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The purpose of this paper is to present the extended definitions and characterizations of the classical notions of APN and maximum nonlinear Boolean functions to deal with the case of mappings from a finite group K to another one N with the possibility that one or both groups are non-Abelian.

Highly nonlinear functions in the Abelian group setting

The study of nonlinear properties of Boolean functions is one of the major tasks in secret-key cryptography. But the adjective "nonlinear" has several meanings: it can be related to the resistance against the famous differential attack [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF] and, in this interpretation, actually refers to (almost) perfect nonlinear functions. Moreover nonlinearity is also related to the maximum magnitude of the Fourier spectrum of Boolean functions -under the names "bent", "almost bent" or "maximal nonlinear" functions -which is itself linked to the resistance against the linear attack [START_REF] Matsui | Linear cryptanalysis method for DES cipher[END_REF]. These two ways to define nonlinearity are not independent and even, in many situations, are exactly the same.

Most of the studies and results on nonlinearity concerns Boolean functions, or in other words, functions from K to N where K and N are both elementary Abelian 2-groups. Even if this kind of groups seems to be very natural for cryptographic purpose, there is no rule that prevent us to use more complex groups and even non-Abelian ones. In this paper, we will discuss the standard notion of nonlinearity in the non-Abelian setting. Nevertheless we begin by some definitions and basic tools used to study nonlinearity in the Abelian case. In order to keep the paper fairly selfcontained some proofs of well-known results will be added.

Let K and N be two finite groups written multiplicatively of orders m and n respectively. Let G be the direct product K × N . A mapping f : K → N is called perfect nonlinear (see [START_REF] Nyberg | Perfect nonlinear S-boxes[END_REF]) if and only if for each a ∈ K, a = 1 K and each b ∈ N , the quantity

δ f (a, b) = |{g ∈ K|f (ag)(f (g)) -1 = b}| (1) 
is constant equals to m n . In [START_REF] Carlet | Highly nonlinear mappings[END_REF] the reader may find a very complete survey on the subject. In the cases where n does not divide m, it is impossible for perfect nonlinear functions to exist. We note that perfect nonlinear functions also cannot exist if K and N are elementary Abelian 2-groups of the same order. Actually, a more general result holds: Theorem 1. Let K be an arbitrary group of order m = 2 a , and let N be an Abelian group of order n = 2 b . A perfect nonlinear function f : K → N does not exist, if 1. a is odd; 2. a = 2s is even and b ≥ s + 1.

For proof, we refer to [START_REF] Davis | Construction of relative difference sets in p-groups[END_REF][START_REF] Ma | On (p a , p, p a , p a-1 )-relative difference sets[END_REF][START_REF] Nyberg | Perfect nonlinear S-boxes[END_REF]. Since perfect nonlinear functions do not exist in many cases, the following definition is meaningful: we call f : K → N an almost perfect nonlinear (APN) function (see [START_REF]On the construction of highly nonlinear permutations[END_REF]) if and only if (
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Both these definitions do not use the commutativity in a group. Hence these definitions also apply to the non-Abelian situation.

With each function f : K → N we associate its graph D f ⊆ G:

D f = {(g, f (g))|g ∈ K} . (3) 
This set plays an important role in the study of nonlinear properties of the corresponding function. For instance f is perfect nonlinear if and only if its graph is a splitting

(m, n, m, m n ) difference set in G relative to the normal subgroup N . Recall that a set R ⊆ G = K × N of cardinality k is a (splitting) (m, n, k, λ) difference set in G relative to N if
and only if the following property holds: the list of nonidentity quotients r(r ′ ) -1 with r, r ′ ∈ R covers every element in G \ {1 K } × N precisely λ times and no element in {1 K } × (N \ {1 N }) is covered. The term splitting refers to the fact that the group in which the relative difference set exists is K × N , hence it "splits", where one of the factors is the "forbidden subgroup". We note that also non-splitting relative difference sets are studied, however for applications in cryptography only mappings f : K → N seem to be of interest, and then the graph corresponds to a splitting relative difference sets. Moreover, we have k = m in this situation, and this case is called semi-regular. There are also many relative difference sets known where k = m. For a survey on relative difference sets, we refer to [START_REF] Pott | A survey on relative difference sets, in Groups, Difference Sets, and the Monster[END_REF].

In general such combinatorial structures are studied using the notion of group algebras. Let G be a finite group (written multiplicatively) and R a commutative ring with a unit. We denote by R[G] the group algebra of G; its underlying Rmodule is free and has a basis indexed by the elements of G and which is identified to G itself: so it is a free R-module of rank |G| and, as such, isomorphic to the direct sum g∈G R g where for each g ∈ G, R g = R.

