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On the Correlation Between Continuum Mechanics
Entities and Cell Activity in Biological Soft Tissues:
Assessment of Three Possible Criteria for Cell-controlled
Fibre Reorientation in Collagen Gels and Collagenous
Tissues

Martin Kroon*

Department of Solid Mechanics,
Royal Institute of Technology,
Osquars backe 1, SE-100 44 Stockholm, Sweden

Abstract

The biomechanical behaviour of biological cells is of great importance in
many physiological processes. One such process is the maintenance of fibrous
networks, such as collagenous tissues. The activity of the fibre-producing
cells in this type of tissue is very important, and a comprehensive material
description needs to incorporate the activity of the cells. In biomechanics,
continuum mechanics is often employed to describe deforming solids, and
modelling can be much simplified if continuum mechanics entities, such as
stress and strain, can be correlated with cell activity. To investigate this, a
continuum mechanics framework is employed in which remodelling of a colla-
gen gel is modelled. The remodelling is accomplished by fibroblasts, and the
activity of the fibroblasts is linked to the continuum mechanics theory. The
constitutive model for the collagen fabric is formulated in terms of a strain
energy function, which includes a density function describing the distribution
of the collagen fibre orientation. This density function evolves according to
an evolution law, where fibroblasts reorient fibres towards the direction of
increasing Cauchy stress, elastic deformation, or stiffness. The theoretical
framework is applied to experimental results from collagen gels, where gels

*Tel: +46-8-7907553, Fax: +46-8-4112418
Email address: martin@hallf.kth.se (Martin Kroon)

Preprint submitted to Journal of Theoretical Biology December 28, 2009



have undergone remodelling under both biaxial and uniaxial constraint. The
analyses indicated that criteria 1 and 2 (Cauchy stress and elastic deforma-
tions) are able to predict the collagen fibre distribution after remodelling,
whereas criterion 3 (current stiffness) is not. This conclusion is, however,
tentative and pertains, strictly speaking, only to fibre remodelling processes,
and may not be valid for other types of cell activities.

Key words: biomechanics, collagen, collagenous tissues, collagen gel,
fibroblast, remodelling

1. Introduction

The biological cell constitutes the basic unit of life, and the biomechanical
behaviour of cells is of great importance in several physiological processes
(Bao and Suresh, 2003; Zhu et al., 2000). The mechanobiology of cells, such
as fibroblasts, has therefore been much studied over the last two decades,
see e.g. Albrecht-Buehler (1987); Evans and Yeung (1989); Gardel et al.
(2003); Heidemann et al. (1999); Hinz and Gabbiani (2003). The fibroblast
belongs to the group adherent cells, and these cells attach to the extracellular
environment (Cukierman et al., 2001; Jiang and Grinnell, 2005). These cells
play an important role in the maintenance of the fibrous networks that supply
structural integrity to different components of the human body. Collagen
is a protein of the human body that supplies structural integrity to such
components as bone, cartilage, tendon, skin, and blood vessels. For example,
in the wall of blood vessels, collagen acts as a strait-jacket that prohibits acute
overdistension of the vessel wall, and collagen can be found in all three layers
of the wall (intima, media, and adventitia). The major fibrillar collagens
in the vasculature are types'I and III. Type I forms thick bundles of fibres,
whilst type IIT forms finer, more reticulate fibres. Both types, synthesised
by fibroblasts and smooth muscle cells in the vessel wall, may co-exist within
bundles of fibres (Bishop and Lindahl, 1999).

Collagenous tissues are living structures, in which new material may be
added and the structural organisation may change over time. The mainte-
nance of the collagen matrix is accomplished by fibre-producing cells, such as
fibroblasts. During maintenance, the extracellular matrix (ECM) influences
the development, shape, migration, proliferation, survival, and function of
the cells. The mobility of the fibroblasts and their ability to contract the
ECM are important properties for a proper maintenance of the ECM (En-



gler et al., 2004; Friedl and Brocker, 2000; Friedrichs et al., 2007; Grinnell,
2003; Lo et al., 2000; Poole et al., 2005). The fibroblast also has the ability to
align itself in the direction of existing collagen fibres/fibrils and to produce
new collagen that is aligned in the same direction (Birk et al., 1990; Cisneros
et al., 2006; Huang et al., 1993; Lin et al., 1999; Meshel et al., 2005; Té6th
et al., 1998). Hence, the activity of adherent cells, such as the fibroblast, is
strongly dependent upon mechanical stimuli from the surrounding ECM.

The purpose of the present paper is to shed some more light on the inter-
action between the ECM and the fibre-producing cells. It is well established,
that the ECM influences the cell activity, but it is still an open issue how
this is done and whether or not continuum mechanics entities, such as stress
and strain, can be correlated with cell activity (cf. Humphrey, 2001). To in-
vestigate this, we adopt a continuum mechanics description of a collagen gel
with embedded fibroblasts. The fibroblasts remodel the collagen gel by reori-
enting the individual collagen fibres. This reorientation of fibres is described
by an evolution law, which depends on a continuum mechanics entity. Three
possible choices are assessed: the Cauchy stress, the elastic stretches, and the
current stiffness of the material. The three different criteria are evaluated
in terms of the predicted distribution of collagen fibres after remodelling,
and the outcome is compared to experimental results. Results from tissue
equivalents in the form of collagen gels are used when assessing the three
criteria.

The continuum mechanics framework and the constitutive model for the
collagen gel are outlined in Section 2. The predicted fibre distributions re-
sulting from the three different criteria are compared to experimental results
from tests on collagen gels. In Section 3, the proposed model is put on a form
that corresponds to the experimental method. A comparison with the exper-
imental results and an evaluation of the three proposed remodelling criteria
are provided in Section 4. The results are then discussed in Section 5.

2. Theoretical framework

2.1. Continuum mechanics framework

We consider a network of collagen fibres, where the fibres are embedded in
a matrix fluid. The collagen fabric and the surrounding fluid are assumed to
be the only load-carrying constituents in the material. Embedded in and at-
tached to the collagen fabric is also a population of fibroblasts. The collagen
fabric is composed of collagen fibres, which in turn are bundles of collagen
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fibrils. The matrix fluid acts as the physiological environment of the collagen
and the cells, and the fluid constitutes a continuum in which the collagen
fabric is embedded. The fluid does not supply any shear stiffness to the
material, but may add a hydrostatic stress component. The deformation of
the collagen/fluid matrix is illustrated in Fig. 1, where a reference coordi-
nate system with basis vectors e, ey, e3 has been introduced. The position
vector in the reference configuration €2y is denoted X = X,e;, where X, X5,
X3 are coordinates in the reference system. In a similar way, the position
vector in the deformed (current) configuration is denoted x = z;e;. The
deformation of a line element in the matrix is described by the deformation
gradient F(X) = 0x/0X, which is decomposed according to (cf. Rodriguez
et al., 1994)

F = F,F;F.. (1)

The fibroblasts’ remodelling of the collagen fabric results in a new matrix
configuration .. This deformation of the matrix is described by F,. The
configuration €2, does not necessarily fulfil equilibrium, and the deformation
gradient F¢ takes the matrix to the state €2y, that fulfils global equilibrium
with no external loads applied. Finally, if external loads are applied to the
material, the configuration {2 is attained, and this deformation is described
by the deformation gradient F,;.

