
HAL Id: hal-00574783
https://hal.science/hal-00574783v1

Submitted on 8 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient and Playful Tools to Teach Unix to New
Students

Matthieu Moy

To cite this version:
Matthieu Moy. Efficient and Playful Tools to Teach Unix to New Students. ITiCSE, Jun 2011,
Darmstadt, Germany. pp.0. �hal-00574783�

https://hal.science/hal-00574783v1
https://hal.archives-ouvertes.fr

Efficient and Playful Tools to Teach Unix to New Students

Matthieu Moy
Grenoble-INP (Ensimag), Verimag UMR 5104

Grenoble, F-38041, France
Matthieu.Moy@grenoble-inp.fr

ABSTRACT
Teaching Unix to new students is a common tasks in many
higher schools. This paper presents an approach to such
course where the students progress autonomously with the
help of the teacher. The traditional textbook is comple-
mented with a wiki, and the main thread of the course is
a game, in the form of a treasure hunt. The course finishes
with a lab exam, where students have to perform practi-
cal manipulations similar to the ones performed during the
treasure hunt. The exam is graded fully automatically.

This paper discusses the motivations and advantages of
the approach, and gives an overall view of the tools we de-
veloped. The tools are available from the web, and open-
source, hence re-usable outside the Ensimag.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education; D.4.m [Operating Systems]:
Miscellaneous

General Terms
Human Factors

Keywords
Unix, Education, Exam, Treasure Hunt

1. INTRODUCTION
Ensimag is a french engineering school of computer science

and applied mathematics. The computing environment is
essentially based on Unix (servers and workstations), which
the students have to learn when they enter the school. The
students therefore follow a quick unix-learning course at the
beginning of the first year.

While this introduction to Unix has sometimes been con-
sidered as an unimportant course, we believe it is a funda-
mental mistake to underestimate its importance: the few

To appear in ITiCSE 2011, the 16th Annual Conference on Innovation and
Technology in Computer Science Education

hours taken at the beginning of the year to learn and train
with the basics influence the students’ productivity for the
next 3 years, and even if learning Unix is not a goal in itself,
it conditions the success of further courses. This paper dis-
cusses the challenges and solutions set up in the Ensimag the
last few years to reconsider the introduction to Unix as an
important course, to motivate the students and teach them
as efficiently as possible.

After detailing the context and our motivations in sec-
tion 2, we give a quick overview of the course and training
material in section 3. The main contributions of this paper
are two tools used in the course:

• A set of exercises in the form of a treasure hunt, used by
the students to train autonomously during the course
(presented is section 4).

• A lab exam that allows grading the students at the end
of the course, with practical manipulations (presented
in section 5).

Both tools are published as open-source software, and
could be re-used and adapted by other teachers/schools.

2. PARTICULARITIES OF THE UNIX IN-
TRODUCTION AND MOTIVATIONS

One challenging aspect of teaching Unix to beginners is
the heterogeneity of students. All of them have used a com-
puter prior to entering the school, but around half never
used Unix before. On the other hand, a number of them
had some exposure to user-friendly Linux distributions, and
a small number are already command-line gurus. The diffi-
culty is to let the course be effective to total beginners, while
remaining interesting to the other students.

Our way to tackle heterogeneity is twofold. First, we de-
signed the course to let the students learn at their own pace,
with a maximum degree of autonomy. This is not hard since
we teach them practical aspects first: all the classes are done
in the computer rooms, one student per machine. The stu-
dents essentially follow a textbook plus some on-line exer-
cises, and teachers provide advices and answers to questions.
Since the goal of the introduction is really to teach practice,
we do not enforce team work like in e.g. [3], but ask each
student to work individually. Mutual help is appreciated
and encouraged, but we do not want a situation where one
student holds the keyboard, and another watches without
practicing.

We provide the students teaching material containing all
the basics, but extensively use remarks targeted to more
advance users. For the most advanced users, we provide
additional documentations on various topics and pointers

to external documentations, so that they can start learn-
ing concepts that they would otherwise miss, or learn a few
months later.

A common example of advanced topic is revision control-
system. Most users won’t understand the need for one im-
mediately, and we wait for some time before imposing them
one. Still, encouraging a handful of students to start using
it spreads the knowledge with a network effect: these stu-
dents will encourage (or force!) their co-workers to use it. In
short: teaching useful advanced concepts to advanced users
also help beginners in the long run. Another subtle advan-
tage of giving material to advanced users is that it helps
keeping them in the machine rooms (as opposed to missing
classes they don’t need), indirectly promoting mutual help.