Every element D of R[G] can be uniquely represented as

D = g∈G d g g, with d g ∈ R . (4) 
The addition in R[G] is given as a component-wise addition of R. More precisely

  g∈G a g g   +   g∈G b g g   = g∈G (a g + b g ) g (5) 
while the multiplication -convolutional product -is

  g∈G a g g     g∈G b g g   = g∈G h∈G a h b h -1 g g . (6) 
Finally the scalar multiplication by elements of R is the usual one

λ   g∈G d g g   = g∈G (λd g )g, with λ ∈ R . (7) 
Any subset D of G is naturally identified with the following element of R

[G] g∈G 1 D (g)g = g∈D g , (8) 
where we define the indicator function of D

1 D (g) = 1 R if g ∈ D , 0 R if g ∈ D . ( 9 
) When R = C we define   g∈G d g g   (-1) = g∈G d g g -1 = g∈G d g -1 g ( 10 
)
where z is the complex conjugate of z ∈ C.

For instance for a function f : K → N and G = K × N , we have

D f D (-1) f = (a,b)∈G δ f (a, b)(a, b) ∈ Z[G] . (11) 
As we claimed above, (m, n, k, λ) difference sets in G = K × N relative to N have a natural interpretation in Z[G] because R ⊆ G is such a set if and only if it satisfies the following group ring equation:

RR (-1) = k1 G + λ(G -N ) . (12) 
Therefore, we have the following well known theorem which holds in the Abelian as well as in the non-Abelian case:

Theorem 2. A function f : K → N is perfect nonlinear if and only if the graph D f of f is a splitting (m, n, m, m n ) difference set relative to {1 K } × N .
Another important tool for the study of highly nonlinear mappings -but restricted to the case of finite Abelian groups -is the notion of group characters. A character χ of a finite Abelian group is a group homomorphism from G to the multiplicative group C * of C. The elements χ(g) belong to the unit circle of C.

The set of all such characters of a given Abelian group G, when equipped with the point-wise multiplication of mappings, is itself a group (called the dual group, denoted by G), isomorphic to G. The character χ 0 : g ∈ G → 1 is called the principal character of G. The characters of a direct product K × N are given by χ 

= χ K ⊗ χ N where (a, b) ∈ K × N is mapped to χ K (a)χ N (b) ∈ C,
There is an important formula for characters of Abelian groups which also holds for non-Abelian groups, see Theorem 9. Proof. This follows easily from the inversion formula applied to the coefficient of the identity element in D • D -1 .

Using these characters we can introduce another criterion of nonlinearity: a function f : K → N (where K and N are both finite and Abelian) is called maximum nonlinear if and only if max

χN =χ0 |χ(D f )| ≤ max χN =χ0 |χ(D g )| ∀g : K → N (14) 
or, equivalently

max χN =χ0 |χ(D f )| = min g:K→N max χN =χ0 |χ(D g )| . ( 15 
)
The value |K| is a lower bound for the quantity max [START_REF] Davis | Construction of relative difference sets in p-groups[END_REF], see also [START_REF] Carlet | Highly nonlinear mappings[END_REF][START_REF]Nonlinear functions in abelian groups and relative difference sets[END_REF].

Finally, characters allow us to give another characterization for APN functions:

Theorem 5. Let K and N be two finite Abelian groups. A function f : (2) Theorem 5 is well known for the elementary Abelian case (see [START_REF] Chabaud | Links between differential and linear cryptanalysis[END_REF]) and also known for the Abelian case [START_REF]Nonlinear functions in abelian groups and relative difference sets[END_REF]. It is one of the purposes of this paper to show that one can even extend it to the non-Abelian case.

K → N is almost perfect nonlinear if and only if χ |χ(D f )| 4 ≤ χ |χ(D g )| 4 ∀g : K → N . (16) 
In some particular cases, we know a lower bound for the sum of the fourth-power of the absolute value of χ(D f ). Indeed when K and N are two elementary Abelian 2-groups of order m, then it can be shown that for each f :

K → N , 2m 3 (m -1) ≤ χ =χ0 |χ(D f )| 4 (17) 
and since χ 0

(D f ) = |D f | = |K| = m, we have m 3 (3m -2) ≤ χ |χ(D f )| 4 . ( 18 
)
It is very important to note that these arguments only work in the elementary Abelian case: the proofs rely on the fact that the δ f (a, b) are always even in characteristic 2. We refer the reader to the original paper [START_REF] Chabaud | Links between differential and linear cryptanalysis[END_REF], see also [START_REF] Carlet | Highly nonlinear mappings[END_REF][START_REF]Nonlinear functions in abelian groups and relative difference sets[END_REF]. Together 

max χN =χ0 |χ(D f )| ≥ √ 2m . ( 19 
)
Moreover when n is odd, a function f : K → N is maximal nonlinear if and only if

max χN =χ0 |χ(D f )| = √ 2m . ( 20 
)
In this case, the function is almost perfect nonlinear and the lower bound given in inequality ( 18) is reached.