Fr @ Flf @ Fel
— — ,
€3

€2
€1

Figure 1: Deformation of physiological matrix in which the collagen fibres and fibroblasts
are embedded. Deformation gradients F,, F)¢, and F¢ describe the deformation of a line
element between configurations Qq, €, Qi¢, and (2, respectively.

The right and left Cauchy-Green deformation tensors are defined as C =



FTF and b = FF', respectively. The remodelling deformation gradient
F. is taken to be fully in-elastic, and the total elastic deformation im-
posed on the matrix is therefore F, = FqFy. The associated right and
left Cauchy-Green deformation tensors are C, = F,F, = F.'CF;' and
b, = F,F! = FF_'F;"F'. Let M be a unit vector defined in the reference
configuration g, and let m = FM/|FM| be the associated mapped unit
vector in the current configuration. We also introduce two sets of spherical
coordinates, {0, ¢} and {0., ¢.}, defined in the reference and current config-
urations, respectively, such that the unit vectors may be expressed as

M = sinflcosge; + sinfsinges + cosfle; (2)
and
m = sinf.cos¢.e; + sinf.sing.e, + cosb.es. (3)
The elastic stretch Ao, in the direction m may be computed as
)\z’m = mb.m. (4)

Under physiological conditions, collagenous tissues can be modelled as a
hyperelastic material, where the constitutive response is governed by a strain-
energy function W. The second Piola-Kirchhoff stress S is then defined as

ov
/ 5
9C. (5)
The first Piola-Kirchhoff stress tensor P is obtained as P = F.S, and the
Cauchy stress o as o = PF!/J, = F.SF!/J,, where J, = detF,. The
normal stress in a direction m (jm| = 1) is obtained as

S=2

Om = mom. (6)
The components of the material stiffness tensor C;;;; are defined as
0S;;
=, (7)
0Ce ki

and from C;;;; the components of the stiffness tensor in the current configu-
ration ¢;j;; are obtained as

Cijkl = Fe,imFe,jnFe,koFe,lpCmnop- (8)

Cijr = 2

From Eq. (8), the normal stiffness ¢, in a direction m (jm| = 1) in the
current configuration is computed as

Cm = Mym;mgmyCijg. (9)



2.2. Remodelling of collagen network

Remodelling of the collagen fabric implies a restructuring/reorganisation
of existing collagen. During maintenance of the collagen fabric, fibroblasts
are assumed to remodel the collagen in two different ways: by contracting the
collagen network inelastically and by changing the orientation of the fibres.

The density and orientation distribution of fibres are modelled by use of a
density function p = p(M), defined in the reference configuration €, where
M is defined over the domain €. Thus, p(M) gives the density of fibres
oriented in a direction defined by the unit vector M, and p has the unit
kg/m®. In the current, deformed configuration, the associated distribution
is p.(m). We also introduce the volume concentration of fibroblasts, ps and
prc, defined in the reference and current configurations, respectively, where
both pr and pg. have the unit cells/m3.

The first way in which remodelling occurs (the inelastic contraction) is
conjectured to take place in the following way: a) a collagen fibre is removed
from the network by a fibroblast, (b) the fibroblast then contracts the re-
maining network of fibres, and c) the fibroblast reinserts the released fibre.
This process is modelled by the tensor F,. The right Cauchy-Green deforma-
tion tensor C, = FIF, is completely defined in the reference configuration,
and the evolution of the remodelling process may be modelled by use of the
rate

Cr - Z )\iiﬁr,i & ]-/\\Ir,i =

where A,; are the principal stretches of F,, and Nr,i are the principal di-

rections of C,. Evolution laws for \,; and Nr,z‘ are required and may be
formulated as

E:E(F,Fr,a,...), (11)

Nr,i = Nr,i(Fa FI‘a g,... )a (]‘2)

i.e. the evolution laws can be expected to depend on the deformation gradi-
ents F and F,, the Cauchy stress tensor o, and possibly other entities.



The second way that fibroblasts remodel the collagen network is by re-
orienting fibres, which is modelled by a diffusion-like evolution law according

to
P00 | () Ag(am) = (), (13)

where the entities p.(m), pre, ¢(m), 7m(m), and m are defined in the current
configuration. Thus, p(M) in the reference configuration is mapped to p.(m)
in the current configuration, 8 (with the unit m?/(cells-s-Pa)) is a material
constant, ¢ is a continuum mechanics entity to be specified below, m is the
collagen mass production rate per unit deformed volume, and ¢ denotes time.
No material growth is included in the present model, and the mass production
rate is therefore zero, i.e. m(m) = 0.

If m is expressed in terms of the spherical coordinates introduced in
Eq. (3), the derivative in the second term of Eq. (13) takes on the form

1 0 (. Oq 1 9%
Ag = B I S § 14
9= Sin, 06, <Sm9 aac> T Sin0, 092 (14)

Three possible choices of ¢ will be explored in the present analysis:
e ¢; = o (the normal stress in Eq. (6)),

e > = A2 (the normal elastic deformation in Eq. (4)),

e (3 = Cp, (the normal stiffness in Eq. (9)).

Criteria 1, 2, and 3 imply that fibroblasts reorient collagen fibres towards
the direction of increasing stress, elastic deformation, and stiffness, respec-
tively.

2.3. Strain energy function for collagen network

On the macroscopic level, collagen fabrics display a non-linear stress-
strain behaviour, which is related to geometric characteristics, i.e. the wavi-
ness of the collagen fibrils. Both phenomenological and microstructurally
based approaches have been used when deriving constitutive models for col-
lagen. Diamant et al. (1972) modelled a single collagen fibre as a linear
elastic zig-zag wave with rigid nodes. Other studies have treated collagen
fibrils as planar, sinusoidal-like, slender filaments, e.g. Buckley et al. (1980);
Comninou and Yannas (1976); Hurschler et al. (1997); Lanir (1978, 1979b).
A more advanced approach was chosen by Annovazzi and Genna (2009), who
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considered a collagen fibre unit as being composed of a parallel arrangement
of subunits down to the tropocollagen level.

