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106-112 Bd de l’Hôpital, 75647 Paris Cedex 13, France

cDepartment of Philosophy, Tilburg University
P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Abstract

Simple games are a powerful tool to analyze decision-makingand coalition formation in social and
political life. In this paper, we present relation-algebraic models of simple games and develop re-
lational specifications for solving some basic problems of them. In particular, we test certain fun-
damental properties of simple games and compute specific players and coalitions. We also apply
relation algebra to determine power indices. This leads to relation-algebraic specifications, which can
be evaluated with the help of the BDD-based tool RelView after a simple translation into the tool’s
programming language. In order to demonstrate the visualization facilities of RelView we consider
an example of the Catalonian Parliament after the 2003 election.

Keywords: Relation algebra, RelView, simple game, winning coalition, swinger, dominant player,
central player, power index

1. Introduction

A simple gameis a cooperative game in which only two types of coalitions can be formed,win-
ning coalitions andlosing ones. A winning coalition takes it all while a losing coalition receives
nothing. Since winning seems to be the essence of politics, simple games are extremely suitable
for analyzing political situations. Important concepts inthe theory of simple games are swingers,
veto-players, dictators and dummies. Aswingerof a winning coalition is a member of the coalition
whose removal makes it losing. Aveto-playeris a player who is in every minimal (wrt. set inclusion)
winning coalition. Under the monotonicity assumption no coalition can win without a veto-player. If
one player forms the only minimal winning coalition, then itis adictator. Consequently, a dictator is
always a veto-player. There is obviously an essential difference between a veto-player and a dictator.
A dictator can enforce any decision without help of the otherplayers. In contrast, a veto-player is
needed to win, but cannot win on his own. Adummyis a player who is a member of no minimal
winning coalition, i.e., powerless. An important class of simple games areweighted majority games,
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where a weight is assigned to each player indicating its voting strength in that game. A coalition is
winning if and only if the sum of the weights of its members is not smaller than a certain quota. Con-
sider a voting body consisting of three partiesA, B andC, each having 4, 2 and 1 seats, respectively.
The quota is 4 seats. Winning coalitions are the ones containing partyA - the only swinger of each
winning coalition. Since{A} is the only minimal winning coalition,A is a dictator, andB andC are
dummies. Suppose now that partyA has 3 seats. The total number of seats is 6 and the quota remains
4. There are two minimal winning coalitions{A, B} and{A,C}, and henceA is a veto-player, but it
is not a dictator anymore. There are no dummies. Each member of a minimal winning coalition is a
swinger, andA is the only swinger of{A, B,C}.

When studying coalition formation, one of the most importantissues is to identify some key
players. Besides dictators and veto players several other such specific players exist in the literature.
In Peleg (1981, [33]) a theory of coalition formation in simple games with dominant players has been
developed. Roughly speaking, adominant playeris a player who holds a strict majority within a
winning coalition. A dominant player wants to be a member of awinning coalition, in which he is
dominating. For that reason he is called ‘office seeking’, not or hardly interested in policy. Such
players neither must exist nor must be unique. Another key player is thecentral playerintroduced in
Einy (1985, [18]). A central player can form a winning coalition both with the players to the ‘left’ of
it and with the players to the ‘right’ of it. Such a player willbe ‘policy oriented’. There exists at most
one central player in a simple game. In order to find it, the players must be ordered on a relevant policy
dimension, and the particular position of the central player makes him very powerful. An empirical
analysis of the importance and effect of dominant and central parties on cabinets in Western multiparty
democracies has been examined e.g., in van Roozendaal (1992a, 1992b, 1993, 1997, [37, 38, 39, 40]).
In van Roozendaal (1997, [40]) the author argues that there are certain theoretical reasons by which
governments including dominant parties should be more stable than governments without dominant
parties and shows, by analyzing government survival in 12 countries between 1945 and 1989, that
such an effect indeed exists in real politics.

One of the most important elements of simple games, that can be applied to all kinds of organiza-
tions (e.g., political bodies, international economic organizations and business settings), is to measure
the power of players. To this end, power indices have been proposed, e.g., the Shapley-Shubik index
(Shapley and Shubik 1954, [43]), the Banzhaf index (Banzhaf 1965, [2]), the Deegan-Packel index
(Deegan and Packel 1978, [14]), the Johnston index (Johnston 1978, [25]) and the Holler-Packel in-
dex (Holler 1982, [22]; Holler and Packel 1983, [23]). They are based on different models for power
and, therefore, their use and informative value depend on the context in which they are applied. Ax-
iomatic characterizations, as, e.g., presented in Dubey (1975, [16]), Dubey and Shapley (1979, [17]),
Lehrer (1988, [28]), Laruelle and Valenciano (2001, [27]),Lorenzo-Freire et al. (2007, [30]) and
Alonso-Meijide et al. (2008, [1]), are helpful for the appraisal of their applicability.

