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Abstract. We establish two new formulations of the membrane problem by working in the space
of W 1,p

Γ0
(Ω, R3)-Young measures and W 1,p

Γ0
(Ω,R3)-varifolds. The energy functional related to these

formulations is obtained as a limit of the 3d formulation of the behavior of a thin layer for a suitable
variational convergence associated with the narrow convergence of Young measures and with some weak
convergence of varifolds. The interest of the first formulation is to encode the oscillation informations
on the gradients minimizing sequences related to the classical formulation. The second formulation
moreover accounts for concentration effects.
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1. Introduction

Let ω be an open bounded subset of R2 and consider a thin layer of size ε > 0, whose reference configuration
Ωε = ω×(0, ε) is filled up by some elastic material. The structure is assumed to be clamped on Γ0,ε = γ0×(0, ε)
where γ0 is a part of the boundary of ω with non null one dimensional Lebesgue measure.

The stored strain energy associated with a deformation field u : Ωε −→ R3 is given by an integral functional

Fε(u) =
∫

Ωε

f(∇u) dx

associated with an elastic density function f satisfying classical growth conditions. The equilibrium configuration
of the structure is given by the optimization problem:

(Pε) inf
{
Fε(u) −

∫
Ωε

gε.u dx : u ∈W 1,p
Γ0,ε

(Ωε,R3)
}

where
Lε(u) =

∫
Ωε

gε.u dx
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denotes the exterior loading associated with applied body forces gε living in Lq(Ωε,R3), and W 1,p
Γ0,ε

(Ωε,R3) the
space of all the functions of W 1,p(Ωε,R3) having a null trace on Γ0,ε.

We assume that this mechanical structure is occupied by a material which undergoes reversible solid/solid
phase transformations as for instance some cristalline solids, so that the elastic density energy f may possess
various potential wells and is not quasiconvex. Consequently the total energy presents a lack of lower semi-
continuity related to the weak convergence on W 1,p

Γ0,ε
(Ωε,R3) and (Pε) has no solution in general. Moreover,

even if some lower semicontinuity hypothesis is imposed, due to the small parameter ε, the three dimensional
problem (Pε) is not well fitted to numerical treatment.

After rescalling the problem in order to work in the fixed Sobolev space W 1,p
Γ0

(Ω,R3), Ω = ω×(0, 1), equipped
with its weak convergence, a classical procedure for obtaining a good formulation of the membrane problem,
consists in computing the Γ-limit of a rescaled functional F̃ε when ε goes to zero (see [9]). In our case, this
strategy has the disadvantage to “quasiconvexify” the density of the limit functional, so that the limit problem
does not provide information on the oscillations of gradients minimizing sequences of (Pε) and does not account
for “bidimensional” microstructures. More precisely, the limit energy is an integral functional whose density is
the quasiconvexication of the function f0 defined for every 3 × 2 matrix λ̂, by f0(λ̂) = inf{f(λ̂, ξ), ξ ∈ R3}.

An alternative way, described in this paper, consists in “enlarging” the space of admissible functions by
considering a subspace of the set Y(Ω;M3×3) of Young measures µ = (µx)x∈Ω ⊗L (µx is a probability measure
on M3×3, L is the Lebesgue measure on Ω), well adapted to capture oscillations of the gradients. The func-
tional F̃ε is written in term of Young measure argument and we compute a suitable “variational limit” of the
new formulation when ε goes to zero. The two limit problems give the same minimum energy value. Moreover
there is some important connexions between them, as, for instance, the fact that each gradient Young solutions
encodes oscillations of gradient minimizing sequences of (Pε) and its barycenter field is the gradient of a solution
of the classical limit problem. We would like to point out that the expression of the limit functional energy allow
us to suggest a modeling which may account for microstructures in thin film. We recover the important result
of Bhattacharya and James [3] which predicts the existence of exact untwinned austenite/martinsite interfaces.

In a second stage, we intend to capture possible concentration of gradients minimizing sequences (∇uε)ε>0

of (Pε). Following the previous idea, we introduce a new formulation of the membrane problem in term of W 1,p-
varifolds, a recent concept introduced in [6] for analyzing oscillation and concentration effects. The basic idea
is that concentrations of (∇uε)ε>0 are encoded by the singular part of the weak limit of the measure |∇uε|pL
through the recession function f∞

0 of degree p of the function f0. Since f∞
0 (∇̂u)L̂ = f∞

0 (∇̂u/|∇̂u|)|∇̂u|pL̂,
where ∇̂u denotes the tangential gradient of u and L̂ the Lebesgue measure on ω, we are lead to also describe
the functional F̃ε in term of the measures of the type (δ ∇u

|∇u| (x))x∈Ω ⊗ |∇u|pL.
The paper is organized as follows. In Section 2, we recall the classical formulation of (Pε) and the limit

problem (P). Section 3 is devoted to the functional analysis setting related to the Young measure and vari-
fold formulations. In Section 4 we introduce the Young measure formulations of (Pε) and the expected limit
problem (P). We establish the main Theorem 2 and its corollaries. Finally, in Section 5 we give a W 1,p

Γ0
(Ω,R3)-

varifold formulation and establish the main Theorem 3.
During the writing of this paper, we have been aware of the work of [7] which treats the membrane problem

by capturing only oscillations in a quite similar way.

2. The classical formulation

In order to take into account large purely elastic deformation, the constitutive law of the deformable body is
associated to a non convex elastic density f satisfying growth and continuity conditions of order p > 1: there
exists three positive constants α, β, L such that

∀a ∈ M3×3, α|a|p ≤ f(a) ≤ β(1 + |a|p) (1)
∀a, b ∈ M3×3, |f(a) − f(b)| ≤ L|b− a|(1 + |a|p−1 + |b|p−1). (2)
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The stored strain energy associated with a deformation field u : Ωε → R3 is given by the integral functional
F : Lp(Ωε,R3) −→ R ∪ {+∞} defined by

Fε(u) =




1
ε

∫
Ωε

f(∇u) dx if u ∈W 1,p
Γ0,ε

(Ωε,R3)

+∞ otherwise.

The scaling parameter ε−1 accounts for the stiffness of the material. In the linearized elasticity framework, it
corresponds to Lamé coefficients of order ε−1.

The structure is subjected to applied body forces gε : Ωε −→ R3 for which we make the following assumption:
there exists a vector valued function g : Ω = ω × (0, 1) −→ R3, g ∈ Lq(Ω,R3) (1/p + 1/q = 1), such that
εgε(x̂, εx3) = g(x), x = (x̂, x3). The exterior loading is

Lε(u) =
∫

Ωε

gε.u dx

so that the equilibrium configuration is given by the displacement vector fields uε, solutions of the problem:

inf
{
Fε(u) − Lε(u) : u ∈ Lp(Ωε,R3)

}
.

Due to the very small thickness ε of the layer Ωε, for computing an approximate equilibrium deformation field,
it is illusory to make use of finite element method. The variational property of Γ-convergence would give us
a new procedure: by letting ε go to zero, to find a new (fictitious) material occupying the two dimensional
membrane ω and to compute an approximate equilibrium displacement field by means of a two dimensional
finite element method related to a discretization of the new structure. This scheme has been described in [9]
and the limit problem is given by

inf
{
F (u) − L(u) : u ∈ Lp(Ω,R3)

}
where

F (u) =




∫
Ω

Qf0(∇̂u) dx if u ∈W 1,p
Γ0

(Ω,R3),
∂u

∂x3
= 0,

+∞ otherwise,
Qf0 denotes the quasiconvexification of the function f0 defined by

f0(λ̂) = inf{(λ̂, ξ), ξ ∈ R3}.

For the definition and main properties of the quasiconvexification we refer the reader to [4]. The functional L
is defined by

L(u) =
∫

ω

g.u dx, g(x̂) =
∫ 1

0

g(x̂, s) dx.

As said in introduction, we would like to moreover capture the oscillations and possible concentrations of gradient
minimizing sequences of problems (Pε) and we adopt the following strategy: we formulate the problem (Pε)
in terms of W 1,p

Γ0
(Ω,R3)-Young measure or W 1,p

Γ0
(Ω,R3)-varifold and we compute a suitable variational limit

when ε goes to zero.
In order to work in the fixed space Lp(Ω,R3), Ω = ω×(0, 1), the change of scale (x̂, x3) = (x̂, εx′3) transforming

(x̂, x3) ∈ Ωε into (x̂, x′3) ∈ Ω leads to the following equivalent optimization problem:

inf
{
F̃ε(v) −

∫
Ω

g.v dx : v ∈ Lp(Ω,R3)
}
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where

F̃ε(v) =




∫
Ω

f

(
∇̂v, 1

ε

∂v

∂x3

)
dx if v ∈W 1,p

Γ0
(Ω,R3)

+∞ otherwise,

Γ0 = γ0 × (0, 1), ∇̂v denotes the tangential gradient of v defined by ∇̂v = ( ∂vi

∂xj
)i=1,2,3, j=1,2.