Phenomenological models, on the other hand, are plausible mathematical
expressions that are able to fit experimental stress-strain relations, but lack a
clear microstructural motivation. Fung (1967) proposed a phenomenological
constitutive model for collagenous tissues, and several other functional forms
have followed. Uniaxially oriented collagen may, due to its waviness (or
undulation), be described by a strain energy function on the form

e =k {exp (a (22 = 1)7) — 1}, (15)

where k. and a are stiffness parameters, and A is the stretch imposed on the
collagen fibres.

We now consider a network of collagen fibres, having a volume density
p(M) and deforming affinely with the matrix. External (tensile) loads or con-
straints are applied, and remodelling occurs in a deformed state 2y = €.
Fig. 2(a) shows the relevant configurations during remodelling under exter-
nally imposed loads and/or constraints. In Fig. 2(a), the remodelling is
symbolised by a relative sliding between cross-linked collagen fibres and an
associated adjustment of the cross-link site (the black dots). To comply with
the imposed external boundary conditions, the network also needs to deform
elastically, which is described by F.. The total deformation gradient, as-
sociated with the state g = €2, is F = F., and the right Cauchy-Green
deformation tensor C, = FCTFC. The elastic deformation, experienced by
the fibres in this state, is described by the right Cauchy-Green deformation
tensor C. e = F;TCCF;I. If the external loads and constraints are removed,
the collagen fibres will try to contract the network back to the load-free state
of the individual collagen fibres. But the fact that the fibres are intermingled
and cross-linked prohibits them from reaching their fully relaxed state. This
is illustrated in Fig..2(b). Hence, the (macroscopically) load-free state Qs is
not identical to ), and in ¢, individual collagen fibres may be in a state of
pre-stretch. This internal resistance to compression, caused by the interac-
tions between fibres in the network (and possibly other matrix substances), is
modelled by introducing a network compression modulus k., (index "cn” for
collagen network). We assume that the external loads and constraints change
slowly compared to the remodelling process, i.e. F. changes slowly compared



(b) Unloading to load-free state

Figure 2: (a) Configurations during remodelling with external loads and/or constraints
applied. Remodelling occurs in the deformed state Q¢ = 2. (b) Unloading from deformed
state Qo = Q. to load-free state Q¢

to F,. The total strain energy of the collagen network is now modelled as

U /Q p(M)f—;{exp[a(f—l)Z]—1}-H(§—1)dQM

s [ o - e e - aow, (16)
QM
g(ce: Fr: M) = Ce : A(Fra M)a

gc(cc,ea Fra M) = Cc,e : A(Fra M),

where y is the surface domain over which the density function p(M) is
defined (typically a half unit sphere), H is the Heaviside step function, and
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A = FM/|F.M| ® F.M/ |F.M| . Thus, in the first term in Eq. (16),
collagen fibres in tension (¢ > 1) contribute to the strain energy through
the exponential-type of law given in Eq. (15). The second term in Eq. (16)
accounts for the resistance to network compression, where the compression
resistance kicks in when the network is compressed compared to the defor-
mation state in which remodelling has taken place (£ < &.).

3. Model formulation corresponding to experimental method

3.1. Ezperimental method

The theoretical model proposed in the previous section is applied to ex-
perimental results presented by Thomopoulos et al. (2007). Thomopoulos et
al. study the mechanical and histological properties of remodelling collagen
gels. Collagen gels were created by polymerisation of monomeric bovine type
I collagen. Rat cardiac fibroblasts were inserted into the gels. A principle
sketch of the experimental set-up is shown in Fig. 3, where basis vectors ey,
€9, €3 are indicated. Gels were constrained either uniaxially (e;-direction)
or biaxially (e;- and e,-directions) for 72h, during which time the fibroblasts
were allowed to remodel the collagen gel. After that, the collagen fibre distri-
bution in the gels was examined by use of a microscope, and the mechanical
properties were investigated in terms of equibiaxial, load-controlled tensile
tests. In total, 36 gels were investigated by Thomopoulos et al., and the
experimental results reproduced below are average values.

3.2. Model prerequisites and kinematics

The collagen gel is idealised as a planar network of collagen fibres embed-
ded in water, and all collagen fibres are thus assumed to lie in the e;-e;-plane
during testing. The initial distribution of fibres is assumed to be uniform, i.e.
fibres have no preferred direction and are perfectly randomly oriented in the
ei-es-plane. In Fig. 3, the collagen gel is illustrated together with the basis
vectors. Thomopoulos et al. conclude that during the remodelling process,
only a minimal amount of additional matrix components was added by the
cells. The collagen mass can therefore be taken to be constant.

Since the stresses in the remodelling gels can be expected to be relatively
low, we assume that the evolution laws in Eqs. (11) and (12) are independent
of the stress state. We assume that the remodelling occurs uniformly in the
ei-es-plane and can be described by the tensor

F.=\(e1®e +e3®e)) +e3® es, (17)

10



Remodelling of biaxially constrained gel

[ 1L

Remodelling of uniaxially constrained gel

e2 ¢ | - | ¢C |
e; €1

Figure 3: Principle sketch of experimental set-up used by Thomopoulos et al. (2007).

where contraction of the network during remodelling corresponds to A, < 1.
Under this assumption, no evolution law for N is required. For A,, we here
adopt a phenomenological evolution law on the form

A2 = “app.J? (18)

r’

where J. = detF, = A\2. The material constant o (with the unit m3/(cells-s))
is related to the reorganisation speed of the fibre-producing cells (such as fi-
broblasts). Contractions cannot be unbounded, and ), should always remain
positive. This is ensured by including the factor J? in Eq. (18). Eq. (18)
may be recast into

apf,chQ

)\r - 2)\r )

(19)

which defines the evolution law for ..
For the present experimental set-up, homogeneous deformation is as-
sumed and the deformation gradients take on the forms

Fr = )\r(e1®e1—|—e2®e2)+eg®e3,
Fo = FaFr=A1-e1®@e +Acp-€2®e+ A\3-e3Q e, (20)
F = FF. =)\ Qe+ e20e+ A\3-e3Q es,
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where A\j = A1, A2 = Aideo, and A3 = A¢3. Since the fibres lie in the
ei-es-plane, the remodelling process is taken to be confined to this plane,
implying (F,)3s3 = 1. During the elastic deformation F,, incompressibility
is assumed, and the relations J. = detF, = A¢1Ae2Ae3 = 1 must therefore
hold.