Contrary to the odd case, when n is even obviously the previous lower bound cannot be reached. The lowest possible value of max

χN =χ0 |χ(D f )| satisfies (see, for instance [9]) √ 2m < min f :K→N max χN =χ0 |χ(D f )| ≤ 2 √ m . (21) 
Moreover, the lowest known value corresponds to the upper bound.

Example 8. (1) The classical example of an almost perfect nonlinear function f :

F n 2 → F n 2 is f (x) = x 3
, where the group is identified with the additive group of the finite field F 2 n . This function is also maximum nonlinear if n is odd. In the n even case, it is a function where the largest nontrivial character value is 2 n+2 2 , hence the upper bound in ( 21) is reached, see [START_REF] Carlet | Vectorial boolean functions for cryptography[END_REF], for instance.

(2) Similarly, the classical example of a perfect nonlinear mapping is x 2 defined on F p n , p odd (this is folklore).

We note that recently many new perfect and almost perfect nonlinear functions have been discovered. It seems that the ideas to construct perfect and almost perfect nonlinear functions are somewhat similar, therefore the discovery of new almost perfect nonlinear functions did influence the investigation of perfect nonlinear functions which are of great interest in finite geometry. For the characteristic 2 case, we refer to [START_REF] Carlet | Vectorial boolean functions for cryptography[END_REF] and the references cited there, in particular [START_REF] Bracken | New families of quadratic almost perfect nonlinear trinomials and multinomials[END_REF][START_REF] Budaghyan | Classes of quadratic APN trinomials and hexanomials and related structures[END_REF][START_REF] Budaghyan | Two classes of quadratic APN binomials inequivalent to power functions[END_REF][START_REF] Edel | A new APN function which is not equivalent to a power mapping[END_REF][START_REF] Edel | A new almost perfect nonlinear function which is not quadratic[END_REF]; for the perfect nonlinear case see [START_REF] Bierbrauer | New semifields, PN and APN functions[END_REF][START_REF] Budaghyan | New commutative semifields defined by new PN multinomials[END_REF][START_REF] Budaghyan | New perfect nonlinear multinomials over F p 2k for any odd prime p[END_REF][START_REF] Zha | Perfect nonlinear binomials and their semifields[END_REF], for instance.

The purpose of this paper is to develop these ideas -almost perfect nonlinearity and maximum nonlinear functions -in a larger context than the classical elementary Abelian 2-groups, namely the case of finite non-Abelian groups. For this objective we introduce the appropriate notion of "non-Abelian characters" in the following section. Non-Boolean Almost Perfect Nonlinear Functions on Non-Abelian Groups 7

Basics on group representations

The reader may find the definitions and results listed below (and lot more) in the book [START_REF] Serre | Représentations linéaires des groupes finis[END_REF].

A (linear) representation of a finite group G is a pair (ρ, V ) where V is a finite-dimensional C-vector space and ρ is a group homomorphism from G to the linear group GL(V ). In practice the group homomorphism ρ is often identified with the representation (ρ, V ) and we may sometimes use the notation V ρ to refer to the second component of (ρ, V ). The dimension of the representation (ρ, V ) is defined as the dimension of the vector space V over the complex field and denoted by dim ρ. Two representations (ρ 1 , V 1 ) and (ρ 2 , V 2 ) of the same group G are said to be equivalent if there exists a vector space isomorphism

T : V 1 → V 2 such that for each g ∈ G, T • ρ 1 (g) = ρ 2 (g) • T . ( 22 
)
Two equivalent representations may be identified without danger. Continuing with definitions, a representation (ρ, V ) is irreducible if the only subvector spaces W of V so that (ρ(g))(W ) ⊆ W for every g ∈ G are the null-space and V itself. For practical purpose we identify the value ρ 0 (g) as the number 1 rather than the identity mapping of C or, in other terms, we identify ρ 0 (g) and its trace tr(ρ 0 (g)) = 1. We can also construct some linear representations from existing ones. For instance, given the dual sets of two finite groups K and N , one can build up the dual K × N of their direct product. This construction uses the notion of tensor product of two vector spaces. So let V 1 and V 2 be two complex vector spaces. We call tensor product of V 1 and V 2 a vector space W equipped with a bilinear mapping j : V 1 × V 2 → W such that the following property holds. For each C-vector space V 3 and for each bilinear mapping f : V 1 × V 2 → V 3 there exists one and only one linear mapping f : W → V 3 such that f • j = f . It can be shown that there is one and only one such vector space W (up to isomorphism). It is denoted by