Note that if the magnitude of the stiffness and of the forces are of order one, this result shows that the total
energy of the structure is equivalent to ε(F − L) in a variational sense.

All the results of the paper remain valid when working with a density f dependaing on the plane variable x̂,
provided that growth conditions be uniform on x̂.

3. Some suitable sets for capturing oscillations and concentration effects

3.1. Young measures and varifolds parametrized on Ω

We denote the sets of 3 × 3 and 3 × 2 matrices with real numbers entries by M3×3 and M3×2, respectively,
and their unit spheres by S3×3 and S3×2. Considering the space M3×3 as the product M3×2 × R3, we will
denote by λ̂ the first coordinate in M3×2 of any element λ of M3×3.

We define the sets of Young measures Y3×3(Ω) and varifolds YV3×3(Ω), parametrized on Ω, as follows:

µ ∈ Y3×3(Ω) ⇐⇒ µ ∈ M+(Ω ×M3×3) and PΩ#µ = L,
YV3×3(Ω) = Y3×3(Ω) × M+(Ω × S3×3)

where PΩ#µ denotes the image of the measure µ by the projection PΩ : Ω ×M3×3 → Ω.
We now define the space Cb(Ω;M3×3) of all Carathéodory integrands, namely, the space of all measurable

functions ψ : Ω ×M3×3 → R such that

i) ψ(x, .) is bounded continuous on M3×3 for every x ∈ Ω;
ii) x �→ ‖ψ(x, .)‖∞ is Lebesgue integrable.

On the other hand, classically, we denote by C0(Ω×S3×3) the space of all continuous functions ϕ : Ω×S3×3 → R
vanishing on the boundary ∂Ω × S3×3.

Let us recall that the narrow convergence of a sequence (µn)n∈N to µ in Y3×3(Ω) and the weak convergence
of a sequence (θn)n∈N to θ in M+(Ω × S3×3) are defined as follows:

µn
nar
⇀ µ ⇐⇒ lim

n→+∞

∫
Ω×M3×3

ψ(x, λ) dµn =
∫

Ω×M3×3
ψ(x, λ) dµ

for all ψ ∈ Cb(Ω;M3×3),

θn ⇀ θ ⇐⇒ lim
n→+∞

∫
Ω×S3×3

ϕ(x, λ) dθn =
∫

Ω×S3×3
ϕ(x, λ) dθ

for all ϕ ∈ C0(Ω × S3×3).
In all the paper, we equip Y3×3(Ω) with the narrow convergence denoted by nar

⇀ and YV3×3(Ω) with the
product of the narrow convergence on Y3×3(Ω) and the weak convergence on M+(Ω × S3×3) denoted by ⇀.

We now define the two following subspaces E∇Y3×3(Ω) and E∇YV3×3(Ω) of respectively Y3×3(Ω) and
YV3×3(Ω) whose elements will be called respectively elementary W 1,p

Γ0
(Ω,R3)-Young measures and elementary
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W 1,p
Γ0

(Ω,R3)-varifolds:

µ ∈ E∇Y3×3(Ω) ⇐⇒ ∃u ∈W 1,p
Γ0

(Ω,R3), µ = (δ∇u(x))x∈Ω ⊗ L,

(µ, θ) ∈ E∇YV3×3(Ω) ⇐⇒




∃u ∈ W 1,p
Γ0

(Ω,R3) s.t.:

µ = (δ∇u(x))x∈Ω ⊗ L,
θ = (δ ∇u

|∇u| (x))x∈Ω ⊗ |∇u|pL.

The Young measure µ and the varifold (µ, θ) will be said to be associated with the function u. Note that if
(µ, θ) in E∇YV3×3(Ω) is associated with u, then

∫
Ω×M3×3

ψ(x, λ) dµ =
∫

Ω

ψ(x,∇u) dx

and ∫
Ω×S3×3

ψ(x, λ) dθ =
∫

Ω

ψ(x,
∇u
|∇u|)|∇u|

pdx

whenever each integral exists.
We denote the sequential closures of E∇Y3×3(Ω) and E∇YV3×3(Ω), respectively, by ∇Y3×3(Ω)

and ∇YV3×3(Ω). Their elements are respectively calledW 1,p
Γ0

(Ω,R3)-Young measures andW 1,p
Γ0

(Ω,R3)-varifolds.
A sequence (uε)ε>0 whose associated sequence ((µε, θε))ε>0 of elementary W 1,p

Γ0
(Ω,R3)-varifolds tends to a

W 1,p
Γ0

(Ω,R3)-varifold (µ, θ) will be called generating the couple (µ, θ).
Let (µ, θ) be a W 1,p

Γ0
(Ω,R3)-varifold generated by (uε)ε>0 and let us denote by π the image π = PΩ#θ of θ

by the projection PΩ : Ω × S3×3 → Ω. Obviously, π is nothing but the weak limit of the measure |∇uε|pL.
According to the Slicing theorem (see [12,13] and Th. 4 of the Appendix), for every (µ, θ) in YV3×3(Ω), there

exists a family of probability measures (µx)x∈Ω on M3×3 and a family (θx)x∈Ω of probability measures on S3×3

such that
µ = (µx)x∈Ω ⊗ L
θ = (θ)x∈Ω ⊗ π.

Let us consider the Lebesgue-Nikodym decomposition of the measure π:

π =
dπ
dLL + πs.

We have the following characterization of W 1,p
Γ0

(Ω,R3)-varifolds for p > 1 (see [6]):

Theorem 1. A pair (µ, θ) is a W 1,p
Γ0

(Ω,R3)-varifold iff the four following assertions hold

(i) there exists u ∈ W 1,p
Γ0

(Ω,R3) such that ∇u(x) =
∫
M3×3 λ dµx(λ), L a.e. x ∈ Ω;

(ii) ψ(∇u(x)) ≤ ∫
M3×3 ψ(λ)dµx(λ), L a.e. x ∈ Ω, for every quasiconvex function ψ satisfying classical

growth conditions of order p:
|ψ(λ)| ≤ β(1 + |λ|p);

(iii)
∫
M3×3 ψ(λ)dµx(λ) ≤ dπ

dL(x)
∫
S3×3 ψ(λ)dθx(λ), L a.e. x ∈ Ω, for every p-homogeneous continuous func-

tion ψ such that Qψ(0) = 0, where Qψ denotes the quasiconvexification of ψ;

(iv)
∫
S3×3 ψ(λ)dθx(λ) ≥ 0, πs a.e. x ∈ Ω for every p-homogeneous continuous function ψ such that
Qψ(0) = 0.
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Remark 1.
1) Note that, using condition (iii) with ψ(λ) = |λ|p we obtain

∫
Ω×M3×3

|λ|p dµ(x, λ) < +∞ (iii)′

and Theorem 1 then yields (i), (ii), (iii)’, a well known characterization of W 1,p
Γ0

(Ω,R3)-Young measures µ (see
[8, 10, 11]).

2) The singular measure πs encodes concentrations effects of the sequence (∇uε)ε>0 generating θ (see various
examples in [6]).

The two following subspaces ∇Y3×2,0(Ω) ⊂ ∇Y3×3(Ω) and ∇YV3×2,0(Ω) ⊂ ∇YV3×3(Ω) defined below will
play an essential role in the Young measure and varifold formulation of the nonlinear membrane problem:

µ ∈ ∇Y3×2,0(Ω) ⇐⇒




∃(uε)ε>0 bounded in W 1,p
Γ0

(Ω,R3) s.t.

(δ∇uε(x))x∈Ω ⊗ L nar
⇀ µ

(δ∇̂uε(x))x∈Ω ⊗ L nar
⇀ µ̂

µx = µ̂x ⊗ δ0,

(3)

where (δ∇̂uε(x))x∈Ω ⊗ L nar
⇀ µ̂ must be taken in the sense of the narrow convergence in the space Y3×2(Ω) of

Young measures parametrized on Ω, with values in M3×2 and (µ̂x)x∈Ω is the family of probability measures
on M3×2 stemming from the disintegration of the Young measure µ̂. To summarize, will write µ = µ̂⊗ δ0;

(µ, θ) ∈ ∇YV3×2,0(Ω) ⇐⇒




∃(uε)ε>0 s.t. (3) holds and

(δ ∇uε
|∇uε| (x))x∈Ω ⊗ |∇u|pL⇀ θ

(δ ∇̂uε
|∇̂uε| (x)

)x∈Ω ⊗ |∇̂uε|pL⇀ θ̂

PΩ#θ = PΩ#θ̂ := π

θx = H#θ̂x π a.e. x ∈ Ω

(4)

where (δ ∇̂uε
|∇̂uε| (x)

)x∈Ω ⊗ |∇̂uε|pL ⇀ θ̂ must be taken in the sense of the weak convergence in M+(Ω × S3×2),

(θx)x∈Ω and (θ̂x)x∈Ω are the familly of probability measures on the unit spheres S3×3 and S3×2 of M3×3 and
M3×2, stemming from the desintegration of the measures θ and θ̂ with respect to π. The map H is the extension
operator H : S3×2 → S3×3 defined by H(λ̂) = (λ̂, 0).