Even simple problems on simple games (like the computation of all dummy players) are in practice
frequently too complicated to be solved by hand. Therefore,it is useful to have supporting computer
programs available. One usually does not immediately thinkof programs based on relation-algebraic
formulations of the concepts in question. But experience with related problems, viz. the formation of
alliances and coalitions in Berghammer et al. (2007, 2009, [8, 9]) and the computation of the strength
of agents in social networks in Berghammer et al. (2010, [10]), led to the idea to apply relation al-
gebra and a tool for its mechanization also to computationalproblems on simple games. In the just
cited papers we combine relational algebra and RelView, a computer system for the visualization
and manipulation of relations and for relational prototyping and programming. In Berghammer et
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al. (2007, [8]) the relation-algebraic approach is appliedto a model of stable governments, where a
stable government is by definition not dominated by any othergovernment. We formulate the notions
of feasibility, dominance, and stability in relation-algebraic terms, which enables us to use RelView
to compute the set of all feasible stable governments. To illustrate the power of the approach, we
analyze the real structure of the Polish government after the 2001 elections. It may happen that all
governments are dominated. In Berghammer et al. (2009, [9]) we deal with this case by combin-
ing notions from relational algebra, graph theory and social choice theory to choose a government
that is as close as possible to being un-dominated. The procedure can be executed using RelView
which allows to deal with graph sizes that are sufficient for practical applications. In Berghammer
et al. (2010, [10]) we use relation algebra and RelView to measure power, success, and influence of
an agent in a social network and to determine followers of a coalition and the kernel of an influence
function. As an example the Dutch parliament is considered.Among the advantages of RelView are,
for instance, short and concise programs which frequently consist of only a few lines expressing the
relation-algebraic specification of the notions in question. The above idea was fortified by the fact
that since a long time relation algebra and RelView are successfully combined for solving problems
on many discrete structures; see e.g., Berghammer et al. (1996, [5]), Berghammer et al. (2003, [11]),
Berghammer and Milanese (2006, [7]), Berghammer and Fronk (2006, [4]), Berghammer (2009, [3]).

One of the aims of this paper is to apply relation algebra to the key concepts of simple games.
Taking into account that all these concepts are important both from a theoretical and a practical point
of view, the application of relation algebra, on the one handbeing a mathematical formal approach
and on the other hand giving an immediate access to the RelView implementation, is very useful.
Because RelView has a very efficient BDD (Binary Decision Diagram) implementation of relations
(see Leoniuk (2001, [29]), Berghammer et al. (2002, [6]) and Milanese (2003, [31])), it is able to
deal with non-trivial simple games that appear, e.g., in practical political life. In addition, the tool has
visualization facilities which are not easily found in other software tools and which are most helpful
for fully comprehending difficult concepts and for understanding and testing the programs. In this
paper we apply relation algebra to specify relations which immediately lead to power indices. Hence,
our approach is particularly useful, because it allows to apply RelView to compute power indices.

The remainder of the paper is structured as follows. In Section 2 the game-theoretic concepts
that we deal with in the paper are presented. Section 3 introduces relation algebra and the relation-
algebraic constructions which are used later. The core of the paper is Section 4. We start with two
relation-algebraic models of simple games, show how they can be transformed into each other and
present relation-algebraic specifications of basic properties of simple games. Thereby, the visualiza-
tion facilities of RelView are demonstrated in the case of the parliament of Catalonia after the 2003
election. Next, we give the relation-algebraic specifications for the sets of minimal winning coalitions
and vulnerable winning coalitions, respectively, and the sets of dummies, vetoers, dictators and null
players. Again, these notions are illustrated in the case ofthe Catalonian parliament using RelView.
Thirdly, we specify relation-algebraically the central player and the notions around the dominant
player. Here, the RelView tool enables us to illustrate the decisive relations underlying dominance
for the Catalonian parliament. At the end of the section we specify the Banzhaf, the Holler-Packel
and the Deegan-Packel power indices in terms of relation algebra and again demonstrate the ability of
RelView to compute these indices by means of our running example. Some concluding remarks are
presented in Section 5. In particular, we recapitulate the benefits of our approach, describe important
insights we have obtained from it concerning the efficient algorithmic solution of some game-theoretic
problems and sketch their present realization.
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2. Game-theoretic Preliminaries

In this section we present the basic concepts of the theory ofsimple games that we refer to in
the paper. More extensive treatments of simple games can be found, e.g., in Shapley (1962, [42]),
Felsenthal and Machover (1998, [19]) and Peleg and Sudhölter (2003, [34]).

2.1. Simple Games

Following Peleg and Sudhölter (2003, [34]), a simple game is a pair (N,W), whereN = {1,2, . . . ,n}
denotes the set of players andW is a subset of the powerset 2N. Any element of 2N is called acoali-
tion. A coalition S with S ∈ W is calledwinning, while those withS < W are calledlosing. A
simple game (N,W) is calledmonotoneif W is an up-set in the order (2N,⊆), i.e., for allS,T ∈ 2N

from S ∈ W andS ⊆ T it follows T ∈ W. A voting gameis a monotone simple game (N,W)
withW , ∅ and∅ < W. The latter two axioms exclude trivial games. A simple game is proper if
the complement of a winning coalition is always losing, andstrongif the complement of any losing
coalition is winning. A simple game isdecisiveif it is both proper and strong. In the context of
voting games, for instance, being proper is interesting since it is equivalent to the fact that any pair
of winning coalitions has a player in common and being strongis interesting since here noblocking
coalitionscan occur, i.e., coalitionsS such thatS and its complementS are losing.

An important class of games areweighted majority games. They are omnipresent, in particular, if
groups (commissions, boards, . . . ) have to come to decisionsand the members have unequal power.
Usually, a weighted majority game withn players is represented by an + 1-tuple [q; w1,w2, ...,wn],
whereq ∈ N denotes the quota needed for a coalition to win, andwk ∈ N is the weight assigned to
playerk ∈ N. By w(S) =

∑
k∈S wk we define theweightof a coalitionS. A coalitionS is then winning

if its weight is at least as large asq, that is,S ∈ W if and only if w(S) ≥ q.

2.2. Minimal Winning Coalitions and Related Notions

Von Neumann and Morgenstern (1944, [32]) introduced the concept of aminimal winning coali-
tion of a simple game (N,W), that is a coalitionS ∈ W such thatT <W for all coalitionsT ⊂ S.
Less restrictive is the notion of avulnerable winning coalition S. Here, besidesS ∈ W, it is de-
manded that there exists a playerk ∈ S such thatT <W for all T ⊆ S\ {k}. In the case of a monotone
game the latter property is equivalent to the existence ofk ∈ S such thatS \ {k} <W. Such a player
k ∈ S is called aswinger(or critical player) of S. These concepts are, e.g., of importance when
measuring thepowerof players.

