

|aI ||bI | ≤ C

∥

∥

∥

∥

∥

∥

(

∑

I∈D

|aI |
2|I|−1χI

)1/2
∥

∥

∥

∥

∥

∥

L1

× sup
R∈D

(

|R|−1
∑

I⊂R

|bI |
2

)1/2

.

Let us come back to the proof of the proposition. From this first step, we
conclude that it is sufficient to prove that B(f, g) := S0(Af, g) + S0(f, Ag) is
in H1(Rn). Using bilinearity as well as the fact that A∗ = −A, we have

B(f, g) :=
∑

λ∈E

∑

λ′∈E

∑

I,I′

〈f, ψλ
I 〉〈g, ψ

λ′

I′ 〉〈Aψ
λ
I , ψ

λ′

I′ 〉(|ψ
λ′

I′ |
2 − |ψλ

I |
2).

From this point, the proof is standard. An explicit computation gives that
|ψλ′

I′ |
2 − |ψλ

I |
2 is in H1(Rn), with

‖|ψλ′

I′ |
2 − |ψλ

I |
2‖H1 ≤ C

(

log(2−j + 2−j′)−1 + log(|xI − xI′ |+ 2−j + 2−j′)
)

.

Here |I| = 2−jn and |I ′| = 2−j′n, while xI and xI′ denote the centers of the
two cubes. Next we use the well-known estimate of the matrix of a Calderón-
Zygmund operator (see [MC, Proposition 1]): there exists some δ ∈ (0, 1], such
that

|〈Aψλ
I , ψ

λ′

I′ 〉| ≤ Cpδ(I, I
′)

with

pδ(I, I
′) = 2−|j−j′|(δ+n/2)

( 2−j + 2−j′

2−j + 2−j′ + |xI − xI′ |

)n+δ

.

So, by using the inequality

log
(2−j + 2−j′ + |xI − xI′|

2−j + 2−j′

)

≤
2

δ

(2−j + 2−j′ + |xI − xI′ |

2−j + 2−j′

)δ/2

,

we obtain

‖B(f, g)‖H1 ≤ C
∑

I,I′

|〈f, ψλ
I 〉| |〈g, ψ

λ′

I 〉|pδ′(I, I
′)

where δ′ = δ/2 > 0. We conclude by using the fact that the almost diago-
nal matrix pδ′(I, I

′) defines a bounded operator on the space of all sequences

(aI)I∈D such that
(

∑

I |aI |
2|I|−1χI

)1/2

∈ L1(Rn).

This is the end of the proof of Theorem 1.2 for F ∈ H1(Rn,Rn) and G ∈
BMO(Rn,Rn) with curlF = 0 and divG = 0. Assume now that divF = 0
and curlG = 0. Similarly as above, we have

∑n
j=1RjFj = 0 and Gj = Rjg
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where g = −
∑n

j=1RjGj ∈ BMO(Rn) since BMO(Rn) is invariant under Riesz
transforms. Hence,

F ·G =
n
∑

j=1

(T (Fj, Gj)+S(Fj, Gj)) =
n
∑

j=1

T (Fj, Gj)+
n
∑

j=1

(S(Fj , Rjg)+S(RjFj, g)).

We conclude as before from the proposition. �
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