It is worth noticing the similarity between (3) and (4). Indeed µx in (3) is nothing but H#µ̂x if we extend
H into the map M3×2 → M3×3, λ̂ �→ (λ̂, 0).

3.2. Young measures and varifolds parametrized on ω

Similarly we denote by Y3×2(ω) and YV3×2(ω) the spaces of Young measures and varifolds parametrized
on ω, defined by:

µ ∈ Y3×2(ω) ⇐⇒ µ ∈ M+(ω ×M3×2) and Pω#µ = L̂,
YV3×2(ω) = Y3×2(ω) × M+(ω × S3×2)

where L̂ denotes the Lebesgue measure on ω and Pω#µ the image measure of µ by the projection Pω : ω ×
M3×2 → ω.
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We equip Y3×2(ω) with the narrow convergence and YV3×2(ω) with the product of the narrow convergence
on Y3×2(ω) and the weak convergence on M+(ω × S3×2).

We now define the subspaces of elementary W 1,p
γ0

(ω,R3)-Young measures and elementary W 1,p
γ0

(ω,R3)-
varifolds as follows:

ν ∈ E∇Y3×2(ω) ⇐⇒ ∃u ∈ W 1,p
γ0

(ω,R3), ν = (δ∇u(x̂))x̂∈ω ⊗ L̂,

(ν,m) ∈ E∇YV3×2(ω) ⇐⇒




∃u ∈W 1,p
γ0

(ω,R3) s.t. :

ν = (δ∇u(x̂))x̂∈ω ⊗ L̂,

m =
( ∇u
|∇u| (x̂)

)
x̂∈ω

⊗ |∇u|pL̂.

The spaces ∇Y3×2(ω) and ∇YV3×2(ω) of W 1,p
γ0

(ω,R3)-Young measures and W 1,p
γ0

(ω,R3)-varifolds are the se-
quential closures of E∇Y3×2(ω) and E∇YV3×2(ω) respectively. The analague of Theorem 1 holds with obvious
adaptations.

3.3. From parameters in Ω to parameters in ω: the mean operators Θ and Ξ

We now define the two operators Θ from ∇Y3×2,0(Ω) into Y3×2(ω) and Ξ from ∇YV3×2,0(Ω) into YV3×2(ω)
as follows:

Θ : ∇Y3×2,0(Ω) −→ Y3×2(ω)

µ = µ̂⊗ δ0 �→ µ̂, with µ̂x̂ :=
∫ 1

0

µ̂x̂,s dx;

Ξ : ∇YV3×2,0(Ω) −→ YV3×2(ω)

(µ, θ) �→ (µ̂, θ̂) with θ̂x̂ :=
∫ 1

0

θ̂x̂,s dπx̂(s), θ̂ = (θ̂x̂)x̂∈ω ⊗ πω,

where µ̂, θ̂ are the measures defined in (3), (4) and (πx̂)x̂∈ω is the familly of probability measures on (0, 1)
stemming from the desintegration of the measure π with respect to its projection πω on ω:

π = (πx̂)x̂∈ω ⊗ πω , πω = Pω#π.

Proposition 1. The images of ∇Y3×2,0(Ω) and ∇YV3×2,0(Ω) by the two maps Θ and Ξ are exactly the two
spaces ∇Y3×2(ω) and ∇YV3×2(ω).

Proof. a) Let us prove Θ(∇Y3×2,0(Ω)) ⊂ ∇Y3×2(ω). Let ν = Θ(µ) with µ ∈ ∇Y3×2,0(Ω). We must establish
that ν satisfies the conditions (i), (ii) of Theorem 1 and (iii)’ of Remark 1. Since µ belongs to ∇Y3×2,0(Ω) there
exists uε in W 1,p

Γ0
(Ω,R3) such that (3) holds. Let u be a cluster point of (uε)ε>0 in W 1,p

Γ0
(Ω,R3). Classically,

we have, for a.e. x in Ω,

∇u(x) =
∫
M3×3

λ dµx.

According to (3), we also have for a.e. x in Ω,

∇u(x) =
(∫

M3×2
λ̂ dµ̂x, 0

)
(5)
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so that u does not depends on the variable x3, and u ∈ W 1,p
γ0

(ω,R3). Integrating (5) over (0, 1) gives, for a.e.
x̂ in ω

∇̂u(x̂) =
∫
M3×2

λ̂ dµ̂x̂

=
∫
M3×2

λ̂ dνx̂

which proves (i).
Let now ψ : M3×2 −→ R be a W 1,p(ω,R3)-quasiconvex function satisfying |ψ(λ̂)| ≤ β(1 + |λ̂|p) and set

ψ̃(λ) := ψ(λ̂) which defines a W 1,p(Ω,R3)-quasiconvex function satisfying |ψ̃(λ)| ≤ β(1 + |λ|p). Since µ belongs
to ∇Y3×3(Ω), (ii) holds and, for a.e. x in Ω,

ψ
(
∇̂u(x̂)

)
= ψ̃ (∇u(x)) ≤

∫
M3×3

ψ̃(λ) dµx

=
∫
M3×2

ψ(λ̂) dµ̂x. (6)

Integrating (6) on (0, 1) gives, for a.e. x̂ in ω,

ψ(∇̂u(x̂)) ≤
∫
M3×2

ψ(λ̂) dµ̂x̂

which proves (ii). Assertion (iii’) may be easily established and left to the reader.

b) We prove ∇Y3×2(ω) ⊂ Θ(∇Y3×2,0(Ω)). Let ν ∈ ∇Y3×2(ω) and (vε)ε>0 a bounded sequence in W 1,p
γ0

(ω,R3)
generating ν. We set

uε(x) = vε(x̂).

Let us now consider the measures µε = (δ∇uε(x))x∈Ω ⊗ L and µ̂ε = (δ∇̂uε(x))x∈Ω ⊗ L in respectively Y3×3(Ω)
and Y3×2(Ω). It is easily seen that the sequences (µε)ε>0 and (µ̂ε)ε>0 are tight so that, from Prokhorov’s
theorem (see Th. 5 in Appendix), there exit µ ∈ ∇Y3×3(Ω) and µ̂ ∈ Y3×2(Ω) satisfying

µε
nar
⇀ µ,

µ̂ε
nar
⇀ µ̂.

Since moreover ∂uε

∂x3
= 0, one easily deduce

µx = µ̂x ⊗ δ0.

Consequently µ belongs to ∇Y3×2,0(Ω).
It remains to establish that µ̂x̂ = νx̂. Since ∇̂uε = ∇vε in Lp(Ω,R3), the sequences (∇̂uε)ε>0 and (∇vε)ε>0

generate the same Young measure in Y3×2(Ω). As moreover (∇uε)ε>0 generates ν ⊗ dx3, one has µ̂ = ν ⊗ dx3

so that µ̂x̂ = νx̂.

c) We establish Ξ(∇YV3×2,0(Ω)) ⊂ ∇YV3×2(ω). Let (ν,m) = Ξ(µ, θ) with (µ, θ) ∈ ∇YV3×2,0(Ω)). According
to a) and b) above, it remains to establish iii) and iv).

Let ψ be a p-homogeneous continuous function on M3×2 satisfying Qψ(0) = 0 where Qψ denotes the
quasiconvexification of ψ on M3×2 and set ψ̃ : M3×3 → R defined, for every λ ∈ M3×3, by ψ̃(λ) = ψ(λ̂). It
is easily seen that ψ̃ is a p-homogeneous continuous function on M3×3 and that Qψ̃(0) = 0 where Qψ̃ now
denotes the quasiconvexification of ψ̃ on M3×3.
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Since (µ, θ) is a W 1,p
Γ0

(Ω,R3)-varifold, from iii) and iv) of Theorem 1, we deduce that for all Borel subset B
of ω:

∫
Ω

1B(x̂)
∫
S3×3

ψ̃(λ) dθx(λ)dπs(x) +
∫

Ω

1B(x̂)
[

dπ
dL (x)

∫
S3×3

ψ̃(λ) dθx(λ) −
∫
M3×3

ψ̃(λ) dµx(λ)
]

dx

=
∫

Ω

1B(x̂)
[ ∫

S3×3
ψ̃(λ) dθx(λ)

]
dπ(x) −

∫
Ω

1B(x̂)
[ ∫

M3×3
ψ̃(λ) dµx(λ)

]
dx ≥ 0.

