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ABSTRACT 

A new model is presented that describes microbial population dynamics that emerge from 

complex interactions among birth, growth and death as oriented, discrete events. Specifically, 

birth and death act as structuring operators for individual organisms within the population, which 

become synchronised as age clusters (called cell-generations that are structured in age-classes) 

that are born at the same time and die in concert; a pattern very consistent with recent 

experimental data that show bacterial group death correlates with temporal population dynamics 

in chemostats operating at carrying capacity. Although the model only assumes "natural death" 

(i.e., no death from predation or antimicrobial exposure), it indicates that short-term non-linear 

dynamic behavior can exist in a bacterial population growing under longer term pseudo-steady 

state conditions (a confined dynamic equilibrium). After summarizing traditional assumptions 

about bacterial aging, simulations of batch, continuous-flow, and recycling bioreactors are used 

to show how population dynamics vary as function of hydraulic retention time, microbial 

kinetics, substrate level, and other factors that cause differential changes in the distribution of 

living and dead cells within the system. In summary, we show that population structures induced 

by birth and death (as discrete and delayed events) intrinsically create a non-linear dynamic 

system, implying that a true steady-state can never exist in growing bacterial populations. This 

conclusion is discussed within the context of process stability in biotechnology.  

Keywords 

Non-linear dynamics, Populations, Bacteria, Age-class, Programmed death 
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INTRODUCTION 

One of the eternal questions humans have always pondered is “how life appeared”, which has 

both philosophical and scientific implications. However, the question of “how death appeared” 

and whether death is inevitable or even necessary also has broad connotations. As such, scientists 

and philosophers have contemplated “aging” as a sequential process between birth and death, 

and attempts at deciphering mechanisms and impacts of increasing age in populations have been 

undertaken for time eternal to pave the way for possible immortality or, at least, to understand 

how one might delay its apparition.  

Aging, sometimes called senescence, is the gradual accumulation of cellular damage in 

individuals until which the extent of damage goes beyond metabolically acceptable limits and 

death occurs (Erjavec et al., 2008; Ackermann et al., 2007a; Ackermann et al., 2007b; Evans and 

Steinholtz, 2007; Johnson and Mangel, 2006; Zamamiri et al., 2002). However, until recently, it 

was assumed that classical aging evolved after the origin of eukaryotes (Ackermann et al., 

2007b; Degterev and Yuan, 2008) and many theories have been developed to explain 

observations. For example, “mutation accumulation theory” assumes that genetic mutations 

lethal later in life slowly accumulate over time, and only in “old age”, do such late-acting 

mutations accumulate and cause death. Alternately, “antagonistic pleiotropy theory” assumes a 

more active role for late-acting mutations where they benefit organisms early in life, being 

selected as life proceeds. Further, “the reliability theory of aging and longevity” theorizes that 

organisms lose irreplaceable parts over time, which accumulate and make death inevitable 

(Johnson and Mangel, 2006). Finally, “the disposable soma theory of aging” postulates that 

senescence is evolutionarily linked to the cost of maintaining functional cellular systems; 
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however, organisms have a finite amount of energy per life and they die at a particular time to 

maximize gene representation in future generations (Johnson and Mangel, 2006; Stewart et al., 

2005). Although these theories were conceived to explain eukaryotic aging, they were 

subsequently broadened to include any organism that displays asymmetric reproduction and the 

presence of a juvenile or differentiated phase. As an example, the bacteria Caulobacter 

crescentus starts life as a swarmer cell that swims away after division from an immobilized older 

stalk cell (Ackermann et al., 2003; Ackermann, 2008). However, the reproductive output of the 

stalk cells declines continuously, whereas newborn cells are active and rejuvenated after “birth” 

(Ackermann, 2008; Stewart et al., 2005). As such, differentiated replication constrains aging to a 

minority of cells (Barer and Harwood, 1999).  

However, Stewart et al. (2005) demonstrated experimentally that morphologically symmetric 

dividing bacteria, like Escherichia coli, also display an aging parent and a rejuvenated progeny. 

Although no juvenile morphology is apparent, functional asymmetry between progeny and 

parent exists; i.e., one cell inherits more old structures (the pseudo-parent) than the other progeny 

cell (the pseudo-offspring) (Feldman et al., 2007; Ackermann, 2008; Stewart et al., 2005). 

Reproductive asymmetry in bacteria has evolutionary implications, such as the continual 

emergence of rejuvenated offspring over successive generations that retains an intact cell line 