The other challenging aspect is the students motivation.
Most students come from so-called “classes preparatoires” in
the french system, with a huge exam pressure, and many
of them expect the engineering school to be easy enough to
pass exams without working.

Another issue with students’ motivation is the desire to
learn Unix and the command-line, as opposed to another op-
erating system (like Windows or the graphical part of Mac
OS). We do believe in the pedagogical qualities of Unix and
the command-line, since they somehow force the user to un-
derstand what s/he’s doing, but the students often don’t
understand the need to re-learn the computer basics (file
manipulation, launching applications, ...), since they already
know it with other paradigms on other platforms. The vast
majority of students have a personal laptop with either Win-
dows or Mac OS installed, and some of them wouldn’t use
Unix at all unless we find the right arguments.

In addition, the organization of the school does not leave
room for a lot of teaching hours for this course. We have just
10 hours to teach them all this. For the slowest students, this
is far below what would be needed, so we need to convince
them to complement the classes with their personal work.

We therefore needed to work a lot on students motiva-
tion. The first thing we did was to start with very simple
manipulation in a graphical environment, to avoid scaring
new students at the first contact. The message perceive by
students should be more like “look, you can still do the kind
of things you’re used to, but you can also do many others”
than “forget all you know, and then learn”. Unix and the
command-line should not be the new things to be scared of,
but the friendly companion which will help them to learn
new things. For example, we show them how to surf the web,
read their mail, and use a word processor before diving into
the command-line. Also, changing the recommended text
editor from vi to emacs, we noticed that students started to
actually use the editor we recommended them (at the time
when vi was recommended, the majority of students was
using nedit!).

After avoiding to scare students during the first contact,
a lot is still to be done to maintain their motivation during
the course. One tool for this is the “treasure hunt” game
described in section 4, that the students follow all along the
course. The basic idea is a sequence of levels, designed such
that accessing level n+1 requires performing a manipulation
described at level n. This creates a little (sane) competition
between students, and many of them really have fun while
learning.

After setting up this treasure hunt and rewriting the text-
book, we had very positive feedback from students and all

of those who completed the game were even thankful for the
fun they had. However, less than half of the students did
complete the game. Based on this observation, it was clear
that we had to complement the course with the other side
of students motivation: exams and grading. We therefore
designed an exam, essentially based on the same manipula-
tions as the treasure hunt, but for which the questions are
independent. We will describe it in details in section 5.

3. BASIC TEACHING MATERIAL
Before detailing the main contributions of the paper, we

give an overview of the course, and the teaching material.
The teachers do not provide any lecture and only occasion-
ally talks to the whole students group: to give the instruc-
tions, and to show a few demos for technical aspects that
are better explained live than on a textbook or webpage.

3.1 Textbook
The course starts with the distribution of a textbook ([2],

french only). The textbook is made to be read linearly. It
was designed to allow multiple levels of reading: remarks
for advanced users are identified visually (technically, us-
ing LATEX macros). Each notion taught by the textbook is
illustrated immediately with a small exercise (also marked
visually to draw the attention of students).

While previous versions of the textbook used to try be-
ing independent from the school, we decided to adapt it
deliberately to the school and the course, making frequent
references to the school’s intranet, the particular configura-
tions of the machines they are using. . . While this requires
more effort from the teachers to maintain the book up to
date, we believe this gives a real added value over a random
Unix introduction found on the Internet.

Having the textbook in paper form makes reading long
text more comfortable than on-screen reading, and the linear
structure ensures everybody goes through all the important
points.

3.2 EnsiWiki: Students’ and Teachers’ Wiki
In complement to the textbook, a wiki called EnsiWiki [5]is

provided to the students. Historically, it is a merge of a wiki
launched by the school and an independent initiative car-
ried out by students. We try to maintain the equilibrium
between teachers’ and students’ contributions (both having
full write access).

As opposed to the textbook, the wiki is not meant to
be linear. It doesn’t have a beginning and an end, but is
basically a set of pages with hyperlinks (plus a classification
using the category system of MediaWiki). Students read
pages that are of interest to them in the order they wish, and
of course, add and improve pages as they wish: it’s a wiki!
Unlike the textbook, the wiki is not just a starting point, but
will really accompany the students throughout their studies.
It is public, and indexed by web search engines, so searching
for information is usually relatively easy.