The density function p(M) is defined in the e;-e;-plane, and the vector M
may be expressed as M = cos¢e; +singe,. Since fibres are taken to remain in
the e;-ey-plane during deformation in the present experiments, the associated
vector m in the deformed configuration is m = cos¢.e; + sing.es, see Fig. 3.
The Laplace operator in Eq. (14) simplifies to Ag = §?q/d¢?>. For this planar
type of problem, the current and reference volume densities may be expressed
as p(M) = p(¢) and p.(m) = p.(¢.), respectively, and a relation between
these entities is required. The deformation gradient F, causes an isotropic
contraction of the network, resulting in the volume density

pe(9) = p(9)/ T, (21)

where J, = detF, = )\f. The isochoric elastic deformation F. in turn causes
a redistribution of the volume density to p.(¢.), which-may be described by
the relation

pr(0)dg = pe(dc)dge. (22)
The vectors M and m are related as m = FM/|FM| = F.M/|F. M|, which
after some manipulation gives the relation

)\e,ltanqﬁc 3 )\e,ztand). (23)

By differentiating Eq. (23) and combining Eq’s. (21)-(23), we obtain the
relation
p(p) A2y + A tan®e

. 24
Jr )\e,l)\e,2(1+tan2¢) ( )

Pc = pc(d)a )‘e,la )‘9,2) =

3.8. Strain energy function, stress and stiffness components
For the 2D collagen network and matrix fluid, the following strain energy
function is adopted:

/2
v = /¢ p(0) 5= {oxp [a (€~ 1)7] 1} H(E - 1)dg

=—7/2

w/2 kn
R SR (R (25)
b)),
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where C, = A2 -e;1®@e;+ A2, es@ey+ A 5-e3® ey, {(Ce, M) = A2 cos?¢ +
A2,sin®g, and & (Cee, M) = A2, jcos’d+ A? ,sin’¢. Remodelling takes place
in a state described by the total deformation gradient F. = A1 -e; ® e; +
A2 € @ey+ Az €3 ®es. Incompressibility is assumed for the elastic
deformation, and p is a Lagrange multiplier that supplies a hydrostatic stress
component to the material. As fibres are assumed to be parallel to the e;-e,-
plane, they do not contribute with any stiffness to the es-direction. However,
since the fibres are cross-linked, the gel will exhibit a certain stiffness in this
direction as well, and a stiffness k3 (and an associated strain energy term) is
therefore assigned to the es-direction.

The second Piola-Kirchhoff stress is computed according to Eq. (5), and
may, due to the symmetries of the present problem, be expressed as S =
Si-eg®e; +S5y-e ey + 53 -e3 ®ez. Plane stress prevails both during
the remodelling process and during the equibiaxial tensile tests, and the
boundary condition S3 = 0 enables determination of the Lagrange multiplier
to p = ksAZ3(A25 — 1). The resulting second Piola-Kirchhoff stress is

/2

S = / p(@)keexp [ (€ — 1)?] (6 — 1) A “H(¢ — 1)do
¢

=—7/2

w/2
_ /¢ Pp(0)ken (€ — ) A - H(& — £)do (26)

=—7/2
F ks (02— 1) es @ ey <RaAZy (A2, — 1) - Co

where A = cos?¢ - e; ® e; + sin’d-e; ® e, + cosgsing(e; ® e; +e; @ e;), and
Aes = (Aeqe2) ! due to incompressibility. The first Piola-Kirchhoff stress
P and Cauchy stress o are computed as P = F.S and o = PFeT, and will be
on the forms P = P -e1Qe;+ Pr-es®ey and 0 =01 -1 ®e;+ 09 € ® ey,
respectively.

The components of the material stiffness tensor take on the forms (i, j =

13



1,2)

Cijri

3 /2
5 0% _ ch/ p(d)exp [a (€ —1)%] -
¢

0C¢ ki ——n/2
A1+2a(§—1)} - H( — DA Apde +
w/2
2o [P0 A HG - 46+
@

=—m/2
+2ksA25 (2025 — 1) - Co Oy +

e,ij

kA2 (M5 —1) - (CoihCoti + CitCo),

e,lj e,il “ekj

and the components c;j;; of the current stiffness tensor are then computed
according to Eq. (8).

In the evolution law Eq. (13), the entity 0?q/d¢? is required, where three
different candidates for ¢ will be explored. In the present problem formula-
tion, ¢1, g2, and g3 take on the following forms:

1 = Om
Q2:)\r2n
g3 = Cp

with the coefficients

by
by
bs

The second derivatives with respect to ¢. then take on the forms

>’ q
Ig?
q,
0¢z
0qs
292

= 01c08°¢ + 095in? ¢,
_ 2 2 2 2
= Ae1€08" Qe + AL osin" ¢,

= blcos4<;5C + bycospesin® e + bycos?esin? ¢,

+  bycospesin® o, + b5sin4¢c,

Ci111, b2 = Ci119 + Cr121 + Ci211 + Co111,
C1122 + Ci212 + Ci221 + Ca112 + Ca121 + Co211,
C1292 + €2192 + C212 + Co991,  bs = Ca999.

20826, (03 — 1)
2¢082¢, ()\3’2 - )\gyl) ,

(—4by + 2b3)cos @, + (—10by + 6by)cosg,sin® P

+(12by — 12b3 + 12bs)cos®¢sin’ ¢,
+(6by — 10by)cosgcsin’ ¢, + (2bs — 4bs)sin p..
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(32)
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3.4. Initial and boundary conditions

Initially the collagen gel is taken to be stress-free and to have a uni-
form distribution of collagen fibres p(¢) = pc(¢e) = po, i.e. the fibres are
uniformly distributed in the e;-es-plane, and reference and current con-
figurations coincide. This stress-free state is associated with the stretches
M=X=Xd=2X1 = A2 =2A3 =1, and \, = 1. At time ¢ = 0, the gel is
constrained either biaxially or uniaxially, and the remodelling process starts.

The boundary condition S3 = P; = 03 = 0 holds throughout the analysis.
During remodelling of a biaxially constrained gel, the additional kinematic
boundary conditions A\; = Ay = 1 apply. In the case of a uniaxially con-
strained gel, the boundary conditions \; = 1 and Sy, = P, = 05 = 0 instead
apply during remodelling.

After the 72h of remodelling, the gel is exposed to equibiaxial tensile
testing in load-control. This implies that the first Piola-Kirchhoff stresses
P, = P, are prescribed, and the resulting deformations A\; and Ay are com-
puted.