(Erjavec et al., 2008; Ackermann et al., 2007b). However, it also might impact how they behave 

as dynamic entities. Specifically, if each cell division produces sub-groups of more (offspring) or 

less (parent) metabolically active cells, as time proceeds the population will become structured in 

clusters of organisms of different “age” (i.e., age clusters), which likely have different kinetic 

characteristics. Furthermore, recent experimental data show that bacteria tend to be born and die 

in groups, possibly due to programmed death in populations (Lewis 2000; Lindner et al., 2008; 
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Maisonneuve et al., 2008a; Maisonneuve et al., 2008b). As an example, Figure 1 shows that the 

culture cell density (provided as optical density, which reflects both living and dead cells) of 

chemostat-grown Escherichia coli strain K12-MG1655 display oscillations that mirror the ratio 

of living versus dead cells in the system when operating at carrying capacity (Chi Fru et al., in 

revision). Further, each live-dead cycle follows the same basic pattern; the relative live cell 

density starts high, but then drops suddenly associated with a rapid increase in dead cells 

followed by re-growth of living cells until a new crest is reached. These data show that a 

population becomes structured in discrete groups that are clustered by the systematic death of 

some cells and subsequent growth of new cells. As such, a true steady-state is never reached and 

confined dynamics ensue, consistent with the predictions of our new model. In summary, we 

show that birth and death can act as delayed, oriented events that structure bacterial populations 

and cause emergent non-linear dynamic behaviour. Practical implications to process stability in 

biotechnical applications are discussed.      

Model Conceptualization   

Modelling life, death, and population dynamics is challenging in bacterial systems because one 

must make critical assumptions that bias the model prior to construction, therefore assumptions 

must be as close to reality as possible. For example, there is debate about whether bacteria 

actually “die” or they simply enter extended dormant phases (states of low metabolic activity, 

incapable of dividing or forming colonies; Kell and Young, 2000). We will not enter this debate, 

but our first assumption is that dead and dormant cells are functionally the same because both 

states imply little or no metabolic function. This is reasonable given that rates of activity during 

dormancy are several orders of magnitudes lower than during viable activity. Second, we 
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presume populations are comprised of heterogeneous groups of cells that differ slightly 

according to the number of cell-cycles they have experienced (i.e., differ in age), possibly 

resulting from factors like increasing intracellular protein aggregation (Lindner et al., 2008; 

Maisonneuve et al., 2008a; Maisonneuve et al., 2008b). Third, birth and death are discrete 

events, but these events occur simultaneously to clusters of organisms, consistent with group 

death observed in experimental work (Chi Fru et al., in revision). Fourth, we assume each 

individual cell within a population has the same lifespan (Stewart et al., 2005) where lifespan is 

the physical time from when a bacterium becomes metabolically active at birth to the moment 

activity disappears at death, and each bacterium experiences multiple cell-cycles that differ in 

number depending on growth conditions. Finally, we assume age-related differences dominate 

metabolic activity among age clusters in the population. We recognize this is a simplification 

because individuals within a population might differ metabolically for reasons other than age 

(Davey et al., 1995), but we choose to keep the model simple to assess whether age and death 

alone can explain emerging population dynamics. However, bias towards age-related differences 

is probably legitimate because metabolic activity differs with bacterial age (e.g., Stewart et al., 

2005; Watve et al., 2006; Erjavec et al., 2008). The model will be extended to simulate other 

metabolic differences in future work. 

We will use bioreactors as the setting for studying age-class-related responses in populations 

since they provide clear boundaries and precise control of inlet and outlet conditions. In fact, 

bioreactors (we use the term bioreactor because it is more general than chemostat) have been 

workhorses in experimental and modelling studies related to dynamics of biological processes 

for many years, although debate exists about such systems related to questions of purpose and 

stability (Feldman et al., 2008; Ferenci, 1999; Ferenci, 2006; Hoskisson and Hobbs, 2005). For 
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example, gene expression patterns that affect growth kinetics can differ under subtlety different 

conditions for same the same specie (Feldman et al., 2008), and nutrient limitations can cause 

evolutionary change in a population over time. Such effects imply no true steady-state ever exists 

in bioreactors (Kovarova-Kovar and Egli, 1998); however, for early model construction, factors 

like evolutionally change are not included for simplicity. Further, experimental evidence 

indicates that bioreactors often display confined dynamics in controlled fermentations (Davey et 

al., 1995; Chi Fru et al., in revision), which show that non-linear dynamic behaviour and non-

steady-state operations may intrinsically exist within bioreactor systems.  

Model Options 

When one considers specific model options for assessing age-related dynamics, various 

approaches exist. Existing models can be classified in three general categories: structured-

unsegregated, unstructured-segregated, and structured-segregated (Zhang et al., 2002). 

Unstructured models assume detailed modelling of intracellular behaviour is not needed to 

describe growth, whereas structured models lump chemical components into virtual entities 

interacting within the cell. Unsegregated models assume that individual cells have identical 

physical and chemical properties, while segregated models permit the population to contain 

distributions of properties like cell mass or age (Zamamiri et al., 2002; Zhang et al., 2002).  

Two general strategies exist for modelling cell cultures, with some specific variants: population 

balance equation (PBEM) and cell ensemble (CEM) models. In PBEM, the population is 

unstructured, but segregation exists based upon factors like age or mass, whereas in CEM, the 

population is structured, permitting more detailed descriptions of cellular metabolism and/or cell 

cycle progression. A drawback of the PBEM is the usual lack of a biochemical data needed to 
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describe physiological functions associated with single cell growth and division (Hjortso and 

Nielsen, 1995; Zamamiri et al., 2002; Henson, 2003). Such functions include growth rates, 

transition rates between different cell compartments, and partitioning relationships of properties 

between newborn cells (Zamamiri et al., 2002). Further, the solution of partial integro-

differential equations that arise in PBEM is not trivial (Zamamiri et al., 2002). In contrast, 

dynamic models of single microbial cells that describe cellular processes are essential in building 

a CEM, which ultimately is represented by a state vector containing concentrations of key 

intracellular species. In CEM, an ensemble model is usually build-up from a large number of 

single-cells where the state-vector is randomly perturbed from a nominal value to capture 

heterogeneities associated with particular processes (Grivet, 2001; Henson, 2003). Although 

single-cell models provide good agreement with some data, ensemble models comprised of two 

individual cells and extracellular balances do not always simulate system dynamics well 

(Henson, 2003). A few examples will elucidate the different modelling approaches.  