V 1 ⊗ V 2 . Moreover if (e (1) k ) k is a basis of V 1 and (e (2)
ℓ ) ℓ is a basis of V 2 , then the family (j(e

(1)
k , e In particular for every vector space V , we have

(2) ℓ )) (k,ℓ) is a basis of W . This property shows that dim(V 1 ⊗ V 2 ) = dim(V 1 ) dim(V 2 ) . (23) 
V ⊗ C = C ⊗ V = V (equality up to isomorphism). For (v 1 , v 2 ) ∈ V 1 × V 2 , we denote j(v 1 , v 2 ) by v 1 ⊗ v 2 .
Since j (and therefore ⊗) is a bilinear mapping we have (αv

1 + βw 1 ) ⊗ v 2 = αv 1 ⊗ v 2 + βw 1 ⊗ v 2
and the corresponding equality holds for the second variable. So now let

ρ 1 : K → GL(V 1 ) and ρ 2 : N → GL(V 2 ) be two representations. Then we define a representation ρ 1 ⊗ ρ 2 of K × N in V 1 ⊗ V 2 by (ρ 1 ⊗ ρ 2 )(k, n) = ρ 1 (k) ⊗ ρ 2 (n) with (k, n) ∈ K × N . (24) 
Moreover, one can show that if ρ 1 and ρ 2 are both irreducible then ρ 1 ⊗ρ 2 is an irreducible representation of K × N . And reciprocally, every irreducible representation of K × N is equivalent to a representation of the form ρ 1 ⊗ ρ 2 , where ρ 1 (resp. ρ 2 ) is an irreducible representation of K (resp. N ). Given an irreducible representation ρ of K × N , we use ρ K and ρ N to denote the representations of K and N such that ρ is equivalent to ρ K ⊗ ρ N . A system of representatives of equivalence classes of irreducible representations of K × N is given by this way. Actually, the classes of representations of a given group G may be used to form a ring: just take the free Abelian group generated by all isomorphism classes of representations of G, mod out by the subgroup generated by elements of the form

ρ 1 + ρ 2 -(ρ 1 ⊕ ρ 2 ),
where ρ 1 ⊕ ρ 2 is the obvious direct sum of two (classes of) representations. It can be proved that the irreducible representations form a basis for this Z-module. The ring structure, called the representation ring of G, is then given simply by tensor product

ρ 1 ⊗ ρ 2 : g ∈ G → ρ 1 (g) ⊗ ρ 2 (g) ∈ GL(V 1 ⊗ V 2 )
, defined on these generators and extended by linearity. Note that every irreducible representation is equivalent to a unitary representation i.e. a representation ρ such that ρ(g -1 ) = ρ(g) * , where the star denotes the usual adjoint operation. Indeed, let ρ : G → GL(V ) be a representation of a finite group G, where V is an Hermitian space (together with a scalar product •, • ) and let us consider the following Hermitian product: x, y ρ = g∈G ρ(g)(x), ρ(g)(y) . It is easy to prove that for every x, y ∈ V and every g ∈ G, ρ(g)(x), ρ(g)(y) ρ = x, y ρ in such a way that ρ(g) is unitary with respect to •, • ρ for each g ∈ G. Therefore, in what follows we assume that G is actually a complete set of representatives of non-isomorphic irreducible representations, all of them being unitary.

We naturally extend a representation (ρ, V ) by linearity to an algebra homomorphism from C[G] to End (V ), the linear endomorphisms of V , by

ρ(D) = g∈G d g ρ(g) , (25) 
with D = g∈G d g g. As a particular case one can prove the following relations: for every ρ ∈ G, and End (V ρ ). Then the Fourier transform is the mapping

ρ(G) = 0 V if ρ = ρ 0 , |G| if ρ = ρ 0 (26) 
ρ∈ G dim ρ tr(ρ(g)) = |G| if g = 1 G , 0 if g = 1 G . (27 
F : C[G] → ρ∈ G End (V ρ ) D → D . (28) 
Note that in the case where G is a finite Abelian group, then every irreducible representation is one-dimensional and End (C) is isomorphic to C. Therefore for

D ∈ C[G], we have D ∈ ρ∈ G C ≃ C[ G].
The coefficients ρ(D) of the Fourier transform D of D are used in the sequel to study nonlinear properties of functions f : K → N in the general case where both K and N are finite groups, not necessarily commutative.