Now, since (µ, θ) belongs to ∇YV3×2,0(Ω), θx = H#θ̂x and µx = µ̂x ⊗ δ0. Moreover, taking into account that
ψ̃(λ) = ψ̃(λ̂, 0), we obtain

∫
Ω

1B(x̂)
[ ∫

S3×2
ψ̃(λ̂, 0) dθ̂x

]
dπ(x) −

∫
Ω

1B(x̂)
[ ∫

M3×2
ψ̃(λ) dµ̂x

]
dx ≥ 0. (7)

Let us consider the slicing decomposition of π: π = (πx̂)x̂∈ω⊗πω where πω is the projection of π on ω. According
to the slicing Theorem 4 (cf Appendix) applied to the first term of (7) and to Fubini’s theorem for the second
term, (7) becomes

∫
B

[ ∫ 1

0

∫
S3×2

ψ(λ̂) dθ̂x̂,sdπx̂(s)
]
dπω(x̂) −

∫
B

[∫ 1

0

∫
M3×2

ψ(λ̂) dµ̂x̂,sdx
]

dx̂ ≥ 0

that is, with the definition of the probability measures mx̂ and νx̂,

∫
B

[ ∫
S3×2

ψ(λ̂) dmx̂

]
dπω(x̂) −

∫
B

[ ∫
M3×2

ψ(λ̂) dνx̂

]
dx̂ ≥ 0. (8)

Collecting the regular and singular part in (8), according to the Lebesgue-Nikodym decomposition of the
measure πω

πω =
dπω

dL̂ L̂ + πω
s ,

we obtain ∫
B

[ ∫
S3×2

ψ dmx̂

]
dπω

s (x̂) +
∫

B

[
dπω

dL̂ (x̂)
∫
S3×2

ψ dmx̂ −
∫
M3×2

ψ dνx̂

]
dx̂ ≥ 0.

As the measures πω
s and L̂ are mutually singular, we deduce

dπω

dL̂ (x̂)
∫
S3×2

ψ dmx̂ −
∫
M3×2

ψ̃ dνx̂ ≥ 0 L̂ a.e. x ∈ ω,

∫
S3×2

ψ dmx̂ ≥ 0 πω
s a.e. x ∈ ω,

which ends the proofs of (iii) and (iv).

d) We establish ∇YV3×2(ω) ⊂ Ξ(∇YV3×2,0(Ω)). Let (ν,m) ∈ ∇YV3×2(ω) and (vε)ε>0 generating (ν,m),
that is to say:

(δ∇vε(x̂))x̂∈ω ⊗ L̂ nar
⇀ ν(

δ ∇vε
|∇vε| (x̂)

)
x̂∈ω

⊗ |∇vε|pL̂⇀ m.
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Let us consider the function uε ∈ W 1,p
Γ0

(Ω,R3) defined by uε(x) = vε(x̂) and the following measure of M+(Ω ×
S3×3):

θε =
(
δ ∇uε

|∇uε| (x)

)
x∈Ω

⊗ |∇uε|pL.

Since

sup
ε>0

θε(Ω × S3×3) =
∫

Ω

|∇uε|p dx < +∞,

there exists a subsequence of (θε)ε>0 (non relabeled), weakly converging to some measure θ in M+(Ω × S3×3).
On the other hand, with the same arguments, one may easily establish that the measure

θ̂ε =
(
δ ∇̂uε

|∇̂uε| (x)

)
x∈Ω

⊗ |∇̂uε|pL

weakly converges, for a non relabeled subsequence, to some measure θ̂ in M+(Ω × S3×2).
According to the definitions of the operator Ξ and the space ∇YV3×2,0(Ω), it suffices to prove:

(µ, θ) ∈ ∇YV3×2,0(Ω) (9)

and

mx̂ =
∫ 1

0

θ̂x̂,s dπx̂(s), πω a.e. x̂ ∈ ω. (10)

Proof of (9). To shorten notations, we do not distinguish a continuous function on S3×3 or S3×2 with its p-
homogeneous extension. Taking into account b), it remains to establish π := PΩ#θ = PΩ#θ̂ and θx = H#θ̂x

for π a.e. x ∈ Ω. A straightforward consequence of the definition of uε is that PΩ#θ and PΩ#θ̂ are the weak
limits of the measures |∇uε|pL and |∇̂uε|pL. Let ϕ ∈ C0(Ω) and ψ be a Lipschitz function on S3×3. The weak
convergence of θε to θ in M(Ω × S3×3) yields

lim
ε→0

∫
Ω

ϕ(x)ψ(∇uε) dx =
∫

Ω

ϕ(x)
(∫

S3×3
ψ(λ) dθx

)
dπ. (11)

On the other hand, since λ̂ �→ ψ(λ̂, 0) belongs to C(S3×2), the weak convergence of θ̂ε to θ̂ in M(Ω × S3×2)
yields

lim
ε→0

∫
Ω

ϕ(x)ψ(∇̂uε, 0) dx =
∫

Ω

ϕ(x)
(∫

S3×2
ψ(λ̂, 0) dθ̂x

)
dπ. (12)

As

lim
ε→0

∫
Ω

ϕ(x)ψ(∇uε) dx = lim
ε→0

∫
Ω

ϕ(x)ψ(∇̂uε, 0) dx,

(11) and (12) yield ∫
S3×3

ψ(λ) dθx =
∫
S3×2

ψ(λ̂, 0) dθ̂x π a.e x ∈ Ω,

so that, according to the definition of H#θ̂x, and by a density argument, θx = H#θ̂x for π a.e x ∈ Ω. �

Proof of (10). Let us recall that

π = (πx̂)x̂∈ω ⊗ πω, πω = Pω#π



THE NONLINEAR MEMBRANE MODEL: A YOUNG MEASURE AND VARIFOLD FORMULATION 459

and denote by π̂ the weak limit of the measure |∇vε|pL̂ in M(ω). We claim that π̂ = πω . Indeed, from the
definition of uε, for every ϕ ∈ C0(ω), we have

∫
ω

ϕ(x̂)dπ̂ = lim
ε→0

∫
ω

ϕ(x̂)|∇vε|pdx̂

= lim
ε→0

∫
Ω

ϕ(x̂)|∇uε|pdx

=
∫

Ω

ϕ(x̂) dπ =
∫

ω

ϕ(x̂)dπω

where we have used πω = Pω#π in the last equality.
Now, since (δ ∇vε

|∇vε| (x̂))x̂∈ω ⊗ |∇vε|pL̂⇀m = (mx̂)x̂∈ω ⊗ π̂ in M(ω × S3×2), for every ϕ ∈ C0(ω × S3×2),

lim
ε→0

∫
ω

ϕ(x̂,∇vε) dx̂ =
∫

ω

∫
S3×2

ϕ(x̂, λ̂) dmx̂(λ̂) dπ̂(x̂)

=
∫

ω

∫
S3×2

ϕ(x̂, λ̂) dmx̂(λ̂) dπω(x̂). (13)

On the other hand

lim
ε→0

∫
ω

ϕ(x̂,∇vε(x̂)) dx̂ = lim
ε→0

∫
Ω

ϕ(x̂,∇vε(x̂)) dx

= lim
ε→0

∫
Ω

ϕ(x̂, ∇̂uε(x)) dx

=
∫

Ω×S3×2
ϕ(x̂, λ̂) dθ̂

=
∫

Ω

(∫
S3×2

ϕ(x̂, λ̂) dθ̂x

)
dπ

=
∫

ω

∫ 1

0

(∫
S3×2

ϕ(x̂, λ̂) dθ̂x̂,sdπx̂(s)
)

dπω. (14)

Collecting (13) and (14) and since ϕ is arbitrary, we obtain (10). �

4. Young measure formulation

According to the various notions introduced in Section 3, we now describe the Young measure formulation
of the total energy associated with the layer.

4.1. The Young measure formulation of the stored strain energy of the thin layer

We introduce the Young measure formulation of the stored strain energy of the layer by defining the integral
functional: Gε : Y3×3(Ω) → R ∪ {+ ∞},

Gε(µ) =




∫
Ω×M3×3

f

(
λ̂,

1
ε
λ3

)
dµ(x, λ) if µ ∈ E∇Y3×3(Ω)

+∞ otherwise.
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For each µ ∈ ∇Y3×3(Ω), let us denote by Eµ its barycenter:

Eµ(x) =
∫
M3×3

λdµx.