Hjortso and Nielsen (1995) used PBEM where the cell cycle parameter was a function of 

ambient environmental conditions (e.g., the concentration of a substrate or product) to observe 

autonomous microbial oscillations. Their models are remarkably simple, although they often 

capture a wide range of dynamic behaviour (single synchronous population, complex periodic 

solutions with periods very different from the cell cycle length etc). The dependent variable in a 

PBEM is the distribution of states, often age, using a function that defines the frequency of cells 

in a given state over time. PBEM are always coupled to a mass balance on an environmental 

parameter (Hjortso and Nielson, 1995). Periodic solutions arise via three main feedback loops: 1) 

an initially synchronized or partially synchronized population leading to periodic variations in 

parameter concentrations as the cells proceed through cell cycles; 2) periodic changes in the 
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growth medium causing periodic changes in age at cell division; and 3) periodic changes in the 

division age that stabilize synchrony (Hjortso and Nielson, 1995). However, unlike simpler 

PBEM based on mass, models based on age involve partial differential equations (Zamamiri et 

al., 2002). This happens because all newborn cells have zero age and the integral term for the 

rate of formation of new cells appears as a boundary condition rather than in the population 

balance itself. In such models, environmental conditions are often initially lumped in single 

variables for simplicity, such as the substrate concentration (Zamamiri et al., 2002). 

In contrast to classical PBEM and CEM, a slightly different approach is presented by Watve et 

al. (2006), which uses a modified Leslie matrix to examine the effects of symmetric and 

asymmetric division on the dynamics of bacterial growth. Instead of the dynamics of individuals 

in different age classes (like PBEM), Watve et al. (2006) adapt the Leslie matrix to model the 

dynamics of cell components of varying ages that differ in symmetric and asymmetric division, 

structuring each cell into a finite number of growth-limiting components related to age 

differences. Growth is assumed to behave as a Markov process; i.e., in each time unit, all pre-

existing cell components pass to the next age class and all newly synthesized components form 

the first new class of organisms with similar age. All of the components of different classes are 

carried forward to the next age class, and after the demise of the oldest age class, components 

disappear. Further, components have age-specific efficiencies that contribute to cell growth rate 

and new components are added based on the net rate of cell growth; however, reproductive 

efficiency of each component decreases with age (Stewart et al., 2005). Therefore, the rate of 

growth of a given cell depends upon the distribution of all cell components; cells with wholly 

new components will divide at maximum growth rate, although rates decline with age. The main 

prediction of Watve et al. (2006) is that truly symmetrical division theoretically exists in nature, 
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although data from Stewart et al. (2005) show this is unlikely. Therefore, refinements to Watve 

et al. (2006) are needed to better describe “reality”, which are presented herein.  

METHODS 

Further assumptions for the new model 

The model we introduce emerged from evidence that showed non-linear dynamic behaviour 

directly parallels shifting demographics among living and dead cells within the same population 

(Chi Fru et al. in revision). Although the model is conceptually close to the models of Watve et 

al. (2006) and Erjavec et al. (2008), it has distinctively different features that make it more 

general and flexible. For example, neither previous model considers death as the key structuring 

element in the population or confined dynamics associated with it. The underlying structural 

assumptions will be presented first and then mathematical details will be provided.  

For simplicity, we assume a virtual system in which the modelled bacterial population starts 

from a pool of synchronized newly born cells (ultimately a single cell). We then define the cell-

generation as a group of individual bacteria having the same age and cell-cycle experience. For 

modelling purposes, each cell-generation is lumped into a single representative virtual bacteria 

whose mass equals the sum of the individual masses of the cells synchronized into this cell-

generation (see Figure 2a, where the first cell-generation is the top line, the line beneath is the 

second cell-generation resulting from the first, the line beneath is the third cell-generation 

resulted from the second, etc). During the lifetime of a given cell-generation, �T, (Figure 2a, the 

overall length of each rectangle representing a cell-generation) the mass of this entity doubles 

during each cell-cycle which lasts �D (the doubling time; Figure 2a, �D1 is for the first cell-cycle, 
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�D2 is for the second and is longer due to age effects, and �D3 is for the last). The mass of a cell-

generation extends from an initial value to twice that value immediately before division.  