Apart from swingers, one can distinguish other specific players in a simple game, depending on
their relation to minimal winning coalitions. Let (N,W) be a simple game andk ∈ N. Thenk is
called adummyif it does not belong to a minimal winning coalition, avetoerif it is a member of each
minimal winning coalition and adictator if {k} is the only minimal winning coalition. Finally,k is a
null player if for each coalitionS ∈ 2N it holdsS ∪ {k} ∈ W if and only if S ∈ W.

2.3. Central and Dominant Players

As already mentioned in the introduction, the concept of acentral playerhas been introduced in
Einy (1985, [18]). Here it is assumed that the players of the game under consideration are ordered
with respect to their policy positions. In political science one usually uses a left-to-right spectrum and
the most important case is that the parties are ordered according to their stands in social and economic
matters.
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Given a simple game (N,W) and apolicy orderof the players in the form of a linear strict order
< on N1, playerk ∈ N is said to becentral if the connected coalition{ j ∈ N : j < k} to the ‘left’ of k
as well as the connected coalition{ j ∈ N : k < j} to the ‘right’ of k are not winning, but both can be
turned into winning coalitions whenk joins them.

Based on two desirability-relationships between coalitions, in Peleg (1981, [33]) the concept of
dominance anddominant playersis developed. Let (N,W) be a simple game,S,T ∈ 2N be coalitions
andk ∈ N be a player. ThenS is calledat least as desirableasT, written asS ≥D T, if for all U ∈ 2N

from U ∩ S = ∅, U ∩ T = ∅ andU ∪ T ∈ W it follows U ∪ S ∈ W. S is said to bemore desirable
thanT, written asS >D T, if S ≥D T but notT ≥D S. Finally, k dominates S, written ask ≫ S, if
k ∈ S and{k} >D S \ {k}, andk is dominantif there exists aS ∈ W such thatk≫ S. If k dominates
S, thenk can form a winning coalition with players outside ofS while S \ {k} is not able to do this.
The dominant players are the most powerful players of the game. Such players neither must exist nor
must be unique. However, Peleg proved that in weak simple games and weighted majority games at
most one dominant player may occur. Games with dominant players are called dominated.

2.4. Power Indices

In this section we recapitulate power indices that we deal with in the paper. One of the main power
indices that can be found in the literature is theBanzhaf index(Banzhaf, 1965, [2]). Let a monotone
simple game (N,W) and a playerk ∈ N be given. Then the absolute Banzhaf indexBa(k) of k and
the normalized Banzhaf indexB(k) of k are defined as follows, wheren is the number of players:

Ba(k) :=
|{S ∈ W | k swinger ofS}|

2n−1
B(k) :=

Ba(k)∑
j∈N Ba( j)

(1)

Another well-known power index that we study in the paper is theHoller-Packel indexof Holler
(1982, [22]) and Holler and Packel (1983, [23]). Since a minimal winning coalitionS coincides with
the set of its swingers, the absolute Holler-Packel indexHa(k) of k can be specified in a way very
similar to the definition ofBa(k) in (1). Compared with the definition ofBa(k), only in the numerator
the setW is to be replaced by the setWmin of minimal winning coalitions and the denominator is to
be changed to|Wmin|. The definition of the normalized Holler-Packel index exactly corresponds to
the definition ofB via Ba in (1). Hence, we have:

Ha(k) :=
|{S ∈ Wmin | k swinger ofS}|

|Wmin|
H(k) :=

Ha(k)∑
j∈N Ha( j)

(2)

A power index that is related to minimal winning coalitions is also theDeegan-Packel indexof
Deegan and Packel (1978, [14]). Given a monotone simple game(N,W) with setWmin of minimal
winning coalitions, the Deegan-Packel indexD(k) assigns to each playerk ∈ N the following number:

D(k) :=
1

|Wmin|

∑

S∈W(k)
min

1
|S|

(3)

In (3)W(k)
min denotes the set of all minimal winning coalitions of the gamewhich containk.

1That is, a strict order for whichj < k or k < j for all different playersj, k.
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3. Relation-algebraic Preliminaries

All the concepts recapitulated in the last section will be specified again in Section 4, but then in
terms of relation algebra. Before it will be done, we present the necessary relation-algebraic notions.
For more details on relations and relation algebra, see, e.g., Schmidt and Str̈ohlein (1993, [41]) or
Brink et al. (1997, [13]).

3.1. Relation Algebra

If X andY are sets, then a subsetRof the Cartesian productX×Y is called a (binary) relation with
domain Xandrange Y. We denote the set (in this context also called type) of all relations with domain
X and rangeY by [X↔Y] and writeR : X↔Y instead ofR ∈ [X↔Y]. If X andY are finite sets of
sizem andn, respectively, then we may consider a relationR : X↔Y as a Boolean matrix withm
rows andn columns. The Boolean matrix interpretation of relations is well suited for many purposes
and also used as one of the graphical representations of relations within the RelView tool. Therefore,
in this paper we often use Boolean matrix terminology and notation. In particular, we speak of rows,
columns and entries of relations and writeRx,y instead of〈x, y〉 ∈ Ror x R yto express thatx andy are
related viaR.

In the present paper we use the following basic operations ofrelation algebra:RT (transposition),
R (complement), R∪ S (union), R∩ S (intersection) andRS (composition). As special relations we
useO (empty relation), L (universal relation) andI (identity relation). If R is included inS we write
R ⊆ S and equality ofR andS is denoted asR = S. We assume the reader to be familiar with the
component-wise descriptions of these notions, e.g., that,givenR : X↔Y, x ∈ X andy ∈ Y, it holds
RT

x,y if and only if Ry,x and Rx,y if and only if¬Ry,x.