Clearly there exists a unique u ∈ W 1,p
Γ0

(Ω,R3), denoted by ∇−1Eµ, such that ∇u(x) = Eµ(x) for a.e. x ∈ Ω.
The exterior loading in the Young measure formulation is then given by: L : Y3×3(Ω) → R ∪ {+ ∞},

L(µ) =




∫
Ω

g̃.∇−1Eµ dx if µ ∈ E∇Y3×3(Ω)

+∞ otherwise.

In order to shorten notations, we have adopted the same notaion L to define the classical exterior loading and
the exterior loading in the Young measure formulation. Note that if µ belongs to EY3×3(Ω) then Gε(µ)−L(µ) =
F̃ε(u) − L(u) with u = ∇−1Eµ.

The stored strain energy G of the limit problem in the Young measure formulation is defined as follows:
G : Y3×2(ω) → R ∪ {+ ∞},

G(ν) =




∫
ω×M3×2

f0(λ̂) dν(x̂, λ̂) if ν ∈ ∇Y3×2(ω)

+∞ otherwise.

The limit exterior loading in the Young measure formulation is the following functional: L : Y3×2(ω) →
R ∪ {+ ∞}

L(ν) =




∫
ω

g̃.∇−1E(ν) dx̂ if ν ∈ ∇Y3×2(ω)

+∞ otherwise.

4.2. The ΓY -convergence in the Young measure formulation

In this section, we are going to introduce a variational convergence, justifying the previous formulation of
the limit energy. We begin by introducing a new weak notion of convergence between elements of Y3×3(Ω)
and Y3×2(ω).

Definition 1. Let (µε)ε>0 be a sequence in Y3×3(Ω) and ν in Y3×2(ω). We say that µε weakly converges in
the sense of membranes to ν and we write

µε
mem
⇀ ν

iff there exists µ in ∇Y3×2,0(Ω) such that µε
nar
⇀ µ and ν = Θ(µ).

It is worth noticing that, according to Proposition 1, the weak limit ν necessary belongs to ∇Y3×2(ω).
Let us now consider a sequence of functionals

Hε : Y3×3(Ω) −→ R ∪ {+∞}
H : Y3×2(ω) −→ R ∪ {+∞}.

The following concept of convergence is very similar to that of Γ-convergence (see [1, 5]).
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Definition 2. We say that Hε ΓY -converges to H in the Young measure formulation and we write

Hε
ΓY−→ H

iff for all ν in Y3×2(ω), both following assertions hold:

∀µε ∈ Y3×3(Ω), s.t. µε
mem
⇀ ν, H(ν) ≤ lim inf

ε→0
Hε(µε)

∃νε ∈ Y3×3(Ω) s.t. νε
mem
⇀ ν, H(ν) ≥ lim sup

ε→0
Hε(νε).

Let us consider the two following functionals ΓY lim inf Hε and ΓY lim supHε from Y3×2(ω) into R ∪ {+∞},
defined by

ΓY lim inf Hε(ν) = inf{lim infε→0Hε(µε) : µε
mem
⇀ ν}

ΓY lim supHε(ν) = inf{lim supε→0Hε(µε) : µε
mem
⇀ ν}.

It is easy to establish that these two functionals are lsc on Y3×2(ω) and that Hε
ΓY−→ H iff one has, for every ν

in Y3×2(ω)

ΓY lim supHε(ν) ≤ H(ν) ≤ ΓY lim inf Hε(ν).

In the proposition below, we establish that the ΓY -convergence is variational.

Proposition 2. Let us assume that (Hε)ε>0 ΓY -converges to H and let (µε)ε>0 be a sequence of Y3×3(Ω)
satisfying

Hε(µε) ≤ inf{ Hε(µ) : µ ∈ Y3×3(Ω) } + ε.

Assume furthermore that {µε : ε > 0} is relatively compact for the weak convergence in the sense of membranes.
Then any cluster point ν is a minimizer of H in Y3×2(ω) and

lim
ε→0

inf{Hε(µ) : µ ∈ Y3×3(Ω) } = H(ν).

Proof. Let ν ∈ Y3×2(ω) be such that µε
mem
⇀ ν. From the first assertion in Definition 2, we have

H(ν) ≤ lim inf
ε→0

Hε(µε). (15)

Let µ be any element of Y3×2(ω). From the second assertion in Definition 2, there exists a sequence (νε)ε>0

in Y3×3(Ω) such that

lim sup
ε→0

Hε(νε) ≤ H(µ). (16)

Inequalities (15) and (16) yield:

H(ν) ≤ lim inf
ε→0

Hε(µε) = lim inf
ε→0

inf{Hε(ζ) : ζ ∈ Y3×3(Ω) }
≤ lim sup

ε→0
Hε(νε) ≤ H(µ).

This shows that ν is a minimizer of H in Y3×2(ω). Taking µ = ν in above inequalities gives lim
ε→0

inf{Hε(ζ) :

ζ ∈ Y3×3(Ω) } = H(ν). �
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4.3. The main result in the Young measure formulation

Let us define the total energies in the Young measure formulation:

Hε := Gε − L, H = G− L.

Theorem below is our main result.

Theorem 2. Let us consider the sequence of integral functionals (Hε)ε>0 and H defined above. Then we have

(i) Compactness: if sup
ε>0

Hε(µε) < +∞ then {µε : ε > 0} is relatively compact for the weak convergence in

the sense of membrane.
(ii) Convergence: Hε

ΓY−→ H = G− L.
(iii) Let (µε)ε>0 satisfying Hε(µε) ≤ ε + inf

Y3×3(Ω)
Hε, and associated with some uε in W 1,p

Γ0
(Ω,R3). Let

moreover ν be a cluster point of (µε)ε>0 for the weak convergence in the sense of membrane (see(i)),
then ν is a minimizer of min

Y3×2(ω)
H and uε weakly converges to some u in W 1,p

Γ0
(Ω,R3) which belongs

to W 1,p
γ0

(ω,R3). For a.e. x̂ in ω, ∇u(x̂) is a barycenter of νx̂ and u is a minimizer of the classical
formulation

min
{
F (u) − L(u) : u ∈W 1,p

γ0
(ω,R3)

}
.

(iv) If ν is a minimizer of min
Y3×2(ω)

H then the barycenter field

x̂ �→
∫
M3×2

λ̂ dνx̂

is the gradient of a minimizer of the classical formulation

min
{
F (u) − L(u) : u ∈W 1,p

γ0
(ω,R3)

}

which then posseses an integral representation.

Proof.

Proof of (i). From the equiboundedness supε>0H(µε) < +∞, we obviously obtain




µε = (δ∇uε(x))x∈Ω ⊗ L,

Hε(µε) =
∫

Ω

f

(
∇̂uε,

1
ε

∂uε

∂x3

)
dx−

∫
Ω

g̃.uε dx,

(∇uε)ε>0 bounded in Lp(Ω,M3×3),

(∇̂uε)ε>0 bounded in Lp(Ω,M3×2),

(
1
ε

∂uε

∂x3

)
ε>0

bounded in Lp(Ω,R3).

Since (∇uε)ε>0 is bounded in Lp(Ω,M3×3), the sequence (µε)ε>0 is tight, and there exist µ ∈ Y3×3(Ω) and a
non relabeled subsequence satisfying

µε
nar
⇀ µ in Y3×3(Ω).
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On the other hand, since (∇̂uε)ε>0 is bounded in Lp(Ω,M3×2), for the relabeled subsequence related to (µε)ε>0,
the sequence (µ̂ε)ε>0, µ̂ε = (δ∇̂uε(x))x∈Ω, is tight and there exists µ̂ ∈ ∇̂Y3×2(Ω) and a non relabeled subsequence
such that

µ̂ε ⇀ µ̂ in Y3×2(Ω).

Finally, since
∂uε

∂x3
→ 0 in �Lp(Ω,R3), we classically have

(δ ∂uε
∂x3

(x))x∈Ω ⊗ L nar
⇀ δ0 ⊗ L in Y(Ω,R3).

One easily deduce that
µx = µ̂x ⊗ δ0

so that µ belongs to ∇Y3×2,0(Ω). Let us set ν = Θ(µ), we have µε
mem
⇀ ν.

Proof of (ii).

a) Let µε ∈ Y3×3(Ω) and ν ∈ Y3×2(ω) be such that µε
mem
⇀ ν. We establish

H(ν) ≤ lim inf
ε→0

Hε(µε).