To simplify analysis further, we assume that �T represents a datum for a specific single-cell 

organism (Stewart et al., 2005; they estimate the lifetime as 100·�D where �D is the doubling time 

when cells are under no stress) and is independent of the external factors (this isn’t likely true, 

but we will refine this assumption in later development of the model); i.e., a bacteria will live on 

average �T time, regardless of growth conditions. However, we assume �D varies with local 

substrate availability, age, and other external limiting factors. Implicitly, the doubling time of a 

given cell-generation will increase over time due to age-effects; therefore older cells will have 

progressively longer cell-cycles as their life proceeds. Further, if we denote the number of cell-

cycles as NC , each cell-generation will have ( ), 1, 2D n Cn Nτ = �  doublings per lifetime with a 

new cell-generation appearing when at least one of the existing cell-generations completes its 

cell-cycle and divides (Figure 2a shows this process). As such, a bacterial population should be 

viewed as a discrete collection of cell-generations whose number depends upon their intrinsic 

lifetime and actual doubling time. If we denote the greatest common divisor of all doubling times 

for a specific cell-generation by �m (for a given environment), a bacterial cell population would 

have T
G

m
N τ

τ=  different cell-generations coexisting simultaneously, but being born at discrete 

consecutive time intervals of length �m. Finally, if one clusters cell-generations according to their 

particular cell-cycle and assumes steady-state conditions, ,D n
n

m
N τ

τ=  cell-generations will 

belong to the same cell-cycle n, but each cell-generation will exist at different points in their cell-

cycle. Therefore, as cell-generations become older and die after NC doublings, NG cell-

generations will exist at any time with a discrete age distribution from zero to �T. 
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Figure 2a visually presents the affect of age and death on population structure: e.g., after three 

divisions ( CN  in this case), the oldest cell-generation dies and the second cell-generation 

becomes the oldest. Then, after another division, the second cell-generation dies and the process 

repeats itself indefinitely. This actually represents the population death rate that equals the birth 

rate �T times ago (Figure 2a). In fact, death is a discrete, deterministic event happening after each 

cell-generation attains its lifetime, during which growth and division are non-mandatory parts of 

this time-oriented cycle. After a transitory period, which could last several lifetimes, the structure 

of the population stabilizes according to the duration of each cell-cycle, which depends upon 

age-effects and environmental conditions, such as the limiting nutrient. Note that the cell-cycle 

and age-class concepts are formally equivalent, although the latter concept disregards the 

existence of cell-generations and their distribution within an age-class (Figure 2a). In fact, if 

aging effects are ignored and the environment is steady, the number of cell-generations in a 

population is the same as the number of age-classes because no age-related effects are included 

(e.g., intracellular damage). We will not include the direct effects of aging in this initial model to 

examine the influence of age-class structure alone on population dynamics. This simplification is 

justified because it assumes that “old age” is not the only possible cause of death; it just assumes 

group death by whatever cause, structures the population over time, which is most consistent 

with the existing experimental data.       

Under optimal conditions of substrate concentration (Sop), doubling time, minDτ , has the 

minimum value of ( )ln 2 μ , where the specific growth rate, μ , is either maxμ  or 

( )max op S opS K Sμ ⋅ + , assuming Monod-like kinetics apply. The former value would be considered 

when the substrate level is in excess; however, this condition will rarely occur in a continuously 
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operating bioreactor. No matter the case, the population will have max min/T DN τ τ=  age-classes 

under optimal growth conditions (Figure 2b). When the substrate concentration gradually 

decreases between two steady states, the duration of the consecutive cell-cycles/age-classes 

increases accordingly and thus their total number decreases (see Figure 2c). Moreover, since the 

cells live a defined lifespan, we assume that they could die before completing the final cell-cycle 

(i.e., doubling), which means that there could be discontinuities in living cell abundances, 

especially for low substrate levels with only a few age-classes. As an example, after the substrate 

concentration reaches a new pseudo-steady-state (Figure 2c, the pseudo-stationary regime), two 

cell-generations coexist, although only one reaches the end of its cell-cycle and actually doubles. 

The second age-class does not live through its cell-cycle and dies beforehand. Thus, only half of 

the cells continue activity, producing significant fluctuations in cell mass and substrate uptake. 

When one analyses the behaviour displayed in Figure 2, it is possible to predict median death 

rates for the current population simply by knowing birth rates at the moment when the oldest 

generation appeared. In fact, a closer look to Figure 2 shows that birth and death can be viewed 

as delayed oriented irreversible processes. The process is delayed because there will always be 

time between birth and death, oriented due to the irreversibility of time, and irreversible because 

substrate is transformed into cellular building blocks that are not energetically equivalent to the 

original substrate. 

THE MATHEMATICAL MODEL 

Kinetics of a structured bacterial population 
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Before introducing the complete model, we will derive kinetic equations describing the 

biological process that results from the aforementioned hypotheses and Figure 2a. We index the 

cell-generations from 1, the oldest generation, to NG, the youngest generation. Implicitly, when 

the oldest cell-generation dies, there will be a unit decrease in the index of the remaining 

generations. Further, the total number of coexisting generations depends upon substrate 

concentration and the duration of any cell-cycle (see Figure 2c); i.e. NG = NG(S) and �D,n=�D,n(S). 