3.2. Modelling of Sets

Relation algebra offers some simple and elegant ways to model subsets of a given set or, equiv-
alently, predicates on this set. In this paper we will use vectors, is-element relations and injective
mappings for this task.

A vector vis a relationv with v = vL. For a vector the range is irrelevant. Therefore, we consider
in the following mostly vectorsv : X↔ 1 with a specific singleton set1 := {⊥} as range and omit in
such cases the second subscript, i.e., writevx instead ofvx,⊥. Analogously to linear algebra we will
use lower-case letters to denote vectors. A vectorv : X↔ 1 can be considered as a Boolean matrix
with exactly one column, i.e., as a Boolean column vector, andrepresents(or: is a representation of)
the subset{x ∈ X | vx} of X. A non-empty vectorv is apoint if vvT ⊆ I, i.e., it is injective. This means
that it represents a singleton subset of its domain or an element from it if we identify a set{x} with the
elementx. In the matrix model, hence, a pointv : X↔ 1 is a Boolean column vector in which exactly
one entry is 1.

Giveny ∈ Y, with R(y) we denote they-column of the relationR : X↔Y. That is,R(y) has type
[X↔ 1] and for allx ∈ X, R(y)

x andRx,y are equivalent. To compare the columns of two relationsRand
S with the same domainX and possible different rangesY andY′, we use the symmetric quotient

syq(R,S) := RT S ∩ R
T
S (4)

of them. The type of syq(R,S) is [Y↔Y′], and transforming (4) into a component-wise notation we
have for ally ∈ Y andy′ ∈ Y′ that syq(R,S)y,y′ if and only if R(y) = S(y′), i.e., if and only if for all
x ∈ X the relationshipsRx,y andSx,y′ are equivalent.
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As a second way to deal with sets we will apply the relation-level equivalents of the set-theoretic
symbol∈, that is, is-element relationsE : X↔2X betweenX and its powerset 2X. These specific
relations are defined by demanding for all elementsx ∈ X and setsY ∈ 2X thatEx,Y if and only if x ∈ Y.
A simple Boolean matrix implementation of is-element relations requires an exponential number of
bits. However, in Leoniuk (2001, [29]) an ingenious implementation ofE : X↔2X using reduced
ordered binary decision diagrams (ROBDDs) is developed, where the number of BDD-vertices is
linear in the size of the base setX. This implementation is part of RelView.

Finally, we will use injective mappings for modeling sets. Given an injective functionı : Y→ X
in the usual mathematical sense, we may considerY as a subset ofX by identifying it with its image
underı. If Y is actually a subset ofX andı is given as a relation of type [Y↔X] such thatıy,x if and
only if y = x for all y ∈ Y and x ∈ X, then the vectorıTL : X↔ 1 representsY as a subset ofX
in the sense above. Clearly, the transition in the other direction is also possible, i.e., the generation
of a relation inj(v) : Y↔X from the vector representationv : X↔ 1 of the subsetY of X such that
for all y ∈ Y and x ∈ X we have inj(v)y,x if and only if y = x. We obtain inj(v) by removing from
I : X↔X all rows which correspond to a 0-entry inv. The relation inj(v) is an injective mapping in the
relation-algebraic sense; see, e.g., Section 4.2 of Schmidt and Str̈ohlein (1993, [41]). A combination
of such relations with is-element relations allows acolumn-wise representationof sets of subsets.
More specifically, if the vectorv : 2X↔ 1 represents a subsetS of 2X in the sense above, i.e.,S
equals the set{Y ∈ 2X | vY}, then for allx ∈ X andY ∈ S we get the equivalence of (E inj(v)T)x,Y and
x ∈ Y. This means that the elements ofS are represented precisely by the columns of the relation
M := E inj(v)T : X↔S since for allY ∈ S it holdsY = {x ∈ X | M(Y)

x }. An illustration is given in
Example 4.1.1 by Figures 1 and 2, since the relation of Figure1 equalsE inj(v)T with the relationE
and the vectorv (in the transposed form) given in Figure 2.

3.3. Cartesian Products and Applications

Given a Cartesian productX×Y of two setsX andY, there are the two canonical projection func-
tions which decompose a pair2 u = 〈u1,u2〉 into its first componentu1 and its second componentu2.
For a relation-algebraic approach it is useful to consider instead of these functions the corresponding
projection relationsπ : X×Y↔X andρ : X×Y↔Y such that for allu ∈ X × Y, x ∈ X andy ∈ Y we
haveπu,x if and only if u1 = x andρu,y if and only if u2 = y. Projection relations enable us to specify
the well-known pairing operation of functional programming relation-algebraically as follows: For
relationsR : Z↔X andS : Z↔Y we define theirpairing (frequently also calledfork or tupling)
[R,S] : Z↔X×Y by

[R,S] := RπT ∩ SρT. (5)

Using (5), for allz ∈ Z andu ∈ X × Y a simple reflection shows that [R,S]z,u if and only if Rz,u1 and
Sz,u2. As a consequence, in the caseX = Y theexchange relation

X := [ρ, π] = ρπT ∩ πρT (6)

of type [X×X↔X×X] exchanges the components of a pair. This means that for allu ∈ X × X and
v ∈ X × X the relationshipXu,v holds if and only ifu1 = v2 andu2 = v1.