Since µε
mem
⇀ ν, there exists µ ∈ ∇Y3×2,0(Ω) be such that µε

nar
⇀ µ and ν = Θ(µ) = µ̂. According to Proposition 1,

ν belongs to ∇Y3×2(ω). On the other hand, one may assume sup
ε>0

Hε(µε) < +∞. Therefore

lim inf
ε→0

Hε(µε) = lim inf
ε→0

(∫
Ω×M3×3

f(λ̂,
1
ε
λ3) dµε(x, λ) −

∫
Ω

g̃.uε dx
)

≥ lim inf
ε→0

(∫
Ω×M3×3

f0(λ̂) dµε(x, λ) −
∫

Ω

g̃.uε dx
)

s.c.i≥
∫

Ω×M3×3
f0(λ̂) dµ(x, λ) −

∫
Ω

g̃.u dx

=
∫

Ω

(∫
M3×3

f0(λ̂) dµ̂x ⊗ δ0

)
dx−

∫
Ω

g̃.u dx

=
∫

ω×M3×2
f0(λ̂) dµ̂x dx̂−

∫
ω

g̃.∇−1E(µ̂)) dx̂

= H(ν).

b) Let ν ∈ Y3×2(ω). We establish
ΓY lim supGε(ν) ≤ G(ν).

To shorten notations and formulas, we do not take into acount the exterior loading which does not bring
additional difficulties.

One may assume G(ν) < +∞. Therefore ν ∈ ∇Y3×2(ω) and (see appendix),

∃vη ∈ W 1,p
γ0

(ω,R3) such that ∇vη generates ν;

(|∇vη|p)η>0 U.I. on ω,
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hence
G(ν) = lim

η→0

∫
ω

f0(∇vη) dx̂. (17)

Let now ξ be an arbitrary function in D(ω,R3), and set


uε,η ∈ W 1,p

Γ0
(Ω,R3) defined by uε,η(x) = vη(x̂) + εx3ξ(x̂),

µε,η = (δ∇uε,η(x))x∈Ω ⊗ L.

It is easy to prove that, when ε→ 0,

µε,η
mem
⇀ νη = (δ∇̂vη(x̂))x̂∈ω ⊗ L̂.

On the other hand
lim
ε→0

Gε(µε,η) =
∫

ω

f(∇vη, ξ) dx̂.

Consequently

ΓY lim supGε(νη) ≤
∫

ω

f(∇vη, ξ) dx̂

Taking the infimum over ξ in D(ω,R3) in the right handside and using a classical localization argument, we
then obtain

ΓY lim supGε(νη) ≤
∫

ω

f0(∇vη) dx̂.

Since the functional ΓY lim supGε is lsc on Y3×2(ω), letting η → 0, (17) yields

ΓY lim supGε(ν) ≤ G(ν).

c) According to the steps a) and b), we finally obtain, for every ν ∈ Y3×2(ω)

ΓY lim supGε(ν) ≤ G(ν) ≤ ΓY lim inf Gε(ν)

that is to say
Gε

ΓY−→ G

and the proof of (ii) is complete.

Proof of (iii). The proof is a straightforward consequence of Proposition 2 and left to the reader.

Proof of (iv). Let ν be a minimizer of min
{
H(µ) : µ ∈ Y3×2(ω)

}
. Since ν belongs to ∇Y3×2(ω) and Qf0 is

quasiconvex 


∃u ∈W 1,p
γ0

(ω,R3), ∇̂u(x̂) =
∫
M3×2

λ̂dνx̂(λ̂) a.e. x̂ ∈ ω

Qf0

(∫
M3×2

λ̂dνx̂(λ̂)
)

≤
∫
M3×2

Qf0(λ̂)dνx̂(λ̂).

Therefore
∫

ω

Qf0(∇̂u(x̂)) dx̂ ≤
∫

ω

∫
M3×2

Qf0(λ̂)dνx̂(λ̂) dx

≤
∫

ω

∫
M3×2

f0(λ̂)dνx̂(λ̂) dx

= G(ν).
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Consequently

F (u) − L(u) ≤ H(ν) = min
{
H(µ) : µ ∈ Y3×2(ω)

}
= min

{
F (v) − L(v) : v ∈ W 1,p

γ0
(ω,R3)

}

where the last equality is a consequence of a well known relaxation result (see [10], Th. 4.4 p. 67). �

Remark 2. The previous result of variational convergence and the expression of G(ν) when ν belongs to
E∇Y3×2(ω) allow us to suggest a modeling of thin films of material with bulk energy f . It should be a
membrane model with a surfacic strain energy density function f0 so that the total strain energy involved
by a displacement u : ω → R3, is

∫
ω
f0(∇u(x̂)) dx̂, where f0 is not necessarily quasi-convex. If f exhibits

potential wells, it will be the same for f0, thus this model may account for microstructures in thin films. A
“variational” modeling of thin films was previously obtained in [3] from three-dimensional nonlinear elasticity
but augmented with a classical term for interfacial surface strain. Neglecting formally the contribution of this
term in their modeling provides a strain energy density function like our f0. Thus all their considerations
concerning microstructures are valuable for our modeling: a major fact is to predict the existence of exact
untwinned austenite/martinsite interfaces.

5. Oscillation-concentration effects: the varifold formulation

In this section the integral functional associated with the exterior loading, is that of previous section, and
we assume that Γ0 is the lateral boundary Γ = γ × (0, 1) where γ = ∂ω. In order to further take into
account concentration effects for gradients minimizing sequences, according to the notion of varifold introduced
in Section 3, we now describe the varifold formulation of the energy associated with the layer. For capturing
possible gradient concentration on the boundary Γ of Ω, we extend Ω to the open bounded subset Ω̃ = ω̃× (0, 1)
where ω̃ is an arbitrary bounded open subset of R2 satisfying ω ⊂ ω ⊂ ω̃. We will denote by ũ the extension by
zero on Ω̃ \Ω of any function u ∈W 1,p

0 (Ω,R3) and the same notation ũ holds for the extension by zero on ω̃ \ω
of any functions u ∈ W 1,p

0 (ω,R3). We will use the same notations L, L̂ to denote respectively the Lebesgue
measure on Ω or Ω̃ and ω or ω̃.

The following spaces YV3×3(Ω̃), E∇YV3×3(Ω̃), ∇YV3×3(Ω̃), ∇Y3×2,0(Ω̃), YV3×2(ω̃) and ∇YV3×2(ω̃) are re-
spectively defined like the spaces YV3×3(Ω), E∇YV3×3(Ω), ∇YV3×3(Ω), ∇Y3×2,0(Ω), YV3×2(ω) and ∇YV3×2(ω)
of Section 3, where Ω̃, ω̃ are substituted for Ω, ω, ũ for u and the generated functions uε for ũε.

The following lemma, whose proof is very easy, makes precise the relation between the spaces ∇YV3×2(ω̃)
and ∇YV3×2(ω).

Lemma 1. If (ν,m) belongs to ∇YV3×2(ω̃), then

{
ν = ν�ω ×M3×2 + δ0 ⊗ L�ω̃ \ ω,
m = m�ω × S3×2 +m�(ω̃ \ ω) × S3×2,

(ν�ω ×M3×2,m�ω × S3×2) belongs to ∇YV3×2(ω) and m�(ω̃ \ ω) × S3×2 is concentrated on γ × S3×2.

Note that, since the support of the measure m�(ω̃ \ ω) × S3×2 is included in γ × S3×2, the decomposition
m�ω×S3×2 +m�(ω̃ \ω)×S3×2 of m is equal to m�ω×S3×2 +m�γ×S3×2, thus does not depend on the choice
of the extension ω̃ of ω. We will see that the measure δ0 ⊗L�ω̃ \ ω does not play a role in the limit functional.
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5.1. The varifold formulation of the stored strain energy of the thin layer

We introduce the varifold formulation of the stored strain energy of the thin layer by defining the integral
functional: Gε : YV3×3(Ω̃) → R ∪ {+ ∞},

Gε(µ, θ) =




∫
Ω×M3×3

f

(
λ̂,

1
ε
λ3

)
dµ(x, λ) if (µ, θ) ∈ E∇YV3×3(Ω̃)

+∞ otherwise.