Almost perfect nonlinearity

In this section, we develop a Fourier characterization of APN functions in the non-Abelian setting, using group representations. We also introduce the relevant notion of bentness in this context and we show that, contrary to the classical case, this is not equivalent to perfect nonlinearity in this general framework.

Let G be a finite group. The following theorem is well known; we include a proof to keep the paper more self-contained. 

d g = 1 |G| ρ∈ G dim ρ tr (ρ(D) • ρ(g -1 )) (Fourier inversion) (29) g∈G |d g | 2 = 1 |G| ρ∈ G dim ρ ρ(D) 2 (Parseval's equation) ( 30 
)
where f is the trace norm of a linear endomorphism f given by f = tr (f • f * ). Proof. We have

ρ∈ G dim ρ tr (ρ(D) • ρ(g -1 )) = ρ∈ G tr ρ( h∈G d h h) • ρ(g -1 ) = h∈G d h ρ∈ G dim ρ tr (ρ(hg -1
)) (by linearity of the trace and ρ) = |G|d g (according to eq. ( 27)).

(31) This proves the Fourier inversion formula.

We have

DD (-1) = g∈G h∈G d h d g -1 h g . ( 32 
)
In particular the coefficient of the identity 1 G in this formal sum is

g∈G |d g | 2 .
We can also compute this coefficient by using the Fourier inversion on DD (-1) . It is given by

1 |G| ρ∈ G dim ρ tr(ρ(DD (-1) )) = 1 |G| ρ∈ G dim ρ tr(ρ(D) • ρ(D) * )) (since ρ is unitary) = 1 |G| ρ∈ G dim ρ ρ(D) 2 . ( 33 
)
We may assume that G is a set of unitary representatives of irreducible representations. Therefore Parseval's equation holds.

Using group representations we obtain an alternative formulation for almost perfect nonlinearity. Note that the definition of almost perfect nonlinearity given in eq. ( 2) holds for the Abelian as well as non-Abelian situation.

Theorem 10. Let K and N be two finite groups. Let G be the direct product 

K ×N . A function f : K → N is almost perfect nonlinear if and only if ρ∈ G dim ρ ρ(D f ) 4 ≤ ρ∈ G dim ρ ρ(D g ) 4 , ∀g : K → N . ( 34 
δ f (a, b) 2 = 1 |G| ρ∈ G dim ρ ρ(D f D (-1) f ) 2 = 1 |G| ρ∈ G dim ρ ρ(D f ) • ρ(D f ) * 2 = 1 |G| ρ∈ G dim ρ ρ(D f ) 4 . ( 35 
)
Because a function f : K → N is APN if and only if for every g :

K → N , (a,b)∈G δ f (a, b) 2 ≤ (a,b)∈G δ g (a, b) 2 , ( 36 
)
this concludes the proof.

Group representations can be used to find another criterion for the nonlinearity of functions. As before, K and N are both finite groups of order m and n, and f : K → N . For some ρ ∈ K × N , the values of ρ(D f ) are known:

ρ(D f ) = m if ρ = ρ 0 , 0 V if ρ = ρ K ⊗ ρ 0 and (ρ K , V ) is nonprincipal on K . ( 37 
)
Indeed first let us suppose that ρ is principal on G. Then we have

ρ 0 (D f ) = (a,b)∈G 1 D f (a, b)ρ 0 (a, b) = (a,b)∈G 1 D f (a, b) = |D f | = |K| = m . (38) 
Now let us suppose that ρ = ρ K ⊗ ρ 0 with (ρ K , V ) nonprincipal on K. Then we have 

ρ(D f ) = (a,b)∈G 1 D f (a, b)ρ K (a) ⊗ ρ 0 (b) = a∈K ρ K (a) ⊗ ρ 0 (f (a)) = a∈K ρ K (a) (since V ⊗ C = V ) = ρ K (K) = 0 V (

√

dim ρ ρ(D f ) is as small as possible, or in other terms (using the known values of ρ(D f ))

max ρN =ρ0 dim ρ ρ(D f ) ≤ max ρN =ρ0 dim ρ ρ(D g ) ∀g : K → N . (40) 
As in the Abelian case, we obtain the following lower bound for this quantity:

Theorem 11. Let f : K → N . Then max ρN =ρ0 dim ρ ρ(D f ) 2 ≥ m 2 (n -1) | K|(| N | -1) . (41) 
Proof. By Parseval's equation applied to D f , we have