For simplicity, we suppose that each generation does not experience any adaptive growth lag, so 

the mass balance for the kth cell-generation is: 

( ) ( ), , 0 , 1, 2, ,k
k k k T G

k

dX S X k N S
d

μ τ τ τ
τ

= ⋅ ≤ ≤ = �  (1) 

We assume that bacteria obey the simplest Monod-like kinetic dependency upon substrate; 

however, maximum specific growth rate, �max, and the substrate affinity constant, KS, depend 

upon the physical time since birth of the cell, �k. 

( ) ( ) ( )max, k k
S k

SS
K S

μ τ μ τ
τ

=
+

                                              (2) 

Due to the discrete nature of the damage accumulation in cells owing to asymmetric division 

(Erjavec et al., 2008), the values of �max and KS will change from the previous cell-cycle to the 

actual cell-cycle of the kth cell-generation. In other words, both the maximum specific growth 

rate and the substrate affinity constant change in a step-wise manner in time (not continuously), 

which is consistent with group death shown in Figure 1. The kinetic model (equation (1)) also 

includes initial conditions (equation 3), cell division (equation 4) and death (equation 5); i.e., 
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,0
* 1

1 , * 0 & , 1, 2, ,
2k

n

k j j D i G
j K i

X X K j j k n Nτ τ τ=
∈ =

� �� �= = < < = =� �
� �� �

	 	 �  (3) 

,
1

, , 1, 2, ,
2

k n

k n

nk
k n D j G

j

X
X n Nτ τ

τ τ τ τ
−

+
=

=
=

= = =	 �  (4) 

0
k T

kX τ τ += =  (5) 

Note that equation (3) simply states that the mass of any new cell-generation k results from the 

division of some immediately previous generation, K*, and equation (4) states that when �k 

coincides with the end of the current cell-cycle, �n. Finally, the mass of the kth cell-generation is 

assumed to halve relative to the next cell-cycle due to division. 

The complete mathematical model for bioreactors 

To demonstrate the implications of our new death-structured model, we will examine classical 

bioreactor-separator systems shown in Figure 3 (Grady et al., 1999). Such systems are very 

common in biotechnology and permit comparisons between microbial population behaviours 

under various environmental and operating conditions (i.e. batch, fed-batch, continuous, or 

continuous with external recycle). We assume the bioreactor is perfectly mixed and the 

“separator is ideal” (i.e. no cells escape in the liquid outlet stream). Further, when recycle is 

included in the model, separated cells return back to the bioreactor at a known fraction � of the 

inlet stream. The separator and recycle introduce an additional delay in the system with respect 

to the living cells in the main reactor chamber. Finally, a solids wastage line is included to 

remove dead cells and excess growth from the system with the withdrawal fraction assumed to 
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be � relative to the inlet stream. For this general system, we will derive a generic mathematical 

model by developing mass balance equations for living and dead cells and for the primary 

substrate. Using model’s parameters (� and �), we will examine different topologies and then 

study transitory states. 

Mass balance for the living cells 

The mass balance for the living cells of the kth cell-generation takes into account both cells 

recycled from the separator and the assumption that death rate is equal to a �T time-delayed birth 

rate. In dimensionless form ( k k inx X X= , where inX  is the initial concentration of the living 

cells in the bioreactor), and using the age factor T tφ τ=  ( t  is the residence time, alias 

hydraulic retention time), the mass balance is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1k
T k T k T k S k

dx x x x x
d

τ μ τ τ μ τ τ τ τ τ τ τ φ α
τ


 � 
 �= ⋅ ⋅ − − ⋅ − + − − ⋅ ⋅ +�  �   (6) 

It must be stressed that in equation (6), � represents the time, during which the first cell-

generation starts its existence as the bioreactor starts working and lasts �T, and the kth cell-

generation appears after k cell-cycles of the oldest cell-generation. 

Mass balance for the dead cells 

Using the same approach, the mass balance for dead cells in dimensionless form is (i.e., 

D D inx X X= ):  

( ) ( ) ( ) ( ) ( )1D
T T k T D S D

dx x x x
d

τ μ τ τ τ τ τ τ τ φ α
τ


 �= ⋅ − ⋅ − + − − ⋅ ⋅ +�   (7) 
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Mass balance for the substrate 

In order for the mathematical model to be complete, we add the dimensionless mass balance for 

the substrate ( 0S Sσ = ), since both the coexisting number of generations and the number of 

cell-cycles a cell-generation has is a function of the food supply: 

( ) ( ) ( ) ( )
0 1

1
GN

kT in
k S

XSk

xXd m x
d S Y

μ ττσ σ τ τ σ τ φ α
τ =

� �⋅⋅

 �= − + ⋅ + − − ⋅ ⋅ +� � � 

� �
	  (8) 

Due to the complexity of the interactions implied by the two time scales (biological lifetime of 

bacteria, �T, and residence time of the bioreactor, t ), we will solve the mathematical model and 

discuss the results only for non-aging populations in this initial presentation.  