By a combination of the constructions introduced so far, a lotof the well-known operations and

2In the present paper we always denote the first component of a pair u ∈ X×Y by u1 and the second component byu2.
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predicates on sets can be specified as relations. In the present paper, we need the following:

M := syq([E,E],E) R := syq([I ,E],E) C := syq(E, E )

J := syq([ E , E ] ,E) A := syq([ I , E ] ,E) S := ET E
(7)

The relationsM andJ have type [2X×2X↔2X] and relation-algebraically specify set intersection and
set union, respectively, since for all〈S,T〉 ∈ 2X×2X and U ∈ 2X it holds M〈S,T〉,U if and only if
S ∩ T = U andJ〈S,T〉,U if and only if S ∪ T = U. The type ofR andA is [X×2X↔2X], and these
relations specify the removal and addition of elements, respectively. The latter means that for all
〈x,T〉 ∈ X×2X andU ∈ 2X it holds R〈x,T〉,U if and only if T \ {x} = U andA〈x,T〉,U if and only if
T ∪ {x} = U. Finally, C andS have type [2X↔2X] and for allS,T ∈ 2X it holdsCS,T if and only if
T = S andSS,T if and only if S ⊆ T. Hence,C specifies set complementationS 7→ S := X \ S and
S specifies the subset order. To demonstrate how the relation-algebraic specifications of (7) formally
can be developed, we consider the most complicated case of set union. Assume〈S,T〉 ∈ 2X×2X and
U ∈ 2X. Then we have

S ∪ T = U ⇐⇒ ∀ x ∈ X : (x ∈ S ∨ x ∈ T)↔ x ∈ U
⇐⇒ ∀ x ∈ X : ¬(x < S ∧ x < T)↔ x ∈ U
⇐⇒ ∀ x ∈ X : ¬( E x,S ∧ E x,T)↔ Ex,U

⇐⇒ ∀ x ∈ X : [ E , E ] x,〈S,T〉 ↔ Ex,U

⇐⇒ syq([ E , E ] ,E)〈S,T〉,U ,

and the definition of the relationJ in (7) shows the desired result.
We end this section with the following two functions (in the usual mathematical sense) which

establish a Boolean lattice isomorphism between the two Boolean lattices [X↔Y] and [X×Y↔ 1]. In
the following equationsπ : X×Y↔X andρ : X×Y↔Y are the projection relations of the underlying
Cartesian product andL is a universal vector of type [Y↔ 1].

vec(R) = (πR∩ ρ)L rel(v) = πT(ρ ∩ vLT) (8)

The function vec defines the vector vec(R) corresponding to the relationR, and the inverse function
rel defines the relation rel(v) corresponding to the vectorv. Using a component-wise notation, these
definitions say that for allx ∈ X andy ∈ Y we haveRx,y if and only if vec(R)〈x,y〉 andv〈x,y〉 if and only
if rel(v)x,y.

4. Investigating Simple Games with Relation Algebra

In this section, first we introduce two relation-algebraic models of simple games and show how
each of them can be transformed into the other one. Based on thevector model, we then demon-
strate how to specify important notions of simple games in the language of relation algebra. All
specifications can be seen as algorithms since they are either relation-algebraic expressions or inclu-
sions respectively equations between such expressions. Hence, they can be evaluated with the help of
RelView after a simple translation into the programming language ofthis tool.
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4.1. Relation-Algebraic Models of Simple Games

A first possibility to model a simple game (N,W) with relation-algebraic means is to use a vector
v : 2N↔ 1 that represents the setW as subset of 2N in the sense of Section 3.2. Frequently,v is
called the characteristic vector of the game; in our contextwe call it thevector model. Given such
a modelv, from Section 3.2 we already know that then the columnsM(S),S ∈ W, of the relation
M := E inj(v)T : N↔W precisely represent all winning coalitions. Hence, the game (N,W) can also
be modeled by the relationM. SinceM specifies membership of players in winning coalitions, i.e.,
Mk,S if and only if k ∈ S, for all k ∈ N andS ∈ W, we call it themembership model. The definition
of M shows how to transform the vector model into the membership model. We formulate this once
again as the first part of the following theorem, whereE is the is-element relation between players
and coalitions. In the second part of the theorem we show how to obtain the vector model back from
the membership model.

Theorem 4.1.1. Let (N,W) be a simple game. If v: 2N↔ 1 is the game’s vector model, then
E inj(v)T : N↔W is its membership model. Conversely, if M: N↔W is the game’s member-
ship model, thensyq(E,M)L : 2N↔ 1 (with L :W↔ 1) is its vector model.

Proof: Due to the above remark, we only have to show that ifM is the membership model then
syq(E,M) is the vector model. For allS ∈ 2N we get

(syq(E,M)L)S ⇐⇒ ∃T ∈ W : syq(E,M)S,T ∧ LT

⇐⇒ ∃T ∈ W : ∀ k ∈ N : Ek,S ↔ Mk,T

⇐⇒ ∃T ∈ W : ∀ k ∈ N : k ∈ S↔ k ∈ T
⇐⇒ ∃T ∈ W : S = T
⇐⇒ S ∈ W.

This property shows that the vector syq(E,M)L representsW as subset of 2N, as required for the
vector model of the game. �

Choosing one of the two relation-algebraic models to specifya game-theoretic notion usually depends
on the analyzed concept. Since the columns of the membershipmodelM of (N,W) enumerate the
winning coalitions and since it can hardly be seen from the vector modelv which coalitions are
winning, the relationM is more appropriate if one wants RelView to compute the winning coalitions.
However, as experience has shown, the great advantage of thevector model is that it enables in many
cases much more elegant relation-algebraic specificationsthan the membership model. This holds in
particular if a task requires to treat coalitions which are non-winning. ForS ∈ 2N in the vector model
the propertyS < W is simply expressed byvS, whereas in the membership model, for instance,
it may require to consider the vector representations : N↔ 1 of S and to verify syq(M, s) = O.
Specifications that are based on the vector model are frequently even more efficient than membership-
based ones. This is especially the case if a high percentage of coalitions is winning, since then in
the membership model a lot of columns occur. That almost halfof the coalitions are winning is
typical in practice. E.g., using data from van Deemen (1989,[15]), van Roozendaal (1990, [36]) and
Berghammer et al. (2010, [10]), with the help of RelView we obtained for Dutch parliaments that
from the 8192 possible coalitions of the 13-parties parliament after the 1972 election 3999 (48.8%)
are winning, from the 1024 possible coalitions of the present 10-parties parliament 505 (49.3%) are
winning and from the 64 possible coalitions of the 6-partiesparliament after the 1986 election even 32
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(50%) are winning. Apart from the visualization of input andoutput, in the remainder of the paper we
restrict ourselves to the vector model. In the next theorem we give first examples for relation-algebraic
specifications of game-theoretic notions that are based on the vector model. In it,S : 2N↔2N denotes
the subset order as introduced in (7).