1 |G| ρ∈ G dim ρ ρ(D f ) 2 = (a,b)∈G 1 D f (a, b) 2 = m . (42) 
So we have

ρ∈ G dim ρ ρ(D f ) 2 = |G|m = m 2 n . (43) 
We know some values of ρ(D f ) that allow us to compute the following sum:

ρN =ρ0 dim ρ ρ(D f ) 2 = ρ∈ G dim ρ ρ(D f ) 2 - ρN =ρ0 dim ρ ρ(D f ) 2 = m 2 n -dim ρ 0 ρ 0 (D f ) 2 =m 2 - ρN =ρ0, ρ =ρ0 dim ρ ρ(D f ) 2 =0
(according to eq. ( 43) and eq. ( 37)) = m 2 (n -1) .

(44) Now we need to evaluate the number of principal representations on N : it is equal to

| K|. Then there are | G| -| K| nonprincipal representations on N . But | G| = | K|| N |. Therefore we have max ρN =ρ0 dim ρ ρ(D f ) 2 ≥ m 2 (n -1) | K|(| N | -1) . ( 45 
)
The proof also shows that max In the Abelian case, the righthand side of this equivalence turns out to be the definition of bent functions since dim ρ = 1, | K| = m and | N | = n. It is well known that classical bentness is equivalent to perfect nonlinearity, as we stated before. Now if we take the righthand side of equivalence (46) as a natural definition for bentness in the non-Abelian case, we can prove this notion to be nonequivalent to perfect nonlinearity in many situations. Let us suppose that f : K → N is both perfect nonlinear and bent. Since f is perfect nonlinear its graph D f , as an element of Z[G], satisfies the famous group ring equation [START_REF] Davis | Construction of relative difference sets in p-groups[END_REF] for relative (m, n, m, m n ). difference sets So for (ρ, V ) ∈ G, we have

ρN =ρ0 dim ρ ρ(D f ) 2 = m 2 (n -1) | K|(| N | -1) ⇔ ∀ρ N = ρ 0 , ρ(D f ) 2 = Γ, (46) where Γ 
ρ(D f D (-1) f ) = mId V + λ(ρ(G) -ρ(N )) , (47) 
where Id V denotes the identity mapping of V . Now let us suppose that ρ N = ρ 0 . So we have ρ(G) = 0 V and ρ(N ) = ρ K (1 K ) ⊗ ρ N (N ) = 0 V according to eq. ( 26).

Then in this case we obtain:

ρ(D f D (-1) f ) = ρ(D f ) • ρ(D f ) * = mId V . (48) 
By using the trace on both sides of the last equality above, we have for

ρ N = ρ 0 ρ(D f ) 2 = m dim ρ. (49) 
But since f is bent, combining eq. ( 49) and the righthand side of equivalence (46),

m(n -1) = (dim ρ) 2 | K|(| N | -1) . ( 50 
)
This equality may hold if and only if dim ρ is the same for every ρ ∈ G such that ρ N = ρ 0 (we exclude the trivial case where |N | = 1); this is for instance the case if both K and N are Abelian. We can show that in the case where at least one of K or N is non-Abelian and distinct of its derived group a (for instance it is a non sovable group), and N , when Abelian, is not reduced to the trivial group, then the previous equality cannot hold and therefore perfect nonlinearity and bentness -as introduced by analogy -are nonequivalent and even paradoxical in this non-Abelian setting:

1. First let us suppose that N is a non-Abelian group such that N = [N, N ] (this is the case of non solvable groups). By assumption N has at least one irreducible representation of dimension d > 1 (it is ipso facto a nonprincipal representation), call it ρ 

N = d ′ d > dim ρ K ⊗ ρ (2) N = d ′ . a If
K ⊗ ρ N (for i = 1, 2) are both irreducible nonequivalent representations of G = K × N which are nonprincipal on N . We have dim ρ (1) K ⊗ ρ N = 1 < dim ρ (2) K ⊗ ρ N = d.

Some computational results and open questions

In this section we present some results given by formal computations using GAP [START_REF] Linton | Gap: groups, algorithms, programming[END_REF] and MAGMA [START_REF] Bosma | The Magma algebra system. I. the user language[END_REF]. There are three goals:

• Almost perfect nonlinearity, see Theorem 10: Minimize 

∀ρ N = ρ 0 , ρ(D f ) 2 = m 2 (n -1) dim ρ| K|(| N | -1) . 
We note that besides the bounds given in this paper, no general results for arbitrary groups are known. Here we do not want to give extensive computational results but we want to indicate some interesting phenomena which occur in the non-Abelian setting. Note that for groups K and N , we have to go through all mappings K → N , whose number is |N | |K| . Hence the approach to find "good" functions by a complete search is very limited, and it would be interesting to find theoretical constructions which are provable maximal nonlinear or almost perfect nonlinear. Let us begin with the two goups of order 6, the cyclic group Z 6 and the symmetric group S 3 . In Table 1, we list the "best" values (marked in boldface) both for the maximum nonlinearity as well as almost perfect nonlinearity.