The duality between the textbook and the wiki can be
summarized as follows: as a beginner, the textbook tells the
students what they have to learn, but when the students
know what they are looking for, the wiki should be able to
provide them the information needed.

A positive side-effect of the wiki is that it increases the
visibility of the school on the web. Some of the articles are of
great quality (including many articles written by students!),

and are very well ranked on popular search engines.

4. TREASURE HUNT

4.1 Principle
As discussed above, the real challenge in this course is not

to provide content to students, but to motivate them, and to
make sure they work autonomously but efficiently. One tool
we developed to accomplish this goal is the treasure hunt

(called “jeu de piste” in its original version, since the course
is in french).

The principle is simple, basically an electronic version of
the children’s game: the first level contains instructions to
reach the second, which itself contains instructions to get to
the third, and so on. It contains 28 levels (plus 7 bonus levels
to make sure the geekest students—and teachers—to have
fun too!).It can be seen as a Unix-ish, pedagogical version
of ouverture-facile [1].

In theory, this is similar to a set of unrelated exercises,
but in practice, this makes a real difference, with at least
the following advantages:

The students cannot mistakenly think they completed the

exercise. Either they solved the level, and know it, or they
didn’t, without half-measure. This is a key point to allow
autonomous work. The students cannot skip an easy exer-

cise. When practical manipulations are proposed in the text-
book, they are easily overlooked as too easy, and skipped.
This can result is a false impression of having completed
the work with the reasoning “I went through the textbook,
that’s all too easy for me, I didn’t need to do the exercises”.
The students cannot skip a hard exercise. Some levels are
purposely hard, and almost unfeasible by beginners with-
out help. The rational is twofold: first, this encourages the
students to help each other (the game itself is not graded,
we ask the students not to give answers directly, but co-
operation is welcome), and second, it force students to ask
for help to the teacher. Autonomous work doesn’t mean
teacherless work: students go through the game at differ-
ent speeds, but the teacher is indeed very active to answer
questions. Off course, this makes the sequence of exercises

funnier than traditional ones. Students are usually looking
forward to reaching the last stage, and reading the textbook
is a mandatory step to reach this. Not all students enjoy the
fun of the game (at least, not all of them have as much fun
playing the game than I had creating it!), but on average,
the effect on motivation was very positive.

Note that these advantages come with a risk: students
blocked at one level would miss the end of the game. It
is the teacher’s role to make sure this does not happen, by
advising students, and sometimes by making surveys (who
started the treasure hunt? Who went past level X?. . .).

4.2 Contents of Levels
The nature of the game requires the instructions for each

levels to be hidden, and only discoverable by following in-
structions. We use essentially two kinds of tricks to achieve
this:

• Instructions obfuscated with simple encryption schemes,
typically variants of rot13. The text is easily available,
but can be deciphered only with the instructions.

• Instructions in a file, in a non-listable directory. Files
are either in the filesystem of a machine the students
have access to (the Unix permission --x on directo-

ries allows giving access to files when user know their
names), or on a website with directory listing disabled
(so, students can easily access a level when they know
its URL only).

The game follows the chapters of the textbook. Following
are some examples of levels:

Internet: The game starts with a rot13-encoded piece of
text. The player is told that rot13 is used, without being
told it is. The expected solution is basically to search the
web, and find, e.g. http://rot13.com, which allows online
decyphering very quickly. As with many other levels, the
solution of the level gives a few comments on the solution
and the way to find it. In this case, the text insists on the
need for students and future engineers to be able to quickly
find the information.

Next steps include some navigation in the wiki, a script
sending an email to the students, so that they are forced to
read their email.

Basics: In this section, the students must copy a file from
another user’s directory. The file is an obfuscated Ada (the
language taught in first year in the Ensimag) source-code
that must be compiled and executed to provide instructions.

Useful Applications: This section consists in opening
files made for various applications. Students have to compile
a LATEX file, open an OpenOffice.org file and a PNG image.

Text Editor: Again, students are provided Ada source
code. This time, the file is very long, and contains a few
syntax errors. Being familiar with a text editor (typically,
being able to jump to a given line number) is almost manda-
tory. Then, another piece of code is given to the students,
but split into 3 pieces, in a text file, within the instructions,
and in an OpenOffice.org file, to force students to do inter-
applications cut-and-paste.