Obviously, Gε(µ, θ) = F̃ε(u) when (µ, θ) belongs to the domain of Gε and is generated by u.
We make the following additional hypotheses on the behavior of the density f0 at infinity: there exists a

p-homogeneous function f∞
0 satisfying:

lim
|λ̂|→+∞

f0(λ̂) − f∞
0 (λ̂)

|λ̂|p = 0. (18)

When f0 depends on the plane variable x̂, this limit is assumed to be uniform with respect to x̂. Note that f∞
0

is uniquely defined by (18) and is nothing but the recession function of f0 of degree p defined by

f∞
0 (λ̂) = lim

t→+∞
f0(tλ̂)
tp

·

The stored strain energy G of the limit problem in the varifold formulation is defined as follows: G : YV3×2(ω̃) →
R ∪ {+ ∞},

G(ν,m) =




∫
ω×M3×2

(f0 − f∞
0 )(λ̂) dν +

∫
ω×S3×2

f∞
0 (λ̂) dm

+
∫

γ×S3×2
f∞
0 (λ̂) dm if (ν,m) ∈ ∇YV3×2(ω̃)

+∞ otherwise.

5.2. The ΓY V -convergence in the varifold formulation

In this section, we are going to introduce a variational convergence, justifying the previous formulation of
the limit energy. We begin by introducing a new weak notion of convergence between elements of YV3×3(Ω̃)
and YV3×2(ω̃).

Definition 3. Let (µε, θε)ε>0 be a sequence in YV3×3(Ω̃) and (ν,m) be a varifold in YV3×2(ω̃). We say that
(µε, θε) weakly converges in the sense of membranes to (ν,m) and we write

(µε, θε) mem
⇀ (ν,m)

iff there exists (µ, θ) in ∇YV3×2,0(Ω̃) such that (µε, θε) ⇀ (µ, θ) and (ν,m) = Ξ(µ, θ).

It is worth noticing that, according to Proposition 1, the weak limit (ν,m) belongs to ∇YV3×2(ω̃).

Let us now consider a sequence of functionals

Hε : YV3×3(Ω̃) −→ R ∪ {+∞}

and
H : YV3×2(ω̃) −→ R ∪ {+∞}.
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Definition 4. We say that (Hε)ε>0 Γ-converges in the varifold formulation to H , and we write

Hε
ΓY V−→ H,

iff for all (ν,m) in YV3×2(ω̃), both following assertions hold:

∀(µε, θε) ∈ YV3×3(Ω̃), s.t. (µε, θε) mem
⇀ (ν,m),

H(ν,m) ≤ lim inf
ε→0

Hε(µε, θε)

∃(µε, θε) ∈ YV3×3(Ω̃) s.t. (µε, θε) mem
⇀ (ν,m) and

H(ν,m) ≥ lim sup
ε→0

Hε(µε, θε).

Raisonning like in the proof of Proposition 2, it is easy to establish that this concept of convergence is variational.
We left the reader to state the analogue of Proposition 2. It is moreover easily seen that the integral functional L
associated with the exterior loading is a continuous perturbation of stored strain energiesGε for this convergence.

5.3. The main result in the varifold formulation

Theorem below is our main result.

Theorem 3. Let us consider the sequence of integral functionals (Gε)ε>0 and G defined above. Then we have
(i) Compactness: if sup

ε>0
Gε(µε, θε) − L(µε) < +∞ then {(µε, θε) : ε > 0} is relatively compact for the

weak convergence in the sense of membrane.
(ii) Convergence: Gε − L

ΓY V−→ G− L.
(iii) Let (µε, θε) satisfying Gε(µε, θε) − L(µε) ≤ ε + inf

YV3×3(Ω)
(Gε − L), associated with uε in W 1,p

0 (Ω,R3).

Let (ν,m) be a cluster point of ((µε, θε))ε>0 for the weak convergence in the sense of membrane (see(i)).
Then (ν,m) is a minimizer of min

YV3×2(ω̃)
(G − L), uε weakly converges to some u in W 1,p

0 (Ω,R3) which

belongs to W 1,p
0 (ω,R3); for a.e. x̂ in ω, ∇u(x̂) is a barycenter of νx̂ and u is a minimizer of the classical

formulation
min

{
F (u) − L(u) : u ∈W 1,p

0 (ω,R3)
}
.

Moreover the measure m = (mx̂)x̂∈ω∪γ⊗πω captures concentrations of (∇uε)ε>0) in the following sense:
its projection πω̃ on ω̃ is the projection on ω̃ of the weak limit in M(Ω̃) of the measure |∇uε|pL.

(iv) If (ν,m) is a minimizer of min
Y3×2(ω̃)

(G− L) then the barycenter field

x̂ �→
∫
M3×2

λ̂ dνx̂

is the gradient of a minimizer of the classical formulation

min
{
F (u) − L(u) : u ∈W 1,p

0 (ω,R3)
}

which then posseses an integral representation.

Proof.
Proof of (i). From the proof of (i) of Theorem 2, there exists a subsequence of (µε)ε>0, non relabeled, and
µ ∈ ∇Y3×2,0(Ω̃) such that µε

nar
⇀ µ.
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On the other hand, clearly

θε(Ω̃ × S3×3) =
∫

Ω

|∇uε|p dx < +∞.

Therefore, for a non relabeled subsequence of (θε)ε>0, there exists a subsequence and θ ∈ M+(Ω̃ × S3×3) such
that θε ⇀ θ. Arguying as in the proof d) of Proposition 1, we easily establish that (µ, θ) ∈ ∇YV3×2,0(Ω̃). Let
us set (ν,m) = Ξ(µ, θ). Clearly, for the non relabeled subsequence corresponding to that of (θε)ε>0, we have
(µε, θε) mem

⇀ (ν, θ).

Proof of (ii). To shorten notations, we only work with the stored energies.
a) Let (µε, θε) ∈ YV3×3(Ω̃) and (ν,m) ∈ Y3×2(ω̃) be such that (µε, θε) mem

⇀ (ν,m). We establish

G(ν,m) ≤ lim inf
ε→0

Gε(µε, θε).

Since (µε, θε) mem
⇀ (ν,m), there exists (µ, θ) in ∇YV3×2,0(Ω̃) such that

(µε, θε) ⇀ (µ, θ) and (ν,m) = Ξ(µ,m).

According to Proposition 1, (ν,m) belongs to ∇YV3×2(ω̃). On the other hand, one may assume sup
ε>0

Gε(µε, θε) <

+∞. Therefore there exits some uε in W 1,p
0 (Ω,R3) such that ũε generates the varifold (µ, θ) ∈ ∇YV3×2,0(Ω̃).

More precisely 


(δ∇ũε(x))x∈Ω̃ ⊗ L nar
⇀ µ,

(δ∇̂ũε(x))x∈Ω̃ ⊗ L nar
⇀ µ̂,

µx = µ̂x ⊗ δ0,

θε := (δ ∇ũε
|∇ũε| (x))x∈Ω̃ ⊗ |∇uε|pL⇀ θ,

θ̂ε := (δ ∇̂ũε
|∇̂ũε| (x)

)x∈Ω̃ ⊗ |∇̂uε|pL⇀ θ̂,

PΩ̃#θ = PΩ̃#θ̂ := π,

θx = H#θ̂x π a.e. x ∈ Ω̃.

Noticing that f∞
0 (0) = 0, we have

lim inf
ε→0

Gε(µε, θε) = lim inf
ε→0

∫
Ω×M3×3

f

(
λ̂,

1
ε
λ3

)
dµε(x, λ)

≥ lim inf
ε→0

∫
Ω×M3×3

f0(λ̂) dµε(x, λ)

= lim inf
ε→0

∫
Ω

f0(∇̂uε) dx

= lim inf
ε→0

(∫
Ω

(f0 − f∞
0 )(∇̂uε) dx+

∫
Ω̃

f∞
0 (∇̂ũε) dx

)

≥ lim inf
ε→0

∫
Ω

(f0 − f∞
0 )(∇̂uε) dx+ lim inf

ε→0

∫
Ω̃

f∞
0

(
∇̂ũε

|∇̂ũε|

)
|∇̂ũε|p dx

s.c.i≥
∫

Ω×M3×3
(f0 − f∞

0 )(λ̂) dµ+
∫

Ω×S3×2
f∞
0 (λ̂) dθ̂ (19)

=
∫

Ω

(∫
M3×2

(f0 − f∞
0 )(λ̂)dµ̂x

)
dx+

∫
Ω

(∫
S3×2

f∞
0 (λ̂)dθ̂x

)
dπ.
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Where we have use the lower semicontinuity result (see Appendix, Prop. 3), the slicing theorem (see Appen-
dix, Th. 4) and Lemma 1 in the last equality. By using Fubini’s theorem in the first term and the slicing
decomposition π = (πx̂)x̂∈ω̃ ⊗ πω̃ in the second term of (19), since (ν,m) = Ξ(µ, θ), we finally obtain

lim inf
ε→0

Gε(µε, θε) ≥
∫

ω×M3×2
(f0 − f∞

0 )(λ̂)dν +
∫

ω×S3×2
f∞
0 (λ̂)dm

= G(ν,m).