Model summary  

Owing to the discrete nature of age-classes, birth, and death, the mathematics that underlie this 

new model address each virtual bacterium assigned to an age-class with respect to the mass 

conservation law; i.e., the number of equations mirrors the number of age-classes. Taking into 

account that the population has NA(S) age-classes at any given time (considering the beginning of 

the experiment as the starting point), this includes NA+2 differential equations with initial, final, 

and time-milestone conditions (equations 1-8). Due to the non-aging asummption, the structure 

of the bacterial population simplifies, containing only NA virtual bacterium (see Figure 2b) 

instead of NG virtual bacterium (see Figure 2a). This means the number of cell-generations in the 

model, NG, can be replaced by the number of age-classes, NA. Further, each differential equation 

describes the mass variation over time of each virtual bacterium associated with an age-class. 

The initial condition provides the mass of an entity at birth (equal with half of the total mass of 
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the population immediately before division) and the final condition states that after a lifetime the 

oldest age-class vanishes. The time-milestone conditions mark cell divisions (if any) of this 

virtual bacterium during its lifetime. The model was solved using in-house software coded in 

C++ based upon a combination of stiff/non-stiff Runge–Kutta algorithms for ordinary 

differential equations. Kinetic parameters and reactor conditions used in the simulations were 

typical of E. coli strain K12-MG1655 grown in bioreactors consistent with complimentary 

experiments (Kovarova-Kovar and Egli, 1998; Stewart et al., 2005; Chi Fru et al., in revision). 

RESULTS AND DISCUSSION 

Discontinuous/batch bioreactors  

In a batch process, the number of age-classes, which depends upon the substrate level and 

affinity, should decrease gradually due to the continuous depletion of the substrate. Figure 4 

shows when substrate is high, cells achieve near optimal doubling times at the beginning of the 

process; they grow and divide rapidly and form ten age-classes within the first 10% of their 

lifetime. Further, only living cells exist during early growth in the batch reactor and it isn’t until 

after one lifetime that dead cells start to accumulate when the oldest age-class dies (Figure 4, 

dimensionless time greater than unity). Although birth is a discrete event, the concentration of 

the living cells varies continuously in the absence of death. Birth means only a change in the age 

distribution of population through the apparition of new age-classes, which inherit half of the 

population mass prior to division without changing the living cells concentration. Like birth, 

death is a discrete event, equal to the birth rate the population experienced earlier. Finally, death 

discretely affects the living cell profile, which drops as dead cell levels increase (Figure 4). 
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Continuous-flow chemostats  

Continuous-flow chemostats theoretically operate at a steady state when the specific growth rate 

of the microorganisms equates with dilution rate, which should result in constant effluent cell 

densities. However, experimental evidence suggests that bacterial populations in chemostats do 

not achieve a true steady-state even under “ideal” conditions (e.g., Figure 1). We suggest that 

this behaviour can be explained by the structuring influence of apparent group death, which 

continuously occurs to the “oldest” age-class in the population. It is important to reiterate that it 

is not known with certainty the actual cause death, but the model assumes that the “oldest cells” 

will most likely die first because they are going to be most subject to the impact of aging. 

Based on this assumption, we performed numerous simulations using the model to assess the 

impact of growth and death upon the structure and behaviour of a bacterial populations in a 

chemostat under various hydraulic residence times (HRT; the inverse of the dilution rate). 

Simulations ranged from near “washout” conditions (where dilution rate is greater than specific 

growth rate) to HRTs near complete life spans; however, only illustrative examples are provided 

of general trends.  

Overall, the mathematical model suggests that chemostats operate under a pseudo-steady state, 

called a confined dynamic equilibrium, which includes small-scale oscillations embedded within 

longer term steady conditions. However, characteristics of the confined dynamic equilibrium 

vary as a function of HRT with longer HRTs generally displaying more complex behaviour than 

shorter HRTs. A typical pattern is shown in Figure 5, which shows confined dynamic 

equilibrium after dimensionless times >1.5 when a HRT of 4.5 h is assumed. Upon closer 

inspection, it is apparent that observed cyclic patterns result from the sequential loss (i.e., death) 



Acc
ep

te
d m

an
usc

rip
t 

and re-growth of live cells over time, which closely resembles experimental results shown in 

Figure 1 (Note: Figure 1 used HRT of 3.5 h in experiments). Further, the model shows that dead 

cell dynamics are more influential than live cell dynamics on cyclic patterns, presumably 

because live cells are self-replenishing. In reality, the amplitude of variation of living cell 

densities in the model is relatively small (4e-3 in dimensionless units), therefore visually appears 

near steady-state (Figure 5). However, observed variations were consistent among all mid-range 

HRT simulations and also confirmed by physical experiments when measurement detection 

limits low (Chi Fru et al., in revision). It should be noted that there is one dilution rate (HRT of 

0.32 h) beyond which the only attainable steady state is trivial and corresponds with washout 

(Figure 6). In this case, population densities cannot be confined within the system’s boundaries 

and washout occurs because the bacterial cells do not have the physical time to replicate 

themselves. 