Commands and Tools, and Bash: These two chap-
ters are key ones, where students learn the essentials of the
command-line. Players have to use a few commands like
file, grep, find, sort, diff, tar, chmod, find hidden files,
play with input/output redirects (|, < and >) and wildcards.

The hardest level consists in finding the biggest file within
a directory (and its sub-directories). Students usually need
the help of their teacher, which gives a good opportunity to
explain or re-explain the concepts of pipe and the xargs

command, with a solution along the lines of “find . -

type f | xargs wc -c | sort -n | tail -n 2”. Not all
students really understand the complete command-line, but
exposing them once to a complex command gives them a
hint on what it’s possible to do with Unix once they master
it, and therefore what they would lose by not learning it.

Remote access: This chapter provide a few ways for
the students to access a machine remotely, trying to answer
the common question “how can I work with the Ensimag’s
machines and my personal laptop”with tools like SSH. Stu-
dents have to fetch a file from a remote machine with sftp,
and to execute remote commands with ssh -X.

Bonus Levels: This section is presented to students as
non-mandatory. Beginners are not supposed to be able to
solve all levels when they enter the school, but should be able
to do so after a few months. Levels include finding informa-
tion in HTTP headers of a webpage, basic shell-scripting,
navigating in the history of a directory managed by the
Git revision-control system,using strace or navigating in
the /proc/ virtual filesystem, and using SSH private/public
keys. The last level gives a pointer to the source code of the

http://rot13.com

generation scripts. Students are encouraged to contribute
new levels (but none actually did up to now).

4.3 Generation Library
The complete set of scripts used to generate the treasure

hunt is available on the web, and is open-source. The in-
structions given to students are in french, but the source
code is written and commented in english, with a relatively
clean separation between library code and the actual code
for each level, so it can easily be adapted to other schools,
in other languages.

Technically, the library provides a few source code ob-
fuscation functions (to generate unreadable LATEX, Ada or
C code), and plain text encoding/decoding. For example,
script generating the level about input/output redirects takes
the instructions for the next level, encodes it, and provides
the students a decoder that will read the encoded instruc-
tions on its standard input. It can be found online at the
following URL: http://gitorious.org/unix-training

4.4 Students Feedback
The feedback from students completing the treasure hunt

can be found on EnsiWiki1. Only 101 students out of 210
provided feedback. We have unfortunately no way to distin-
guish students who did not provide feedback because they
didn’t take the time to do it, and ones who didn’t because
they did not complete the game (the next version of the
game will detect automatically when students reach some
levels). The result is probably biased towards positive feed-
back.

Still, the majority of comments are very positive. For ex-
ample, we can count 6 occurences of “thank you”, which is in
our experience seldom used in students feedback. The most
frequently used words include “good”, “friendly”, “playfull”,
“instructive”, ... Many students confirm that they did man-
age to complete the game without having prior knowledge
about Unix.

Since the starting point of the game is public, 2nd year
and 3rd year students have access to it too. We had several
requests to install the necessary files on the servers they
use, because they wanted to play, too! Some students even
offered to host the game on their club’s server.

5. LAB EXAM
Despite the very positive feedback we got from students

actually completing the textbook and treasure hunt, this
turned out to be insufficient to motivate all the students to
actually complete the work. We have therefore set up an
exam, designed to be very easy for anyone having done the
work seriously, and very hard otherwise. Since the whole
course is done in computer-rooms, it would make no sense
to have a theoretical exam, so the exam is also done on
computers, and consists of a set of technical manipulations.

5.1 Principle
The exam is made of a set of questions, highly inspired

from the treasure hunt. The questions are independent: in-
stead of giving access to the next level, the manipulation
asked provide a key, that is used to answer questions on a
web interface.

1
http://ensiwiki.ensimag.fr/index.php/Discussion:TP_Unix_-_Jeu_de_piste

To fix the ideas, the first (simple) question is “The answer
for this question is in the file c73df134.txt in your working
directory (it is a text file).”. The student’s account contain
a file named c73df134.txt, whose content is “The answer is
3d61f5e5”, and the students must copy the string 3d61f5e5

in a web-interface to validate the answers.
The design was done with the following ideas in mind:
Automatic grading: the exam was set up to force the

students’ work, but should not overload the teachers. Set-
ting up the exam was a rather large one-time effort, but
grading should be as simple as executing a script to collect
the answers.