b) We establish the upper bound in the definition of the ΓY V -convergence. One may assume G(ν,m) < +∞.
Let (ν,m) ∈ YV3×2(ω̃) and (vn)n∈N, vn ∈ W 1,p

0 (ω,R3) generating the varifold (ν,m):

νn = (δ∇ṽn(x̂))x̂∈ω̃ ⊗ L̂ nar
⇀ ν

mn :=
(
δ ∇ṽn

|∇ṽn| (x̂)

)
x̂∈ω̃

⊗ |∇ṽn|pL̂⇀m

with π̂n = |∇ṽn|pL̂ ⇀ πω̃ = Pω̃#m. According to (18), it is easily seen that x̂ �→ 1ω(x̂)(f0 − f∞
0 )(∇ṽn(x̂))n∈N

is uniformly integrable so that, according to Proposition 4 of the Appendix

∫
ω×M3×2

(f0 − f∞
0 )(λ̂)dν = lim

n→+∞

∫
ω

(f0 − f∞
0 )(∇vn) dx̂. (20)

On the other hand, since the measuremn weakly converges to the measurem inM(ω̃×S3×2), from the continuity
of λ̂ �→ f∞

0 (λ̂), we deduce that the measure f∞
0 mn weakly converges to the measure f∞

0 m in M(ω̃ × S3×2).
Now, since ω × S3×2 is a compact subset of ω̃ × S3×2, Alexandrov’s theorem yields

∫
ω×S3×2

f∞
0 (λ̂)dm ≥ lim sup

n→+∞

∫
ω

f∞
0 (∇ṽn) dx̂

= lim sup
n→+∞

∫
ω

f∞
0 (∇vn) dx̂. (21)

Combining (20) and (21) gives

G(ν,m) ≥ lim sup
n→+∞

∫
ω

f0(∇vn) dx̂.

We end the proof as that of Theorem 2ii, b). �

Remark 3. Obviously, our study is a first approach in modelling concentration effects in membranes. Ac-
tually, in order to obtain gradients concentrations, for instance on the boundary of the membrane, it would
be necessary to deal with exterior loadings varying with ε and concentrated near the boundary. This case is
more involved because the associated integral functional Lε may be a noncontinuous perturbation of Gε for the
ΓY V -convergence.

6. Appendix

For a general exposition of the theory of Young measures, we refer the reader to Balder [2], Valadier [12,13]
and the references therein.

In all the Appendix, Ω is an open bounded subset of RN and E = Rd, d = m×N so that Rd is canonically
isomorphic to the space Mm×N of m×N matrices.
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Definition 5. We call Young measure on Ω×E, any positive measure µ ∈ M+(Ω×E) such that its image by
the projection πΩ on Ω is the Lebesgue measure L on Ω: for every Borel subset B of Ω

πΩ#µ(B) := µ(B × E) = L(B).

We denote by Y(Ω;E) the set of all Young measures on Ω × E.
We equip Y(Ω;E) with the narrow topology, that is the weakest topology which makes the maps

µ �→
∫

Ω×E

ϕ dµ

continuous, where ϕ runs through Cb(Ω;E). This topology induces the narrow convergence of Young measures
defined as follows: let (µn)n∈N be a sequence of measures in Y(Ω;E) and µ ∈ Y(Ω;E), then

µn
nar
⇀ µ ⇐⇒




∀ϕ ∈ Cb(Ω;E),

lim
n→+∞

∫
Ω×E

ϕ(x, λ) dµn(x, λ) =
∫

Ω×E

ϕ(x, λ) dµ(x, λ).

The following slicing property, is a generalization of Fubini’s Theorem.

Theorem 4. Let µ be any Young measure in Y(Ω;E). There exists a family of probability measure (µx)x∈Ω

on E, unique up to equality L-a.e. such that

(i) x �→
∫

E

ψ(x,Λ) dµx is L-measurable;

(ii)
∫

Ω×E

ψ(x,Λ) dµ(x,Λ) =
∫

Ω

( ∫
E

ψ(x,Λ) dµx(Λ)
)

dx

for each µ-integrable function ψ. The familly (µx)x∈Ω is called a disintegration of the Young measure µ and we
write µ = (µx)x∈Ω ⊗ L.

Let us define the tightness notion for Young measures.

Definition 6. A subset H of Y(Ω;E) is said to be tight if

∀ε > 0, ∃Kε, compact subset of E, such that sup
µ∈H

µ(Ω × E \ Kε) < ε.

Theorem below may be considered as the parametrized version of the classical Prokhorov compactness theorem.

Theorem 5 (Prokhorov’s Compactness Theorem). Let (µn)n∈N be a tight sequence in Y(Ω;E). Then, there
exists a subsequence (µnk )k∈N of (µn)n∈N and µ in Y(Ω;E) such that

µnk

nar
⇀ µ in Y(Ω;E).

Let u : Ω → E be a given function and let us consider the image measure µ = G#L of L by the graph function G
of u:

G : Ω → Ω × E, x �→ (x, u(x)).



THE NONLINEAR MEMBRANE MODEL: A YOUNG MEASURE AND VARIFOLD FORMULATION 471

Since the image of µ by the projection on Ω is L, µ belongs to Y(Ω;E). This measure, concentrated on the
graph of u, is called the Young measure associated with the function u. By definition of the image measure,
µ “acts” on Cb(Ω;E) as follows:

∫
Ω×E

ϕ(x, λ) dµ(x, λ) =
∫

Ω

ϕ(x, u(x)) dx ∀ϕ ∈ Cb(Ω;E).

This shows that the probability familly (µx)x∈Ω associated to µ is (δu(x))x∈Ω.
Let now (un)n∈N be a sequence of functions un : Ω → E and consider the sequence of their associated Young

measures (µn)n∈N, µn = (δun(x))x∈Ω ⊗ L. If µn
nar
⇀ µ in Y(Ω;E), the Young measure µ is said to be generated

by the sequence of functions (un)n∈N. In general, µ is not associated with a function.
Here is a semicontinuity result related to non negative functions:

Proposition 3. Let ϕ : Ω × E → [0,+∞] be a B(Ω) ⊗ B(E) measurable function such that λ �→ ϕ(x, λ) is lsc
for a.e. x in Ω. Let moreover (µn)n∈N be a sequence of Young measures in Y(Ω;E) narrowly converging to
some Young measure µ in Y(Ω;E). Then

∫
Ω×E

ϕ(x, λ) dµ(x, λ) ≤ lim inf
n→+∞

∫
Ω×E

ϕ(x, λ) dµn(x, λ).

Let us recall the notion of uniform integrability: a sequence (fn)n∈N, fn : Ω → R is said to be uniformly
integrable if

lim
R→+∞

sup
n∈N

∫
[|fn|>R]

|fn| = 0.

One may extend the set Cb(Ω,Rm) of test functions related to the narrow convergence as follows:

Proposition 4. Let (µn)n∈N be a sequence of Young measures associated with a sequence of functions (un)n∈N,
narrowly converging to some Young measure µ. On the other hand let ϕ : Ω × E → R be a B(Ω) ⊗ B(E)
measurable function such that λ �→ ϕ(x, λ) is continuous for a.e. x in Ω. Assume moreover that x �→ ϕ(x, un(x))
is uniformly integrable. Then

∫
Ω×E

ϕ(x, λ) dµ(x, λ) = lim
n→+∞

∫
Ω×E

ϕ(x, un(x)) dx.

In order to apply Proposition 4, the following result is fundamental.

Proposition 5. Let (un)n∈N be a bounded sequence in W 1,p
Γ0

(Ω,Rm) whose gradients generate a W 1,p-Young
measure µ. Then there exists another sequence (vn)n∈N in W 1,p

Γ0
(Ω,Rm), whose gradients generate the same

Young measure µ, and such that (|∇vn|p)n∈N is uniformly integrable.

We end this section with the following characterization theorem for W 1,p-Young measures (Young measures
generated by gradients of W 1,p-functions), established by D. Kinderlehrer and P. Pedregal (see [8, 10, 11]).

Theorem 6. Let p > 1. Then µ ∈ Y(Ω;E) is a W 1,p-Young measure iff there exists u ∈ W 1,p(Ω,Rm) such
that the three following assertions hold:

i) ∇u(x) =
∫

E

λ dµx(λ);

ii) for all quasiconvex function φ satisfying 0 ≤ φ(λ) ≤ β(1 + |λ|p) for some β > 0 and for all λ ∈ E, one
has

φ(∇u(x)) ≤
∫

E

φ(λ) dµx(λ), a.a.x ∈ Ω;

iii)
∫

Ω×E

|λ|p dµ(x, λ) < +∞.
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