Theorem 4.1.2. Assume v: 2N↔ 1 to be the vector model of a simple game(N,W). Then(N,W) is
monotone if and only ifS v ⊆ v and is a voting game if and only if in addition v, O and v⊆ ETL.

Proof: ThatS v ⊆ v specifies monotonicity follows from

S v ⊆ v ⇐⇒ ∀S ∈ 2N : (S v )S → vS

⇐⇒ ∀S ∈ 2N : (∃T ∈ 2N : SS,T ∧ vT)→ vS

⇐⇒ ∀S,T ∈ 2N : S ⊆ T ∧ T <W→ S <W
⇐⇒ ∀S,T ∈ 2N : S ⊆ T ∧ S ∈ W → T ∈ W.

The equivalence ofv , O andW , ∅ is trivial and the remaining claim is shown by

v ⊆ ETL ⇐⇒ ∀S ∈ 2N : vS → ∃ k ∈ N : ET
S,k ∧ Lk

⇐⇒ ∀S ∈ 2N : S ∈ W → ∃ k ∈ N : k ∈ S
⇐⇒ ∀S ∈ 2N : S ∈ W → S , ∅. �

In the next theorem we specify relation-algebraically the properties of a simple game of being proper
and strong. HereC : 2N↔2N is the relation for set complementation; cf. (7).

Theorem 4.1.3. Given v: 2N↔ 1 as the vector model of a simple game(N,W), the game is proper
if and only if v⊆ C v and the game is strong if and only ifv ⊆ Cv.

Proof: Starting with a formal logical specification of being a proper game, the first claim is shown by

∀S ∈ 2N : S ∈ W → S <W ⇐⇒ ∀S ∈ 2N : S ∈ W → ∃T ∈ 2N : T = S ∧ T <W
⇐⇒ ∀S ∈ 2N : vS → ∃T ∈ 2N : CS,T ∧ vT

⇐⇒ v ⊆ C v .

In the same way the second specification can be calculated. �

SinceC is a mapping in the relation-algebraic sense, we get due to Schmidt and Str̈ohlein (1993, [41])
that v ⊆ Cv if and only if C v = Cv ⊆ v. Hence, the simple game is decisive (i.e., proper and strong)
if and only if v = C v if and only if v = Cv.

Also for weighted majority games a vector modelv : 2N↔ 1 can be computed within relation
algebra. To this end, the players are interpreted as the parties of a parliament and the weights are
interpreted as the number of the parliament seats the party holds, i.e., in the very same way as in real
political life. Then the only requirement to obtainv is that, givenX as set of seats, there is a mapping
(in the relation-algebraic sense)D : X↔N at hand that describes the distribution of the seats, i.e.,
fulfills for all x ∈ X andk ∈ N thatDx,k if and only if seatx is owned by partyk. Since the concrete
procedure is irrelevant for the remainder of the paper, we donot go into details here and refer the
interested reader to Berghammer et al. (2010, [10]), where the computation ofv from D formally is
developed.
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Figure 1: Membership model of the Catalonian game

In general, the number of winning coalitions of a simple gamecan grow rapidly with the number
of players. For example, if the game is proper and strong andn is the number of players, then
the number of winning coalitions is 2n−1, i.e., 50% of all coalitions are winning. Therefore, in the
following example that shall demonstrate the visualization facilities of RelView we deal with a rather
small game, taken from Lorenzo-Freire et al. (2007, [30]).

Example 4.1.1. We consider the following weighted majority game with five players, that is a repre-
sentation of the parliament of Catalonia, one of the 17 Spanish autonomous communities, after the
November 2003 election.

[68; 46,42,23,15,9]

The players are, from left to right, labeled with the numbers1, 2, 3, 4 and5; they correspond (in the
same order) to the five Catalonian parties CIU, PSC-CPC, ERC, PP and ICV-EA. In the picture of
Figure 1 the membership model M: N↔W of this game is shown as depicted byRelView in the
relation-window of its user interface. In this5×16Boolean matrix a black square means a 1-entry and
a white square means a 0-entry. So, for example, the winning coalition represented by the first column
of M consists of the three parties PSC-CPC, ERC and ICV-EA. If we transform the membership model
M into the vector model, we obtain a vector v: 2N↔ 1 in which exactly 16 entries are 1. The two
pictures of Figure 2 show the is-element relationE : N↔2N and, below it, the transpose of the vector
v (that is, the row vector vT : 1↔2N). The 32 columns of the is-element relationE represent the 32
coalitions. A comparison of the pictures (here the row vector representation of the game is of great
advantage) shows that the 1-entries of the vector model v precisely designate those columns ofE that
belong to the membership model M.

As a weighted majority game,(N,W) is monotone. We have also tested whether it is proper and
strong using theRelView-versions

proper(E,v) = incl(v,Compl(E)*-v) strong(E,v) = incl(-v,Compl(E)*v)

of the relation-algebraic specifications of Theorem 4.1.3,where the pre-definedRelView-operation
incl tests inclusion of relations and theRelView-function

Compl(E) = syq(-E,-E)

Figure 2: Vector model of the Catalonian game
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computes from the is-element relationE : N↔2N the relationS : 2N↔2N for set complementation.
In both cases we obtained the answer ‘yes’. �

4.2. Computing Minimal Coalitions and Related Notions

Computing minimal winning coalitions with relation-algebraic means is easy. It is well-known, cf.
Schmidt and Str̈ohlein (1993, [41]) that, given a strict order relationR : X↔X and a vectorw : X↔ 1
that represents a subsetY of X, the vectorw∩ RTw : X↔ 1 represents the set of minimal elements
of Y as a subset ofX. Hence, if we takew as vector modelv : 2N↔ 1 of a simple game (N,W) and
R as the irreflexive part of the subset orderS : 2N↔2N, we get immediately the following result.