3.5. Numerical prerequisites

The remodelling process required a total time of £,., = 72h to be com-
pleted, and time t was discretised using a constant time increment At =
tmax/1000 = 0.072h. The angular dimension ¢ was discretised using n;,; = 50
integration points. The angles ¢; were uniformly distributed in the range
[0, 7/2], according to ¢; = A¢(i —1/2) with A¢p = 7/(2nin;). This discretisa-
tion proved to be refined enough to yield discretisation-independent results.
With regards to the fibre distribution, we introduce the entity p’, defined as

p(®) = pop'(9). (35)

In the computations, the variables p| ... pL,, associated with the direc-
tions ¢y ... @50, together with the three stretches A;, A¢ 1, and Ao, were used
as state variables. The remodelling process was analysed by use of an ex-
plicit computational scheme. Let index j denote the current, known state,
and index j + 1 the next state to be computed. As a first step, A, is updated
by use of Eq. (19). Noting that J, = )\? and that the volume concentra-
tion of fibroblasts in the reference configuration pr is related to the current
concentration pr. as pre = pr/Jy, the discretised evolution equation becomes

apr

MF =\ TA{At, (36)
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where p¢ is taken to be constant, implying that the number of fibroblasts is
constant during the 72h of remodelling. Updated stretches )\gjl and )\gjgl,
fulfilling the appropriate kinematic and loading boundary conditions (either
{AM = X =1} or {A\; =1, S, = 0}), are then computed. Second Piola-

Kirchhoff stresses are computed as

S = 2k Y (AVexp [a (& - 1)7] (6 1) A H(E -~ 1)AG
i=1
2kenpo Y _(0) (€ei — &) Ai - H(Eei — E)A¢ (37)
=1

+ ks ((M5)? — 1) es®es — ks(M 5)* (A 4)? — 1) - (CI) Y

where & = (M })2cos%¢; + (M ,)2sing;, &oi = A2, 1cos2; + A2, psin’ey;, A; =
cos’g; - e; ® e; + sin’e; - ey ® ey, CJ = ()\271)2 e ®e + ()\Z,Q)2 vey ey +
(M5)? - es ® ey, and M3 = (X N ,)~!. Finally, the state variables p| are
updated by use of Eq’s. (13) and (14). The first term in Eq. (13) may be
rewritten by use of Eq. (24) according to

Opc 0 (p Ay+Altan®
At 9t \ Jy Aeqden(1 4 tan2p) )

(38)

This leads to a discretised evolution-equation for pi:

4 . AJI AN, AN
{]+1 — 1\J 1+ T + ‘e,l + 'e,Z N
(pZ) (pl) ( Jg )\‘Z)’l )\‘2’2

pe (0%
7 <a¢z>i A

20N+ Aggmggtan%)) | (39)

(Ag,l)Q + ()\Z’Q)Ztan%zﬁi

where JI = (M), AJ) = 2MAN, AN = N¥L— M, AN = N1 =N,
A}xiz :‘)\f;gl — Ny Ol = arctan()\ggtanqﬁi/)\g,l), ol = ()\271)25{, and o) =
(M) 2)?S3. The derivative (0%q/0¢7)] is evaluated by use of the expressions
in Egs. (32)-(34) and (31).
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4. Assessment of the three remodelling criteria

The purpose with the present section is to investigate to what extent the
three proposed continuum mechanics entities q; = oy, g2 = A2, and g3 = ¢y
can be used to predict the activity of fibroblasts as they remodel a collagen
gel. However, the constitutive model has a number of parameters that need
to be determined first. Thus, we start by exploring the general mechanical
behaviour of the proposed constitutive model before we specifically address
the issue of fibre reorientation.

In the present problem formulation, the model behaviour is governed by
the parameters k.pg, a, kenpo, k3, apr, and Bpg, where the influence of Spy is
the most interesting, since the evolution law Eq. (13) for fibre reorientation
depends directly on this parameter. Thomopoulos et al. (2007) present ex-
perimental results in terms of remodelled collagen fibre distributions, stress-
strain relations, and remodelling strains. We start by considering a case
with ¢ = ¢ = on. In this case, the parameter set k.py = 150Pa, a = 20,
kewpo = 600Pa, k3 = 75Pa, apr = 0.003s !, and SBp; = 0.00043Pa !s!
provided the best fit to the experimental data.

1.10 _% 1.10 _/
1.00 +_ 1.00 <7
)\r NM‘"NNQ_\...AI‘
0.90 + T 090 1 s
0.80 | I | 0.80 | | i
0 20 40 60 80 0 20 40 60 80
t [h] t [h]

(a) (b)
Figure 4: Evolution of state variables A1, Ae2, and A, during the 72h of remodelling:
(a) biaxially constrained gel; (b) uniaxially constrained gel. Solid, dashed, and dotted
lines pertain to Ae 1, Ae,2, and A;, respectively. Remodelling criterion: ¢ = ¢;. Model
parameters: k.po = 150Pa, a = 20, kenpo = 600Pa, k3 = 75Pa, apy = 0.003s~!, and
Bps = 0.00043Pa~'s".

Fig. 4 shows the predicted evolution of the state variables A¢ 1, A 2, and A,
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during the remodelling process for this set of model parameters. Figs. 4(a)
and (b) pertain to biaxially and uniaxially constrained gels, respectively.
In the biaxially constrained gel in Fig. 4(a), Aoy and Aep are equal, due
to symmetry. Since A, starts at 1 and then decreases, A.; and Ao start
at 1 and increase to fulfil the kinematic constraints \; = Ay = 1. Due to
incompressibility, Ae 3 = (Xe,1Ae2) ! is less than 1 in the biaxially constrained
gel.

In the uniaxially constrained gel in Fig. 4(b), the predicted evolution
paths of A\ ; and A, are identical to the corresponding curves for the biaxially
constrained gel, whereas Ao is now instead located just below A;. In this
case, the es-direction is unconstrained. Due to the boundary condition Sy = 0
and incompressibility, the elastic stretch )¢ is below 1 and collagen fibres
oriented in the es-direction are therefore in a state of compression. In the
uniaxially constrained gel, A3 is predicted to be slightly above 1.