Immediate feedback: the obvious problem with auto-
matic grading is that automatic tools do not distinguish “al-
most correct answers” and “actually correct” ones. To solve
this issue, the student get an immediate feedback: when
giving a correct answer, the question is validated as correct,
and otherwise, the students get an unlimited number of re-
tries. This implies that the answers of the questions have to
be impossible to find by trial-and-error.

Hard cheating: students are close to each others in the
computer rooms. To avoid easy cheating, the exam is gen-
erated on a per-students basis. For almost all questions, the
answer is different from a student to the next, even though
the technical manipulation required to obtain it is the same.
Questions are sorted in a pseudo-random order (which is
possible since questions are independent). Also, during the
exam, the machine’s network is restricted with a firewall.

Simple technologies: since it is used for grading, the
robustness of the exam infrastructure is critical. Also, we
wanted the infrastructure to be re-usable outside the school.
We have therefore chosen the simplest technologies to ac-
complish this, with a rather unix-ish design: shell-scripts
generate the exam, and the web-interface used during the
exam is simple PHP+SQL scripts (tested with both MySQL
and PostgreSQL). No JavaScript, no external dependencies.

At the beginning of the exam session, the machines are ini-
tialized with an account containing only the files needed for
the exam. During the exam, the students will have to per-
form manipulations on this set of files, and will validate the
answers through a web-interface (a single web-page showing
a text-box and a submit button for each question). The an-
swers are stored in a database, and the grades are extracted
from this database at the end of the exam.

To differentiate the answers for each students, the answers
are pseudo-random (typically looking like 3d61f5e5). Ac-
tual random would be possible, but with the great drawback
of being non-reproducible. Cryptographic hash functions [6]
provide an elegant solution to this: we compute the answer
to each question as the sha1 sum of the student’s login con-
catenated with the name of the question, and a secret key for
each exam. This way, regenerating the exam several times
yields the same answers each time (which can be crucial if
something goes wrong and the exam has to be regenerated
at the last minute...).

5.2 Content of the Exam
The exam contains 28 questions where students are asked

to compile Ada and LATEX code, to find files in a directory
containing hundreds of subdirectories and files, to extract
zip, tar and gz compressed files, to play with input/output
redirects, find the size of a file, the destination of a sym-
bolic link, to use sort, grep, diff, kill, to use Control-z to

http://gitorious.org/unix-training
http://ensiwiki.ensimag.fr/index.php/Discussion:TP_Unix_-_Jeu_de_piste

suspend a running executable, to download a file with sftp,
to connect to an account with ssh, ... The exam is feasible
in 30 minutes by an expert user, and we let 1 hour to the
students, so that most of them do not have time to reach
the end. This way, we test students on their speed as well
as their skills.

5.3 Demo Mode
During the exam, users are identified with the IP address

of their machine, and answers are recorded in a database.
We made a variant of the generation scripts that do not
use any authentication, and stores answers in PHP session
variables (i.e. simple storage based on browser cookies). In
this mode, the students can practice with a few questions,
getting the same interface as the real one, but their answers
are not transmitted to teachers. Such a demo was put online
during the course, with trivial questions to get used to the
web interface, and a few questions extracted from the actual
exam. Some examples are available online2. Next year, this
demo will be integrated as one level of the treasure hunt.

5.4 Generation Library
As for the treasure hunt, the technical infrastructure be-

hind the lab exam is published as Open Source. We did
not publish the full set of questions, to avoid students find-
ing it and publishing ready-made solutions, but this can be
distributed in private upon request.

The generation library consists in a set of shell-scripts
functions. The user defines two shell functions per ques-
tions. These functions will be called once per student. One
gives the question, as will be displayed to the student (pos-
sibly depending on the student’s login), and the other sets
up the files as will they will be stored on the student’s ac-
count. The first argument to this function is the expected
answer. For example, the trivial question mentioned in 5.1
is implemented as:

desc_question_text () {
echo "The answer for this question is in the file

<tt>$(hash textfile).txt</tt> in your working directory
(it is a text file)."
}

gen_question_text () {
echo "The answer is $1" > $(hash textfile).txt

}

Notice the use of hash to compute the file name. It is pro-
vided in the generation library, and implements the pseudo-
random based on sha1sum described in section 5.1. The
same code-obfuscation library as the treasure-hunt is used.

