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Additional radio-frequency (rf) potentials applied to linear multipole traps create extra field nodes
in the radial plane which allow to confine single ions, or strings of ions, in totally rf field-free regions.
The number of nodes depends on the order of the applied multipole potentials and their relative
distance can be easily tuned by the amplitude variation of the applied voltages. Simulations using
molecular dynamics show that strings of ions can be laser cooled down to the Doppler limit in all
directions of space. Once cooled, organized systems can be moved with very limited heating, even
if the cooling process is turned off.

Radio-frequency (rf) traps are very useful tools for a
wide range of research interests such as high resolution
spectroscopy [1], frequency standards [2], quantum infor-
mation processing [3] and quantum simulations [4]. The
ability to trap and cool atomic or molecular species in
a well defined manner allows to control and study the
quantum behaviour of these systems. Most experiments
require a totally perturbation-free dynamics of the con-
fined ions, and the micro-motion due to the rf trapping
field can sometimes be a disturbing factor. In these cases,
cold ions are confined in a string configuration along the
longitudinal axis of a linear quadrupole trap, where the
rf field vanishes. For a number of applications, in par-
ticular in quantum logic and quantum simulations [3, 4],
it could be desirable to create more sites inside a trap
where the ions do not undergo the rf parametric excita-
tion. Linear traps of higher order, here called multipole
traps, offer larger regions of low rf electric fields [5] which
allow to trap large samples with a reduced driven micro-
motion, as compared to the same sample trapped in a
linear quadrupole trap [6]. Local minima can be induced
in the trapping potential by adding static voltages to
these multipole rf voltages [7, 8] but the ions then un-
dergo a rf driven motion which is detrimental when very
low temperatures need to be reached. The superimposi-
tion of a lower order rf field onto the main trapping field
generates minima to the trapping potential where the rf
field is nulled. In such a configuration and depending
on their number, the ions can settle in each minimum as
individual ions or as parallel strings of ions expanding in
the axial direction. Due to the absence of a local rf elec-
tric field, laser cooling can reduce the temperature of the
ions as low as for a chain of ions in a quadrupole trap.
In this letter we first give an example of principle of the

proposed method by combining a quadrupole potential
with the potential created by a linear octupole trap. To
demonstrate how to reach the Doppler limit by Doppler
laser cooling we use molecular dynamics (m.d.) simula-
tions of a 10-ion system, in a double line configuration.
In a second part, we discuss the general case of two com-
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bined rf potentials of different order. In these two parts,
we assume an ideal electric field for each superimposed rf
field. In the third part of this letter, the effect of a non-
ideal geometry to generate the lowest order rf field [9] is
taken into account by combining m.d. simulations with
an analytic fit of the actual electric field. This analysis
shows that, providing an extra voltage which compen-
sates for the imperfections of the electric fields, the same
properties are observed and that our proposal still holds.
First, we describe the principle of the creation of extra

rf field-free minima within the linear octupole trap geom-
etry. In order to create additional nodes in the rf electric
field, a rf quadrupole potential, with identical phase and
frequency as the octupole potential, is superimposed onto
the former. By the superposition theorem, the resulting
rf electric potential Φrf in the radial plane is given by

Φrf = Φ8rf +Φ4rf, (1)

where the expression of the 2k-pole electric potentials
Φ(2k)rf using the polar coordinates (see Fig. 1) can be
approximated by [5]:

Φ(2k)rf (R, φ, t) = −V2kR
k cos (kφ) cos (Ωt) (2)

with Ω and V2k respectively the frequency and the am-
plitude of the applied rf potentials, and R = r/r0 the
relative distance to the trap center, scaled to the inner
radius of the trap r0. The components of the electric field
~E = −~∇Φrf are:

Er = +
2

r0

[

2V8R
3 cos (4φ) + V4R cos (2φ)

]

cos (Ωt) ,(3)

Eφ = −
2

r0

[

2V8R
3 sin (4φ) + V4R sin (2φ)

]

cos (Ωt) .(4)

With our choice of initial phase and frame reference
(sketched on Fig. 1), it is straightforward from Eq. 4
that Eφ can be cancelled for any direction defined by
φn = nπ/2, with n ∈ Z. The relative variation of the
cosines in Eq. 3 makes then possible a total rf field cancel-
lation at the relative radial positions R0f for φ±1 = ±π/2
(the y-axis in our case, see Fig. 1). This relative radial
position depends on the ratio of the two rf voltages as :

R2
0f = V4/2V8. (5)
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FIG. 1. Connection of a quadrupole rf electric potential onto
the electrodes of an octupolar trap. Black and hatched rods
show the different polarities of the applied −V4 and +V4 po-
tentials respectively, at time t = 0 s. The broken line rods are
only connected to the octupolar potential .