0.05 + 0.05 +
By, E; E!
0.00 A 000 e |
—0.05 + —0.05+ >~
—0.10 + ~0.10 + B —~—
—0.15 + ~0.15 + {
—0.20 : : : —0.20 : : :
0 20 40 60 80 0 20 40 60 80
t [h] t [h]

(a) (b)
Figure 5: Predicted remodelling strains for gels during the 72h of remodelling: (a) bi-
axially constrained gel; (b) uniaxially constrained gel. Solid and dashed lines denote
model predictions of E] and Ej, respectively. Remodelling criterion: ¢ = ¢;. Model
parameters: kepo = 150Pa, a = 20, kenpo = 600Pa, k3 = 75Pa, apy = 0.003s~!, and
Bps = 0.00043Pa s

After the 72h of remodelling, the constraints were removed from the col-
lagen gels. The gels would then go to their load-free configurations. Tho-
mopoulos et al. present remodelling strains £} and EJ, which are Green
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strains defined as the deformation from the undeformed, initial state before
remodelling to the load-free state after remodelling. For the biaxially con-
strained gels, the remodelling strains £ = —0.01 £0.04 and E; = —0.03 £
0.03 were obtained by Thomopoulos et al. For the uniaxially constrained
gels, the corresponding values were £ = 0.02+0.04 and £} = —0.14 £0.03.
(Values are given in terms of averages and standard deviations for the 36
gels used by Thomopoulos et al.) The predicted evolution of the remodelling
strains E] and Ej for the biaxially and uniaxially constrained gels are dis-
played in Fig. 5(a) and (b), respectively. The confidence intervals for the
experimental E] and Ej values are indicated at ¢ = 72h. The magnitude of
the predicted remodelling strains increases monotonically with time in both
the biaxially and uniaxially constrained gels. For the biaxially constrained gel
in Fig. 5(a), the predicted final remodelling strain are within the confidence
limits obtained from the experimental results.

For the uniaxially constrained gel in Fig. 5(b), there is a significant differ-
ence between the 1- and 2-directions. Since the es-direction is unconstrained
during remodelling, the gel is free to contract in this direction. At the end of
the analysis, the experimental average 5 = —0.14 is accurately predicted.
The prediction of EY is not as accurate, and the model slightly overestimates
the magnitude of the remodelling strain in the e;-direction.

Thomopoulos et al. also present stress-strain relations for the remodelled
collagen gels, and these data are reproduced in Fig. 6. Enclosed are also
the associated model predictions. These relations are given in terms of the
Green strain vs. second Piola-Kirchhoff stress, obtained from tests with
prescribed first Piola-Kirchhoff stresses P, = P,. Starting with the biaxially
constrained gel in Fig. 6(a), we first note that due to symmetry, the predicted
stress-strain curves are the same for the two principal directions. Ideally, the
experimental response would also be the same in the 1 and 2 directions, but
some deviations can be observed in Fig. 6(a).

Results for the uniaxially constrained gel are shown in Fig. 6(b). There
is a significant discrepancy in stiffness between the two principal directions.
This is a combined effect of the non-uniform fibre distribution (displayed
below) and the pre-stretching of collagen fibres. The pre-stretching of fibres
is the key mechanism in the model that explains the large discrepancies in
stiffness, on the one hand, between the biaxially and uniaxially constrained
gels, and on the other hand, between the two principal directions in the
uniaxially constrained gel.

The data from the study of Thomopoulos et al. that are of primary inter-
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Figure 6: Predicted stress-strain relations for equibiaxial tension tests on gels after 72h of
remodelling: (a) biaxially constrained gel; (b) uniaxially constrained gel. Symbols denote
experimental measurements from Thomopoulos et al. (2007), and solid and dashed lines
denote model predictions. Model predictions of S; and Ss are indicated by solid and dashed
lines, respectively. Remodelling criterion: ¢ = ¢;. Model parameters: k.py = 150Pa,

a = 20, kenpo = 600Pa, k3 = 75Pa, apy = 0.003s~!, and Bps = 0.00043Pa—'s~!.

est in the present investigation are the histological data for the remodelled
collagen gels in terms of distributions of fibre orientations. Fibre distribu-
tions are displayed in terms of the normalised entity p., defined as

) C(¢C) p’(¢c)
pc(¢c) — - P = - ¢ ,
¢c/=2—7r/2 pc(¢c)d¢c ¢c/=2—7r/2 p’c(qﬁc)d¢c

(40)

where p, relates to p’ according to Eq. (24). (Note that p.(¢.) is a density
function in a statistical sense, which p.(¢.), pL(d¢), p(¢), and p'(¢), in general,
are not.)

Fig. 7 shows the experimentally obtained collagen fibre distribution after
72h of remodelling in a biaxially constrained gel. The distribution pertain to
the load-free state of the gel after remodelling. Enclosed in Fig. 7 are also
the fibre distributions predicted by the model for ¢ = ¢;. Model predictions
are shown for four different values of the fibre reorientation rate [Bpg: 0,
0.0002Pa 's !, 0.00043Pa !s~!, and 0.0008Pa !s~!. The experimental data
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Figure 7: Predicted fibre distribution in biaxially constrained gel after 72h of remod-
elling for ¢ = ¢4 = om. Symbols denote experimental measurements from Thomopou-
los et al. (2007) and solid lines denote model predictions for Bp; =0, 2-10~4Pa~!s~!,
4.3-107*Pa~'s~!, and 810 *Pa—'s~!. Other model parameters: kepy = 150Pa, a = 20,
kenpo = 600Pa, k3 = 75Pa, and apy = 0.003s 1.

shows some variation, but essentially makes up a uniform distribution. The
distribution predicted by the model is perfectly uniform, and predictions
for different values of [p; collapse to a single line. Even in the biaxially
constrained case, the gel is actually remodelled, but the remodelling occurs
isotropically in terms of A\, and no redistribution of the fibre density p. occurs.
Thus, the normalised entity p.(¢c) remains uniform. Note that the non-
normalised entity p.(¢.) alsoremains uniform (not shown), but the amplitude
of it will evolve with time at a rate that depends on the contraction rate ap.
Due to symmetry, the predicted fibre distribution in the biaxially constrained
gel will always remain uniform independently of parameter variations, and
it will therefore not be displayed in the following. Instead we focus on the
fibre distribution in the uniaxially constrained gel.

Figs. 8(a)and (b) show the predicted stress and fibre distributions after
remodelling for the uniaxially constrained gel. In Fig. 8(b), the experimental
fibre distribution is also enclosed. The stress profiles in (a) pertain to the
constrained gel at t = 72h, whereas the fibre distributions in (b) pertain to
the unconstrained, load-free gel. The amplitude of the predicted end-profiles
of the stress in Fig. 8(a) increases with increasing reorientation rate [ps.
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Figure 8: Predicted stress and fibre orientation distributions in a uniaxially constrained
gel after 72h of remodelling for ¢ = ¢ = on: (a) predicted stress distributions; (b)
predicted fibre orientation distributions. Symbols denote experimental measurements
from Thomopoulos et al. (2007) and solid lines denote model predictions for Sps = 0,
2.107*Pa~'s7!, 4.3-107*Pa~'s™!, and 8-107*Pa~'s~!. Other model parameters: k.py =
150Pa, a = 20, kenpo = 600Pa, k3 = 75Pa, and ap; = 0.003s L.

The reason is that the higher value of £p¢, the more fibres are aligned in the
e;-direction at the end of the analysis. For a given value of A\, and A, this
will result in an increasing stress in the e;-direction.