Theorem 4.2.1. If v : 2N↔ 1 is the vector model of the simple game(N,W), then the vector

minwin(v) := v∩ (S ∩ I )
T
v

of type[2N↔ 1] represents the setWmin of minimal winning coalitions. �

Next, we specify relation-algebraically the is-swinger relation and the vector of vulnerable winning
coalitions. To simplify the calculations, we only considermonotone games. With regard to practical
applications this is no serious restriction.3 Recall from Section 3, thatR is the relation-algebraic
specification of element-removal and the function rel yields for a vector that represents a subset of a
Cartesian product in the sense of Section 3.2 the corresponding ‘proper’ relation.

Theorem 4.2.2. Let v : 2N↔ 1 be the vector model of a monotone simple game(N,W). If we define
the is-swinger relationSwingers(v) : N↔2N and the vectorvulwin(v) : 2N↔ 1 by

Swingers(v) := E ∩ LvT ∩ rel(R v ) vulwin(v) := Swingers(v)TL

(with L : N↔ 1), then for all k∈ N and S∈ 2N it holdsSwingers(v)k,S if and only if k is a swinger of
S andvulwin(v)S if and only if S is a vulnerable winning coalition.

Proof: For allk ∈ N andS ∈ 2N we have

Swingers(v)k,S ⇐⇒ (E ∩ LvT ∩ rel(R v ))k,S

⇐⇒ Ek,S ∧ (LvT)k,S ∧ rel(R v )k,S

⇐⇒ Ek,S ∧ (LvT)k,S ∧ (R v )〈k,S〉
⇐⇒ Ek,S ∧ (LvT)k,S ∧ ∃T ∈ 2N : R〈k,S〉,T ∧ vT

⇐⇒ Ek,S ∧ vS ∧ ∃T ∈ 2N : S \ {k} = T ∧ vT

⇐⇒ Ek,S ∧ vS ∧ vS\{k}

⇐⇒ k ∈ S ∧ S ∈ W ∧ S \ {k} <W.

3In the political science literature typically one only considers monotone simple games as, e.g., in Peleg (1981, [33]),
or even demands a simple game to be monotone by definition as, e.g., van Deemen (1989, [15]) and van Roozendaal
(1990, [36]) do.
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Since (N,W) is monotone, the last formula specifiesk as a swinger ofS. This is the first result. Using
it, the second one is shown by

vulwin(v)S ⇐⇒ (Swingers(v)TL)S

⇐⇒ ∃ k ∈ N : Swingers(v)T
S,k ∧ Lk

⇐⇒ ∃ k ∈ N : k ∈ S ∧ S ∈ W ∧ S \ {k} <W
⇐⇒ S ∈ W ∧ ∃ k ∈ N : k ∈ S ∧ S \ {k} <W. �

So far, we have considered swingers and specific coalitions.In the remainder of the section, we
turn towards specific players with more or less power such as adummy, a vetoer, a dictator and a
null player. The next theorem shows how the sets of these specific playerscan be specified relation-
algebraically as vectors. It uses the relationA of (7) for the addition of an element.

Theorem 4.2.3. Based on the vector model v: 2N↔ 1 of a simple game and m:= minwin(v) as
vector representation of the setWmin of minimal winning coalitions, we consider the following four
vectors of type[N↔ 1] (where[N↔N] is the type of theI in syq(I,E) and [2N↔2N] is the type of

the I in I m ):

dummy(m) := Em vetoer(m) := E m

dictator(m) := syq(I,E)(m∩ I m) null(v) := syq(rel(Av)T, v)

Thendummy(m) (vetoer(m), dictator(m) andnull(v), respectively) represents the set of dummies (ve-
toers, dictators and null players, respectively).

Proof: We only verify the specifications for dictators and null players. Assumek ∈ N. Then the first
case follows from

dictator(m)k ⇐⇒ (syq(I,E)(m∩ I m))k

⇐⇒ ∃S ∈ 2N : syq(I,E)k,S ∧mS ∧ I mS

⇐⇒ ∃S ∈ 2N : (∀ j ∈ N : I j,k ↔ E j,S) ∧mS ∧ ¬∃T ∈ W : I S,T ∧mT

⇐⇒ ∃S ∈ 2N : (∀ j ∈ N : j = k↔ j ∈ S) ∧mS ∧ ∀T ∈ W : mT → S = T
⇐⇒ ∃S ∈ 2N : S = {k} ∧ S ∈ Wmin ∧ ∀T ∈ Wmin : S = T

and the second case follows from

null(v)k ⇐⇒ syq(rel(Av)T, v)k

⇐⇒ ∀S ∈ 2N : rel(Av)T
S,k ↔ vS

⇐⇒ ∀S ∈ 2N : (Av)〈k,S〉 ↔ vS

⇐⇒ ∀S ∈ 2N : (∃T ∈ 2N : A〈k,S〉,T ∧ vT)↔ vS

⇐⇒ ∀S ∈ 2N : (∃T ∈ 2N : S ∪ {k} = T ∧ T ∈ W)↔ S ∈ W
⇐⇒ ∀S ∈ 2N : S ∪ {k} ∈ W ↔ S ∈ W,

since in both cases the last formula of the derivation is the formal logical specification of the property
under consideration. �
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Figure 3: Vulnerable and minimal winning coalitions of the Catalonian game

Let us consider what the RelView-programs corresponding to the above specifications yield in the
case of our running example. Since the is-swinger relation is decisive for computing power indices,
we postpone its picture until Section 4.4 that is devoted to this topic.