In the adiabatic approximation, where the rf period is
much smaller than the time scale of the motion induced
by the spatial variation of the electric field amplitude (the
so-called macro-motion) [10], the dynamics of an ion of
charge qe and mass m inside the trap can be understood
using the pseudopotential (psp) Ψ, which results from the

time-average of the rf electric field Ψ = q2e‖
~E‖2/2mΩ2,

where the overline holds for the average over one rf pe-
riod. The psp does not obey the superposition theorem
and in our case of superimposed rf fields, the resulting
psp writes as :

Ψ (R, φ) = Ψ8(R) +Ψ4(R) + 2
√

Ψ8(R)Ψ4(R) cos (2φ)
(6)

where the Ψ2k(R) are the usual 2k-polar psp, 2k being
the number of electrodes [5]:

Ψ2k (R) =
k2

4

q2eV
2
2k

m r20 Ω2
R2k−2 = ψ2k R2k−2. (7)

By definition of the psp, the pseudo-potential wells ex-
actly match the nodes of the rf electric field. Eq. 6 shows
that two extra psp minima, compared to the simple Ψ8

case, are expected for R 6= 0 if cos(2φ) = −1.
However, the total effective trapping potential Utrp re-

sponsible for the ion confinement results from the psp
itself and the static potential required to trap along the
symmetry axis Oz and which can be approximated by
a harmonic confinement mω2

zz
2/2. To obey the Laplace

equation, this trapping potential has a de-confining coun-
terpart −mω2

zr
2/4 which must be taken into account

[8, 11]. In the case of an extra static octupole poten-
tial Vst applied to the electrodes, the effective trapping
potential now reads

Utrp = Ψ+qeVstR
4 cos (4φ)+

1

2
m ω2

z

(

z2 −
R2

2
r20

)

(8)

To make sure that the total potential minima still match
the rf field-free positions, it is mandatory to compensate
the radial de-confining force by an appropriate choice of
the static potential Vst. The matching of these two forces
at the field free positions (R0f, φ±1) is obtained under the
condition:

qeVst = m ω2
z r

2
0 / 8R2

0f (9)

To remain as general as possible, we have considered the
extra octupole static voltage to compensate for the de-
confining effect of the axial confinement. The use of a
quadrupole voltage leads to a similar condition which
theoretically does not depend on R0f (cf. discussion of
the realization below). We would like to point out that
the rf field cancellation condition Eq. 5 as well as the
matching condition Eq. 9 do not depend on the mass of
the trapped particles and the process described here can
apply to a multi-species system (because ω2

z ∝ 1/m).
The lowest order expansion of the effective trapping

potential around its minima (R0f, φ±1) allows the defi-
nition of characteristic frequencies for the motion in the
radial and angular directions, if Eq. 9 is satisfied :

ω2
r = ω2

z

[

8ψ4

m r20 ω
2
z

+ 1

]

= 4ω2
u + ω2

z , (10)

ω2
φ = ω2

z

[

8ψ4

m r20 ω
2
z

− 2

]

= 4ω2
u − 2ω2

z , (11)

where ωu is the frequency of motion in the radial plane,
when only the rf quadrupole potential is applied. The
local steepness of the potential, given in Eq. 10 and 11,
is controlled by the quadrupole potential V4 and the ax-
ial confinement ωz, thus ruling the morphology of a cold
sample in the local 3D anisotropic harmonic potential
(ωr, ωφ, ωz) [12–14]. A close look at Eq. 11 shows that
it takes qeV4 > mr20ωzΩ/2 to reach this local 3D har-
monic confinement. The local potential being indepen-
dent of the octupole potential V8, this last parameter can
be tuned to independently control the distance between
the two minima.
In a second step, we show that ions can effectively be