Turning to the fibre distribution profiles in Fig. 8(b), we note that the
predicted distribution for Spr = 0 is not uniform (as might be expected).
In fact, after the remodelling there are slightly more fibres (predicted to be)
oriented in the ep-direction than in the e;-direction. The fibre distribution in
the constrained state during remodelling does indeed remain uniform. But
as the constraint is removed, the gel undergoes an elastic deformation as it
shrinks back to its load-free state, and it is the fibre distribution in this load-
free state that is shown in Fig. 8(b). Thus, the non-uniformity observed in
the predicted fibre distribution for Sp; = 0 is produced by this elastic recoil.

For increasing values of reorientation rate p¢, the fibres tend to align
more and more in the constrained e;-direction, and the resulting fibre dis-
tribution becomes increasingly non-uniform, as seen in Fig. 8(b). A value
Bpr =0.00043Pa~!s~! enables a very good prediction of the experimental fi-
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bre distribution. The predicted stress-strain relations of the remodelled gels
also depend on Spg, but these are not displayed.
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Figure 9: Predicted elastic deformation and fibre orientation distributions in a uniaxially
constrained gel after 72h of remodelling for ¢ = g2 = A2 : (a) predicted distributions of elas-
tic deformation; (b) predicted fibre orientation distributions. Symbols denote experimental
measurements from Thomopoulos et al. (2007) and solid lines denote model predictions
for Bpr = 0, 0.005s~!, 0.018s~ ', and 0.04s~'. Other model parameters: k.py = 150Pa,
a = 20, kenpo = 600Pa, k3 = 75Pa, and ap; =0.003s7.

The second remodelling criterion ¢ = go = A2 is now considered. Figs. 9(a)
and (b) show the predicted end-distributions of the elastic deformation \2
and the fibre orientation, respectively, for the reorientation rates Spr = 0,
0.05s7%, 0.18s7!, and 0.40s~'. (Note that the unit of 3 changes with the unit
of ¢.) The profiles of the elastic deformation for the different values of Sp; in
(a) do not vary.much. The remodelling stretch A, is essentially prescribed,
and the elastic stretch A ; is then also defined due to the boundary condi-
tion Ay = 1. Furthermore, due to the relatively high value of k.., the elastic
stretch A\g2 does not change much either with Sp;.

The general shape of the predicted fibre distributions in (b), obtained for
q = @2, clearly resemble the profiles obtained for ¢ = ¢; in Fig. 8(b). There
is also the same tendency that the higher the value of the reorientation rate
Bps, the more fibres end up being aligned in the constrained e;-direction.
The best agreement with experiments is attained for Bp; =0.18s7!, and this
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prediction is virtually just as good as for ¢ = ¢;. For this value of Sp¢, the
experimental stress-strain data in Fig. 6 are also accurately predicted (not
shown).
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Figure 10: Predicted stiffness and fibre orientation distributions in a uniaxially con-
strained gel after 72h of remodelling for ¢ = g3 = Cp,: (a) predicted stiffness distribu-
tions; (b) predicted fibre orientation distributions:~ Symbols denote experimental mea-
surements from Thomopoulos et al. (2007) and solid lines denote model predictions for
Bps = 0,510 Pa~!s! 1.107°Pa ‘s !, and 1.4:107°Pa s~ !. Other model parameters:
kepo = 150Pa, a = 20, kenpo = 600Pa, k3 = 75Pa, and aps = 0.003s 1.

As a last step in this assessment, we now investigate the third remodelling
criterion, ¢ = q3 = Cp,. In Figs.10(a) and (b), the predicted stiffness and fibre
distributions for ¢ = ¢z are provided. Predictions are shown for reorientation
rates Bpr = 0, 5-107%Pa=ts~!, 1.107°Pa~'s~!, and 1.4-107°Pa~!s~!.

In the stiffness profiles in Fig. 10(a), pertaining to the constrained gel at
the end of the analysis, the predicted stiffness in the e;-direction increases
with increasing [Spr. This is a result of the fact that for increasing Sp¢, more
fibres are aligned in the e;-direction at the end of the analysis. It may be
noted, that the predicted stiffness in the e,-direction essentially is indepen-
dent of Spr and of variations in fibre density (see Fig. 10(b)). The explanation
is that fibres oriented in the e,-direction are in a state of compression. This
holds both for the constrained gel and for the load-free gel when the con-
straint is removed. The stiffness in the es-direction is not governed by the
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fibre density but rather by the stiffness parameter k3, see Eq. (27). The hy-
drostatic stress component in the gel is governed by k3, and the hydrostatic
stress also contributes to the stiffness tensor, as seen in Eq. (27). Hence, in
the e;-direction, the material stiffness is dominated by the fibre contribution,
but close to the ey-direction, the fibre contribution vanishes, and the stiffness
approaches a value determined by k3.

In Fig. 10(b), the predicted fibre distributions are displayed. It is clear,
that the remodelling criterion g3 = ¢y, is not able to reproduce the exper-
imental fibre distribution. The basic problem is that criterion g3 does not
predict a fibre density that decreases monotonically from the e;-direction to
the es-direction. Instead, a minimum in fibre density is predicted to appear
at ¢. ~ +0.37.

Since the stiffness close to the ey-direction is governed by k3, lower values
of k3 were also tried, to see if this could improve the predicted profiles for the
fibre distribution, but to no avail. The only outcome was that the associated
predictions of the stress-strain profiles became significantly worse.

5. Discussion and concluding remarks

Collagen fabrics and networks play a very important mechanical role in
the human body, and the ability of collagen fibre networks to grow and re-
model themselves enables them to adjust to varying physiological conditions.
The maintenance of these fibre networks is performed by fibre-producing cells,
such as fibroblasts. The evolution of these fibre networks is strongly depen-
dent upon the interaction between the cells and the surrounding extracellular
matrix. The activity of the cells is of pivotal importance for the mechanical
behaviour of collagenous tissues, and therefore needs to be included in a ma-
terial description of this material. Continuum mechanics is a very powerful
tool when modelling deformable solids, and if continuum mechanics mea-
sures, such as stress, strain or stiffness, can be correlated with cell activity,
much is to be gained from the modelling point of view.

In the present paper, we investigate to what extent continuum mechanics
entities can be correlated with or used to predict the activity of fibroblasts in
terms of their reorientation of collagen fibres during collagen gel remodelling.
For this purpose, a continuum mechanics framework and a constitutive model
for the collagen fabric were adopted. The continuum mechanics treatment
is similar to the one proposed by Rodriguez et al. (1994), where the total
deformation gradient is decomposed into an inelastic part, associated with
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growth and remodelling, and an elastic part, required to fulfil equilibrium.
Fibroblasts are assumed to accomplish a pre-stretching of collagen fibres,
and due to cross-linking and interactions between fibres, fibres do not attain
their load-free state upon removal of external loads or constraints, but remain
partly stretched. The orientation of collagen fibres in space is described by
a density function, defined over the unit sphere. Fibroblasts are assumed to
reorient fibres towards the direction of either increasing Cauchy stress, elastic
deformation, or current stiffness. This reorientation process is modelled by
use of a diffusion-like evolution law for the collagen density.