The execution of this script will provide a directory con-
taining one subdirectory per student, with the content of
their account (then, other mechanisms have to be used to
deploy it on students machine), and an SQL file to initialize
the database with questions, and expected answers. We also
provide the PHP files needed for the web interface during
the exam.

The generation library, and a heavily commented example
of exam that serves as documentation, can be found at the
following URL: http://gitorious.org/unix-training

6. CONCLUSION
2http://www-verimag.imag.fr/~moy/demos-unix-training/

We presented the “introduction to Unix” class of the En-
simag. Starting from a relatively standard content based on
a textbook, we introduced a wiki, and then two novel tools:
the treasure hunt allows learning autonomously in a playful
way, and the lab exam ensures the most recalcitrant find a
motivation to complete the work.

In the past, we have already set up several lab exams, es-
sentially in programming where the delivery is a program.
This one differs from the others in that the skills tested are
purely practical, and indeed relatively basic. Hence, we ask
various small, independent manipulations. Previous exams
have been very successful at motivating/forcing the students
work. Prior to this, the practical skills were tested on team
work, and many students were relying on their teammates.
We believe to have made it much harder for them to fall
through the cracks, and generally feel that students are be-
coming more comfortable with our computing environment.

We do not have students feedback other than their grades
as far as the exam is concerned, but the treasure hunt re-
ceived a very warm feedback. We could already feel the
effect of the exam on the presence of students during the
classes: the last two ones are non-mandatory, and only 10
to 15 students attended them last year, compared to about
100 (i.e. half) this year! The grades for the exam were sur-
prisingly good. 18% of students got all answers correct, and
the average grade was 15.2/20.

The technical infrastructure we developed can be com-
pared to Linuxgym [4], which is based on a complete, mod-
ified, Linux server on which the students log in to get prob-
lems to solve. The focus of Linuxgym is scripting, while our
goal is an introduction to day-to-day use of Unix. We be-
lieve the playful aspect of the treasure hunt, and the fact
that the hunt is done directly on the student’s machines
makes it more motivating and more concrete for a first con-
tact, but we will evaluate Linuxgym for the more advanced
Unix courses in the school.

The content of the course was tailored for an introduction
to Unix. The principle clearly does not apply to theoretical
courses, and is probably not applicable as-is in program-
ming courses: both the treasure hunt and the exam take
advantage of the fact that each manipulation can be solved
in a few minutes, while most interesting programming prob-
lems would take hour(s). Still, the concept can probably be
adapted to other classes involving practical aspects (network
courses would be nice candidates).

7. REFERENCES
[1] Ouverture facile, flash riddles. Web site.

http://ouverture-facile.com.

[2] Ensimag. Introduction à Unix—l’environnement de
travail à l’Ensimag. Student’s textbook, 2008-2010.
(english title: Introduction to Unix—Working
environment in the Ensimag, France),
http://www-verimag.imag.fr/~moy/spip/?article74.

[3] M. A. S. Hurtado and C. Vivaracho-Pascual. Learning
unix in first year of computer engineering. In ITiCSE,
page 392, 2005.

[4] A. Solomon. Linuxgym: software to automate formative
assessment of unix command-line and scripting skills.
In ITiCSE, page 353, 2007. Software available online
from http://linuxgym.com/.

http://gitorious.org/unix-training
http://www-verimag.imag.fr/~moy/demos-unix-training/
http://ouverture-facile.com
http://www-verimag.imag.fr/~moy/spip/?article74
http://linuxgym.com/

[5] Teachers and students in the Ensimag. Ensiwiki,
2008-2010. http://ensiwiki.ensimag.fr/.

[6] Wikipedia. Cryptographic hash function — wikipedia,
the free encyclopedia, 2010.

http://ensiwiki.ensimag.fr/

	1 Introduction
	2 Particularities of the Unix Introduction and Motivations
	3 Basic Teaching Material
	3.1 Textbook
	3.2 EnsiWiki: Students' and Teachers' Wiki

	4 Treasure Hunt
	4.1 Principle
	4.2 Contents of Levels
	4.3 Generation Library
	4.4 Students Feedback

	5 Lab Exam
	5.1 Principle
	5.2 Content of the Exam
	5.3 Demo Mode
	5.4 Generation Library

	6 Conclusion
	7 References