For HRTs higher than 4.5 h, the amplitude of variation of the confined dynamic equilibrium 

increases and its boundaries start displaying a double periodicity (Figure 7). Depending upon the 

relationship between the process time scale (doubling time) and the bioreactor’s time scale 

(residence time), boundaries are nearly constant with symmetric population dynamics in the 

confined equilibrium (Figure 7a-1&2) or in a more periodic manner with asymmetric but 

periodic behaviour over short intervals, but more symmetric and cyclic behaviour over longer 

intervals (Figure 7b-1&2). In both cases, the amplitude of variation of the living cell densities is 

sufficiently high so that a time-series of state parameter readings from the bioreactor might 

display pseudo-chaotic behaviour, especially when the sampling time of the probe has no 

relationship with the timescale of the system; i.e. when their quotient is not a rational number.  
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Analysing the phase-plane trajectories (Fig. 7a-2 and 7b-2), emerging pseudo-chaotic population 

behaviour is suggested. The process is repetitive, but without a fixed period; i.e. the time 

trajectories do not overlap even for the smaller HRT of 10 h, for which the system has rather 

constant boundaries. The variable timescale of the periodicity is responsible for different values 

of the state variables. Furthermore, the apparent pseudo-chaotic behaviour increases as the HRT 

increases (HRT of 42 h) due to the higher amplitude of variations of living and dead cells 

concentrations (see Figure 7a-1 and 7b-1 for comparison). This happens because the number of 

age-classes diminishes as the HRT increases and the impact of death of the oldest age-class is 

greater. Ultimately, for a sufficiently high HRT, there will be only one fully developed age-class; 

i.e., the second age-class which cannot reach division since its lifetime ends before the reactor 

HRT. This is the result of decreasing substrate concentrations which cause doubling times to 

approach residence times. The system has a complex attractor (Figure 7b-2) around washout, 

represented by the centre of the circle. Increasing residence times will result in extinction, since 

the level of the substrate concentration drops under the maintenance threshold. Consequently, the 

doubling time becomes greater than the lifetime and bacteria will die before multiplying. 

Bioreactor-separator systems  

In order to prevent washout and stabilize the system, external recycle lines are sometimes used in 

bioreactors. Recycle systems return cells that have exited the bioreactor back into the influent 

(often via a solids separator). Further, cells also sometimes are wasted from the recycle line, 

which is designed to counterbalance accumulation of cells in the system and discard excess cell 

solids when cell yields are high in the system. The inclusion of external recycle makes the model 
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more complex, since another time-scale is added (i.e., the recycle delay, which is the time for the 

cell mass to leave reactor and then return back as recycle).  

Figure 8 shows the system with recycle is still in a confined dynamic equilibrium with 

conditionally constant or periodic boundaries defined by complex relationships among the three 

time scales: doubling time, residence time, and recycle delay. Despite the apparent complexity, 

the amplitude of variation of living cells concentration still depends upon the bioreactor’s HRT, 

but results in narrower or wider attractors (see Figure 8a-2 & 8b-2). When the attractor is narrow, 

the system appears in a pseudo-steady state, with distributed living cell concentrations around 

0.938 and a dispersion of 0.043 (for the case presented in Figure 8a-2). However, as the attractor 

becomes wider due to the increased value of the amplitude (0.182 for the case presented in 

Figure 8b-2), the system behaves more dynamically since dispersion widens. 

Even with external recycle, an actual steady state never seems to exist and the population always 

operating in a confined dynamic equilibrium. In fact, the model shows that by simply 

considering that organisms in a population have different ages and are subject to death, complex 

population behaviour emerges in an apparently simple system. The model shows that death and 

growth structure populations over time and can cause dynamics to shift from a pseudo-steady 

state to periodic to possibly chaotic conditions, which has significant ramifications to population 

(and community) dynamics and stability in all living systems. 

Implications 

The mathematical model presented here assumes that bacterial populations are not comprised of 

identical individuals, but include individuals of different age at different points in their lifetime 
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at any moment in time. The model further assumes that individuals pass through their lives in 

groups (age-classes) that are segregated by group death events that occur among a sub-set of 

organisms within the system, probably the oldest age-classes (Erjavec et al., 2008;  Chi Fru et 

al., in revision). Finally, this group death is “programmed”, possibly by some quorum sensing 

mechanism (Rice and Bayles, 2008), but this needs to be proved. Regardless of cause, the model 

broadly shows that emergent complex dynamics, including conditional pseudo-chaotic 

behaviour, result from these simple, but experimentally verified assumptions. Although this 

version of the model does not include explicit differences in kinetics among age-classes, it shows 

if individuals are born and die at different points in time, intrinsic complex behaviour results that 

closely follow observations in recent experiments (Figure 1). 

The basis if this complex behaviour varies from case to case and varies as function of HRT, but 

it appears to largely result from delayed-oriented birth, growth, and death of different age-classes 

in the system that result in different cycling patterns of live and dead cells (Figures 2 and 7). As 

age-classes are born, live, and die, the distribution of age-classes continuously varies over time, 

triggering temporal changes in population density that is influenced by microbial kinetics, 

substrate availability, lifespan, the operational mode of the bioreactor, and other factors. 

However, regardless of details, the age-class concept clearly results is a dynamic system, which 

in fact, contradicts classical reactor theory (that has traditionally assumed a steady-state), but 

also better matches common experience with reactor systems.  