It is remarkable that the measure of almost perfect nonlinearity is by far the least in the case (K, N ) = (S 3 , Z 6 ) and not in the Abelian case. Moreover, if (K, N ) = (S 3 , Z 6 ) each almost perfect nonlinear functions is also maximal nonlinear. This situation fails to be true in all the other cases where no almost perfect nonlinear function is also maximal nonlinear. We also made a complete search for the case of abelian groups of order 8 (Table 2). 
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The case K = N = Z 8 is of interest: Here the maximum character value is strictly smaller than 4, hence there is a function which is "better" than in the elementary-Abelian case b . In contrast to the other cases, this "smallest" maximum is not reached for the functions which minimize the sum of the fourth powers of the character values (which is 8960).

We also searched for bent functions from S 3 to a group N such that 1 < |N | ≤ 5. Note that, in contrast to the Abelian case, the existence question for bent functions K → N is also meaningful if |N | is not a divisor of |K|. The results that we obtained are as follows: First of all, there is no bent functions if N ∈ {Z 2 , Z 4 , Z 2 × Z 2 , Z 5 }. But there is (at least) one bent function f : S 3 → Z 3 . Indeed we can check that the map f defined by f (id ) = f ((1, 2)) = f ((2, 3)) = f ((1, 3)) = 0 and f ((1, 2, 3)) = f ((1, 3, 2)) = 1 is bent, that is to say that √ dim ρ ρ(D f ) = 2 √ 3 for all ρ|Z 3 = ρ 0 . The group S 3 has two one-dimensional representations and one two-dimensional representation, and Z 3 has three one-dimensional representations therefore ρ ∈ S 3 × Z 3 which is nonprincipal on Z 3 . Due to the fact that S 3 has a representation of dimension greater than 1, f is not perfect nonlinear (see the discussion at the end of the previous section).

Finally, we would like to raise some questions. Regarding these questions, both computational results as well as infinite families are, of course, welcome.

(1) Regarding the caracterisation of APN functions by mean of the sum ρ∈ G dim ρ ρ(D f ) 4 given in Theorem 10, it should be interesting to find some functions f : K → N for which this sum reaches some value which is better than the one in the classical case of elementary Abelian groups.

(2) Find functions f : K → N such that dim ρ ρ(D f ) 2 = m 2 (n-1)

| K|(| N|-1) for all ρ nonprincipal on N i.e. non-Abelian bent functions). dim ρ ρ(D f ) 2 < 2m, that is to say functions which are better than classical almost bent functions. Note that we found such an example for a mapping f : Z 8 → Z 8 .

  (a,b)∈G δ f (a, b) 2 ≤ (a,b)∈G δ g (a, b) 2 ∀g : K → N .

  and where χ K is a character of K and χ N a character of N . The characters of G can be naturally extended by linearity to homomorphisms of algebras from C[G] to C: if D = g∈G d g g ∈ C[G] and χ is a character of G, then χ(D) = g∈G d g χ(g) .

Theorem 3 (

 3 Inversion formula) Let G be an Abelian group, and let D = g∈G d g g be an element in C[G]. Then d g = 1 |G| χ∈ Ĝ χ(D) • χ(g -1 ). Corollary 4 (Parseval's equation) Let G be an Abelian group. For D = g∈G d g g in C[G], we have

) 2 :

 2 Proof. (sketch) As before, let G = K × N . Consider the coefficient of the identity element in (D g D (-1) g this is precisely (a,b)∈G δ g (a, b) 2 .. Therefore, minimizing (a,b)∈G δ g (a, b) 2 is equivalent to minimizing χ |χ(D g )| 4 . Remark 6. (1) If all character values χ(D f ) with χ N = χ 0 are the same, then an almost perfect nonlinear function is actually perfect nonlinear.
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  Laurent Poinsot, Alexander Pott with Corollary 4, inequality (17) yields yet another lower bound for the quantity max χN =χ0 |χ(D f )| in the elementary Abelian case: Theorem 7 ([11]) Let f : K → N where K and N are elementary Abelian 2groups of order m = 2 n . Then
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  ) For D ∈ C[G] we may define its Fourier transform as D = ρ∈ G ρ(D)ρ, which can be identified with (ρ(D)) ρ∈ G ∈ ρ∈ G