In the present model, the remodelling of the collagen fabric accomplished
by the fibroblasts is taken to consist of two parts: an isotropic contraction
that is independent of the external loads and a pure reorientation of fibres
that depends on the stress or deformation state. Physically, this assumption
means that under the present experimental conditions, the stresses and de-
formations caused by the external constraints are assumed to be relatively
low compared with the contraction strength of the fibroblasts, i.e fibroblast
contraction is not affected by the external constraints. On the other hand,
the influence of the external constraints is strong enough to tell the cells how
the collagen should be reoriented.

When studying remodelling of collagen networks, collagen gels are often
employed (see e.g. Pedersen and Swartz (2005) for a review). The advan-
tage of these gels is that the features of collagen can be studied more or
less in isolation compared to the situation in real tissues. These gels are
often based on type I collagen, which may be purified from rat tail tendon
or bovine cartilage by acid digestion. To these gels, fibroblasts are typically
added to study remodelling of the collagen network. Remodelling of both
uniaxially and biaxially constrained collagen gels has been investigated, e.g.
in Balestrini and Billiar (2009); Huang et al. (1993); Kessler et al. (2001);
Thomopoulos et al. (2005, 2007), where the resulting changes in structural or-
ganisation and mechanical properties of the gel are examined. In the present
study, experimental results presented by Thomopoulos et al. (2007) were
used. Thomopoulos et al. investigated the histological and mechanical prop-
erties of collagen gels that had undergone remodelling under both biaxial and
uniaxial constraint. More specifically, Thomopoulos et al. investigated the
distribution of collagen fibre orientation after the remodelling process, and
they also performed biaxial mechanical tensile testing of the gels.

As the three remodelling criteria were applied, the numerical results in-
dicated, that criteria 1 and 2 (Cauchy stress and elastic deformations) were
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suitable for predicting the evolution of the collagen fibre distribution. Crite-
ria 1 and 2 yielded essentially equally good predictions of the collagen fibre
distribution after 72h of remodelling of a uniaxially constrained gel. When
applying criterion 3 (current stiffness), the model was not able to reproduce
the experimental distribution. Since the stiffness in the es-direction is, in
fact, not governed by the fibre density but by k3, it could be conjectured,
that it is the choice of k3 that is the problem and not the remodelling cri-
terion as such. However, other values of k3 were explored, and also other
combinations of the remaining model parameters, but a proper prediction
of the fibre density for criterion 3 could not be attained. Thus, the present
analysis indicates that the Cauchy stress and the elastic deformation in the
collagen gel can be used to predict collagen remodelling, whereas the current
stiffness of the gel is not suitable for this purpose. However, this conclusion
is tentative and depends on the overall physical soundness of the theoret-
ical framework employed. Furthermore, the conclusion cannot necessarily
be generalised to cell activities in general. Fibroblasts and other cells have
a spectrum of activities, and in the present analysis, only one activity (i.e.
fibre remodelling) was considered.

Several theoretical studies have focused on the mechanical behaviour of
collagen gels and collagen networks, e.g. Barocas and Tranquillo (1997);
Chandran and Barocas (2006); Driessen et al. (2003); Farquhar et al. (1990);
Kroon (2009); Lanir (1979a); Ohsumi et al. (2008); Soulhat et al. (1999),

and some of these (Barocas and Tranquillo, 1997; Driessen et al., 2003;
Kroon, 2009; Ohsumi et al., 2008) have considered remodelling. In Driessen
et al. (2003) the fibre distribution is represented by a structural tensor that
evolves with time, and the evolution of the fibre distribution depends on
the present deformations in the material. In Kroon (2009), the collagen
network is represented by a discrete set of collagen fibres, whose directions
may change over time. In that study, the evolution of the fibre directions
is taken to depend on the current stiffness of the material. In Barocas and
Tranquillo (1997) and Ohsumi et al. (2008), reorientation of collagen fibres
is a consequence of anisotropic compaction of the collagen fabric.

Other theoretical studies focus on the remodelling of mature collagen
networks. For example, a number of works related to vascular mechanics have
been published, e.g. Baek et al. (2006); Humphrey and Rajagopal (2002);
Kroon and Holzapfel (2007, 2008, 2009); Eriksson et al. (2009); Watton et al.
(2004)). In these studies, the turnover of collagen - i.e. the continuously
ongoing process of degradation and production of fibres - is taken to be the
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driving mechanism in collagen fibre remodelling. Some studies (e.g. Baek
et al. (2006); Driessen et al. (2004)) also include effects of local collagen fibre
reorientation. Baek et al. (2006) investigate reorientation of fibres using
different criteria for the preferred direction, such as direction of maximum
principal stress and maximum principal stretch. Baek et al. studied growth
of fusiform aneurysms, and in that context, the use of principal stretches
appeared to be the most appropriate. Driessen et al. (2004) also use the
maximum principal stretch to define the preferred direction towards which
the collagen fibres strive during the remodelling process.

The correlation between continuum mechanics entities and cell activity
needs to be further investigated. The theoretical framework proposed here
could be applied to experiments where more advanced boundary conditions
are imposed. The direction of constraint or applied load could, for example,
be changed during the course of the experiment. If possible, biaxial mechan-
ical testing of the gel and histological examinations of the collagen structure
could also be performed at several stages of remodelling in such a test, and
not just at the end of it. Such an approach would allow for a more complete
assessment of the proposed framework.

In summary, a theoretical framework for the study of remodelling colla-
gen gels has been employed to assess three different criteria for collagen fibre
reorientation. The constitutive model for the collagen fabric is formulated in
terms of a strain energy function, which includes a density function describ-
ing the distribution of the collagen fibre orientation. This density function
evolves according to an evolution law, where fibres tend to reorient towards
either the direction of increasing Cauchy stress, elastic deformation, or stiff-
ness. The theoretical framework was applied to experimental results from
collagen gels, where gels had undergone remodelling under both biaxial and
uniaxial constraint. The analyses indicated that criteria 1 and 2 are able to
predict the collagen fibre distribution after remodelling, whereas criterion 3
is not. This conclusion is, however, tentative and pertains, strictly speaking,
only to remodelling processes, and may not be valid for other types of cell
activities.
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