cooled to the Doppler limit and localized in the two ex-
tra minima in a controlled manner. For this purpose we
carry out m.d. simulations of a set of 10 calcium ions,
Doppler laser-cooled along the three directions of space
in an octupole trap. The m.d procedure for laser cooling
takes into account the absorption and emission processes
of photons on the involved atomic transitions. Details
of its modeling as well as the definition of temperature
used are explained in [14]. The rf electric fields obey
Eq. 3 and 4 and at t = 0, the rf quadrupole potential
V4 and the static octupole potential Vst are off. The am-
plitude of the rf octupole potential V8 is such that cold
ions form a ∼ 20 µm radius ring in the z = 0 plane for
ωz = 2π × 1 MHz, shown on figure 2a. The stability
of such a structure has been studied elsewhere [8, 15],
where it is shown that the Doppler limit can be reached
for the motion along the longitudinal direction and that
the cooling of the motion in the radial plane is limited
by rf heating [8]. At t = 2 ms, the rf amplitude V4 is
switched on, breaking the cylindrical symmetry of the
trapping potential and producing the separation of the
ring in two sets of five ions, as shown on Fig. 2b. From
t = 2 ms to t = 4.4 ms, the amplitude V4 is linearly in-
creased, increasing the distance between the two sets of
ions and the steepness of the local potential to reach a
separation of 0.22r0. For t = 4.4 ms, the ions form two
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strings along the z-axis (Fig. 2c and Fig. 2d). At this
time, V4 is kept unchanged and Vst is switched on from
0 to the value fulfilling Eq. 9 (1.7 V) in 1 ms, matching
the equilibrium positions of the strings of ions and the
field-free positions and reaching characteristic frequen-
cies ωr = 2π × 4.2 MHz and ωφ = 2π × 3.8 MHz. The
signature of this position matching is the abrupt drop of
Ty, the temperature of the motion along Oy, from 0.1 K
to the Doppler limit (see Fig. 2e).
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FIG. 2. (Color online) (a)-(d) Pictures of the ion structure at
3 different times (roughly corresponding to the temperature
graph below). (e) Temperatures of the different directions of
motion for a simulated dynamics detailed in the text. The
horizontal dashed line shows the Doppler limit temperature
for calcium ions and the vertical dashed lines materialize first,
when the quadrupole potential is switched on and second,
when the static octupole potential is switched on.

Another signature of this position matching and of
the interest of this new ion organization is the lack of
rf-heating observed in the simulations when the cooling
lasers are switched off, once the parallel lines are formed.
Furthermore, tuning the amplitude V8 and the static po-
tential Vst accordingly, the ion strings can be moved along
the Oy axis. This relative position tuning can be per-
formed with very limited heating as long as the Coulomb
repulsion between the two chains is negligible. When it is
not the case, this repulsion has to be incorporated in the
force compensation condition and a larger static voltage
than the one given in Eq. 9 is required.
It is possible to generalize the concept introduced pre-

viously. We now assume a 2k-pole linear trap on which an
rf potential V2k is applied. An additional V2p rf potential
with identical frequency and phase is superimposed on
2p electrodes to generate a rf contribution with a p-order
of rotational symmetry. Each rf contribution builds its
own psp Ψ2k and Ψ2p (see Eq. 7) and the resulting psp
can be written as :

Ψ = Ψ2k +Ψ2p + 2
√

Ψ2kΨ2p cos ((k − p)φ) . (12)

The extra psp minima created by cancellation of the rf
electric fields are located where φn = (2n + 1)π/(k − p)
(for cos((k − p)φ) = −1) and R = R0f such that

Rk−p
0f = pV2p/kV2k. (13)