Theorem 9 (

 9 Fourier inversion, Parseval's equation) Let D = g∈G d g g be an element in the group algebra C[G]. Then the following holds:

)

  Proof. We have D f D (-1) f = (a,b)∈G δ f (a, b)(a, b). So using Parseval's equation we March 9, 2011 12:25 WSPC/INSTRUCTION FILE Poinsot-Pott-march2011.hyper29341 Non-Boolean Almost Perfect Nonlinear Functions on Non-Abelian Groups 11 obtain: (a,b)∈G

= m 2

 2 (n -1) dim ρ| K|(| N | -1) . 9, 2011 12:25 WSPC/INSTRUCTION FILE Poinsot-Pott-march2011.hyper29341 Non-Boolean Almost Perfect Nonlinear Functions on Non-Abelian Groups 13

( 1 )

 1 N . Since the number of one-dimensional representations of N is exactly |N/[N, N ]|, there is also at least one such representation which is nonprincipal(for if |N/[N, N ]| = 1 then N = [N, N ]). Call ρ (2)N one of them.. Now let ρ K be any d ′ -dimensional irreducible representation of K, then ρ K ⊗ ρ

N

  (for i = 1, 2) are both irreducible nonequivalent representations of G = K × N which are non principal on N . We have dim ρ K ⊗ ρ[START_REF] Bierbrauer | New semifields, PN and APN functions[END_REF] 

  ρ∈ G dim ρ ρ(D f ) 4 for functions f : K → N , where G = K × N . • Maximal nonlinearity, see eq. (40): Minimize the maximum of dim ρ ρ(D f ) for all f : K → N . • Bentness, see eq. (46): Find functions f : K → N such that

= 12 .

 12 We have dim ρ ρ(D f ) = 2 √ 3 for each representationb An example of the graph of such a function is {(0, 0),[START_REF] Bierbrauer | New semifields, PN and APN functions[END_REF][START_REF] Budaghyan | Classes of quadratic APN trinomials and hexanomials and related structures[END_REF], (2, 7),[START_REF] Bosma | The Magma algebra system. I. the user language[END_REF][START_REF] Budaghyan | New commutative semifields defined by new PN multinomials[END_REF], (4, 7),[START_REF] Budaghyan | Classes of quadratic APN trinomials and hexanomials and related structures[END_REF][START_REF] Bracken | New families of quadratic almost perfect nonlinear trinomials and multinomials[END_REF],[START_REF] Budaghyan | Two classes of quadratic APN binomials inequivalent to power functions[END_REF][START_REF] Budaghyan | Classes of quadratic APN trinomials and hexanomials and related structures[END_REF],[START_REF] Budaghyan | New commutative semifields defined by new PN multinomials[END_REF][START_REF] Bracken | New families of quadratic almost perfect nonlinear trinomials and multinomials[END_REF])}

( 3 )

 3 Find functions f : K → N with |K| = |N | = 2 n = m (n even so that there are no almost bent functions) such that max ρN =ρ0 dim ρ ρ(D f ) 2 < 4m, that is to say functions which are better than the known maximum nonlinear functions in the elementary-Abelian case. (4) Find functions f : K → N with |K| = |N | = 2 n = m (n odd, so that there are almost bent functions) such that max ρN =ρ0

  for a nonabelian group H, H = [H, H] then H is not a simple group. Secondly, let us suppose that K is a non-Abelian group such that K = [K, K] and, if N is non-Abelian then N = [N, N ] and if N is Abelian then it is not reduced to the trivial group, i.e., |N | > 1. According to case 1., we already know that K has at least one nonprincipal one-dimensional representation, call it ρ K . If N is Abelian, since it is not the trivial group, it has at least one nonprincipal (one-dimensional) representation. According to 1., this is also the case if N is non-Abelian and N = [N, N ]; call ρ N this representation. Then ρ
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	2. (1) K , and at least one irreducible representation of dimension d > 1, call it ρ (2)
		(i)

Table 1 .

 1 Non-Abelian groups K, N of order 6, f : K → N
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	K	N	min g:K→N	ρ∈ G	dim ρ ρ(Dg ) 4	min g:K→N	max ρ| N =ρ 0	dim ρ ρ(Dg )
	S 3 Z 6 S 3 Z 6	Z 6 S 3 S 3 Z 6		2376 3972 3552 2808		4 √ 4 2 √ 14 2 2 √ 3

Table 2 .

 2 Abelian groups K, N of order 8, f : K