Although basically simple, we contend this new model may demand a paradigm shift in how we 

view bacterial population dynamics in reactors (and other systems) because it explains complex 

behaviour at both a qualitative and quantitative level. This model’s predictions and this alternate 
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worldview may of general academic interest, it should be of particular interest to those that study 

and operate reactors for population growth in biotechnology. Process stability is a continual 

concern with such systems, but such systems also are known to become transiently unstable and 

even fail unpredictably (Knapp and Graham, 2007). Therefore, this new model provides a 

baseline for new studies on transient instability, even in pure cultures, which might allow, first 

through refined simulations but followed by further laboratory experiments, a new direction for 

both predicting and designing away from instability. As such, we hope that this new paradigm 

will be the catalyst for future research related to this subject, especially larger-scale experimental 

studies that test and validate the model’s predictions. 
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FIGURES  

Figure 1. Temporal patterns of cell density (measured every minute as optical density, OD, at 

600 nm wavelength) and the ratio of live versus dead Escherichia coli strain K12-MG1655 cells 

in an operating chemostat. Operating conditions included: hydraulic retention time = 3.5 h; 

temperature = 27oC; mixing rate = 200 rpm; growth media = 0.1% wt/wt glucose plus essential 

mineral nutrients; pH = 7.0. Live and dead cell densities were determined using the 

LIVE/DEAD® BacLight Bacterial Viability Kit, L13152 (Molecular Probes, Invitrogen, Paisley, 

UK). Results typical of operations for hydraulic retention times ranging from 3 to 10 h.; system 

washout retention time was 2.6 h. Data adapted from Chi Fru et al (in revision) where further 

details are available.  

Figure 2. Dynamic relationship between cell-generations, life time, doubling time, and number 

of age-classes present in the system with respect to the substrate concentration; a) substrate is 

plenty and at the optimal concentration, aging affects bacteria (see the text for the meaning); b) 

the same conditions as in a), but aging does not affect bacteria; c) the substrate is consumed 

during the biological process, decreasing to the limit where the doubling time becomes 

approaches the lifetime and a single fully active age-class exists (the bacteria from the older age-

class die prior to divide). 

Figure 3.  Chemostat model including wastage line. 

Figure 4. Typical batch profile for living and dead cells dimensionless concentrations to 

illustrate the influence of time delay between birth and death (S0 = 8000 mg/L, E. coli, �max = 3 h-

1, KS = 3.96 mg/L, �D = 0.231 min, �T = 23.1 min, dimensionless time = t/�T). 
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Figure 5. Dimensionless concentration profiles for a continuous-flow chemostat where confined 

dynamic equilibrium is achieved: number of age-classes = 6-7; residence time = 4.5 h; �D = 3.13 

h; chemostat substrate concentration = 0.315 mg/L; mean dimensionless steady-state living cells 

concentration = 0.99 (actual chemostat concentration divided by the maximum exit 

concentration); mean ratio of living to dead cell concentrations = 188.3 (the kinetic parameters 

are the same as in Figure 3). 

Figure 6. Washout state for residence time = 0.32 h (the kinetic parameters are the same as in 

Figure 3). 

Figure 7. Confined dynamic equilibrium concept: a-1) constant boundaries for the amplitude of 

variation, number of age-classes: 2-3,  residence time = 10 h, chemostat substrate concentration 

= 0.155 mg/L; mean dimensionless steady-state living cells concentration = 0.879;  mean ratio of 

living to dead cell concentrations = 7.8; a-2) phase-plane representation of the time trajectory for 

the living cells concentration – the attractor has regular boundaries, b-1) periodic boundaries for 

the amplitude of variation, number of age-classes: 1,  residence time = 42 h, chemostat substrate 

concentration = 0.082 mg/L; mean dimensionless steady-state living cells concentration = 0.418;  

mean ratio of living to dead cell concentrations = 0.74; b-2) phase-plane representation of the 

time trajectory for the living cells concentration – the attractor has irregular boundaries; on 

average, the chemostat has steady-state concentration, but within shorter time scales, this varies 

between two limits and can be asymmetric (the kinetic parameters are the same as in Figure 3). 

Figure 8. Implications of the external recycle upon the confined dynamic equilibrium. Possible 

interactions displayed when the recycle time-delay is under the doubling time (a-1&2, residence 

time = 0.5 h, delay time = 1.0 h) or over the doubling time (b-1&2, residence time = 1.5 h, delay 
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time = 1.0 h), for the same operating parameters: recycle fraction = 0.5, sludge waste ratio = 

0.05. a-1) number of age-classes: 10, chemostat substrate concentration = 0.538 mg/L; mean 

dimensionless steady-state living cells concentration = 0.938; mean ratio of living to dead cell 

concentrations = 11.7; b-1) number of age-classes: 3, chemostat substrate concentration = 

0.2.06 mg/L; mean dimensionless steady-state living cells concentration = 0.896; mean ratio of 

living to dead cell concentrations = 3.23 (the kinetic parameters are the same as in Figure 3). The 

influence of the recycle time-delay is readily observable for the dead cells concentration profile – 

the decline due to the withdrawal is dumped by the dead cells entering the system after this delay 

(the slope of the profile changes). 
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Figure 1
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