To compensate for the deconfining contribution of the ax-
ial confinement at the psp minima, an additional static
potential with a 2π/(k − p) rotational symmetry is re-
quired to produce the same confining contribution along
all the φn = (2n + 1)π/(k − p) lines. Depending on the
choice of k and p, this extra static potential may have a
different order of symmetry but a cancellation condition
equivalent to Eq. 9 can always be found. As an example,
four parallel strings can be formed by the superimposi-
tion of an rf quadrupole potential to an rf dodecapole
potential, their location match the rf-field nodes provid-
ing a static voltage with an octupole symmetry is applied
(see figure 3 for different configurations). The order of
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FIG. 3. Diagram of the rf cylindrical rods of different traps
where the filled and hatched rods are, respectively, the addi-
tional −V2p and +V2p at t = 0. Inner crosses stand for the
extra field-free positions of (a) octupole trap with additional
quadrupole potential, (b) dodecapole trap with hexapole po-
tential, and (c) dodecapole trap with quadrupole potential.

symmetry s of the static potential Vst must be a multi-
ple of (k− p). For the case introduced in the first part of
this letter, we used s = 2(k − p) = 4. This choice has an
influence on the characteristic frequencies of the motion
of the ions in the extra minima. Indeed, a lowest order
expansion of the total trapping potential around these
positions results in frequency expressions which are gen-
eralizations of Eq. 10 and 11 :

ω2
r = 2 (k − p)

2 ψ2p

m r20
R2p−4

0f + (s− 2)
ω2
z

2
, (14)

ω2
φ = 2 (k − p)

2 ψ2p

m r20
R2p−4

0f − s
ω2
z

2
. (15)

The choice of an order s higher than strictly required
by the rotational symmetry may then be justified by
the need for high frequencies ωr compared to ωφ, which
can be used to control the morphology of the subsystems
(string, zig-zag...) , at the expense of the static voltage
itself, which scales as 1/(sRs−2

0f ).
Until now, we have assumed equations for the rf elec-

tric field and its psp which correspond to the ideal case
of perfectly machined electrodes. Even if the trap de-
sign is as ideal as possible, it can not be ideal for both
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FIG. 4. Normalized difference of the quadrupole electric field,
Er, and the ideal one, Eid, along the radial direction under
the angle φ±1.

the highest and the lowest order potential at the same
time. To illustrate such an effect, let us go back to our
first example of an extra quadrupole potential applied to
the octupole trap electrodes and let’s assume the linear
octupole trap has round electrodes designed to gener-
ate an rf electric field as close as possible as the ideal
equation [16]. On the quadrupole point of view, these
electrodes are too small to produce an ideal quadrupole
field inside the trap [9] and most importantly, the four
non-connected electrodes are equivalent to grounded rods
which induce a large deviation from the ideal rf field.
Using SIMION software [17], we have calculated the po-
tential created by a quadrupole-like voltage connection
on the octupole trap used for the previous m.d. simula-
tions. Its relevant characteristics are an inner radius of
r0 = 0.2 mm and an electrode radius of r0/3, which corre-
sponds to the optimisation of the octupole potential [16].

The calculation shows that the actual quadrupole poten-
tial deviates from the ideal one but keeps the quadrupole
symmetry. In figure 4 is drawn the normalized difference
of the actual quadrupole field component Er with respect
to the ideal one, Eid, along the radial direction under the
angle φ±1. This value is constant in the central part of
the trap (r < r0/5) where, providing an Er amplitude
20% higher, the fields can be considered identical. As an
example, the ion ring in Figure 2 fills a tenth of the actual
trap dimensions. Figure 4 also shows that Eq. 9 becomes
position-dependent for an extra quadrupole static volt-
age, and thus justifies the use of the optimized static
octupole voltage if more distant positions were required.
The m.d. simulations using the calculated potential,

fitted by a polynomial equation [18] show that the same
procedure to create two strings, to bring them to the rf
nodes and to laser cool them to the Doppler limit can be
performed.
We have shown that a superimposed lower-order rf po-

tential onto the main trapping one adds supplementary
nodes in the rf field. An ensemble of ions can be sepa-
rated in several sub-sets in a controlled manner and laser-
cooled to the Doppler limit. Once cooled, they can be
considered as in a 3D anisotropic harmonic potential and
controlled like in a linear quadrupole trap. This opens
the way to create parallel ion strings with a large choice of
geometries. The distance between the potential minima
can be continuously tuned to reach conditions where the
Coulomb repulsion between the subsets implies a strong
enough correlation to influence their relative equilibrium
positions. The different patterns formed by neighboring
ions seem specifically interesting for quantum simulations
[19, 20], but may certainly find interesting applications
in other domains.
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