Example 4.2.1. If the RelView-programs we have obtained from the relation-algebraic specifica-
tionsvulwin(v) andminwin(v) of Theorem 4.2.2 and Theorem 4.2.1 are applied to the vector model
of Example 4.1.1, then the tool yields two vectors which, againin transposed form to save space, are
shown in the two pictures of Figure 3. The row vector on the top designates the 13 vulnerable winning
coalitions of the parliament of Catalonia after the 2003 election, and that under it designates the five
minimal winning coalitions. From these results we could obtain the ‘concrete’ form of the coalitions
by a comparison with the columns of the is-element relationE : N↔2N as remarked in Example
4.1.1. The much more easier way is, however, to use the technique for the column-wise enumeration
of sets presented in Section 3.2, i.e., to evaluate the two expressionsE vulwin(v)T andE minwin(v)T.
Doing so, we obtain the left-most and right-most of the threeRelView-matrices of Figure 4, from
which each vulnerable winning coalition and each minimal winning coalition, respectively, can im-
mediately be obtained as a column. TheRelView-matrix in the middle column-wisely enumerates the
sets of swingers of the vulnerable winning coalitions. It is obtained by removing from the is-swinger
relation all columns corresponding to a 0-entry in the vector representation of the vulnerable winning
coalitions. Relation-algebraically this reads asSwingers(v) inj(vulwin(v))T.

To explain the threeRelView-matrices of Figure 4 a bit more, we compare the first columns of
the two5× 13matrices. Since they are identical, that means, each party is a swinger, the represented
coalition {PSC-CPC, ERC, ICV-EA} is a minimal winning one. This agrees with the column-wise
enumeration of these coalitions in which the coalition appears, too. Next, we compare the third
columns of the two matrices. From the first matrix we get{PSC-CPC, ERC, PP, ICV-EA} as vulner-
able winning coalition and from the second one{PSC-CPC, ERC} as the set of its swingers. Hence,
this coalition is not minimal winning. Again this agrees with the right-most matrix, since now the
coalition does not occur as a column.

To demonstrateRelView’s visualization potential a bit more, theRelView-graph of Figure 5
shows the Hasse-diagram of the inclusion orderS of the 32 coalitions of our example. In this picture
the inclusion relationships between the 16 winning coalitions are highlightened by boldface arcs; from
this it becomes immediately clear that the game is monotone.The five minimal winning coalitions are
drawn as white squares and the 11 non-minimal winning coalitions are drawn as black circles.

For our running example we also have computed the vectors specified in Theorem 4.2.3. Here all
results delivered by theRelView tool were empty. �

Figure 4: Column-wise enumeration of the vulnerable and minimal winning coalitions
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Figure 5: The ordered coalitions of the Catalonian game

4.3. Computing Central and Dominant Players

In this section we deliver relation-algebraic specifications of the sets of central and dominant
players. Let us start with the concept of a central player. Note that since there exists at most one
central player in a simple game, the vector given in the following theorem either is empty or is a point
in the sense of Section 3.2. Since the vector is specified as relation-algebraic expression, we use the
letterP for the policy order and not the infix-symbol< as in Section 2.3.

Theorem 4.3.1. Let a simple game(N,W) with a linear strict policy order P: N↔N be given and
assume that v: 2N↔ 1 is the game’s vector model. Then the vector

central(v,P) := syq(P,E)v ∩ syq(PT,E)v ∩ syq(P∪ I,E)v∩ syq(PT ∪ I,E)v

of type[N↔ 1] (whereI : N↔N) represents the set of central players.

Proof: Let k ∈ N be a player. Then we have

( syq(P,E)v )k ⇐⇒ ¬∃S ∈ 2N : syq(P,E)k,S ∧ vS

⇐⇒ ∀S ∈ 2N : (∀ j ∈ N : Pj,k ↔ E j,S)→ vS

⇐⇒ ∀S ∈ 2N : (∀ j ∈ N : Pj,k ↔ j ∈ S)→ vS

⇐⇒ ∀S ∈ 2N : S = { j ∈ N : Pj,k} → S <W
⇐⇒ { j ∈ N : Pj,k} <W
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and a replacement ofP by its transpose in this calculation shows

syq(PT,E)v ⇐⇒ { j ∈ N : Pk, j} <W.

Next, we deal with the third expression of the intersection and get

(syq(P∪ I,E)v)k ⇐⇒ ∃S ∈ 2N : syq(P∪ I,E)k,S ∧ vS

⇐⇒ ∃S ∈ 2N : (∀ j ∈ N : (Pj,k ∨ I j,k)↔ E j,S) ∧ vS

⇐⇒ ∃S ∈ 2N : (∀ j ∈ N : (Pj,k ∨ j = k)↔ j ∈ S) ∧ vS

⇐⇒ ∃S ∈ 2N : S = { j ∈ N : Pj,k} ∪ {k} ∧ S ∈ W
⇐⇒ { j ∈ N : Pj,k} ∪ {k} ∈ W.

Again by a replacement ofP by PT we find for the fourth expression

(syq(PT ∪ I,E)v)k ⇐⇒ { j ∈ N : Pk, j} ∪ {k} ∈ W.

If we readPj,k as j < k, the conjunction of the right-hand sides of the derived equivalences precisely
means thatk is a central player. �

Next, let us study the concept of a dominant player. In the following, we show how two desirability
concepts introduced in Peleg (1981, [33]) can be specified relation-algebraically. We do it again in
such a way that this leads to RelView-programs after a simple translation step.

In the decisive first part of the following theorem it is shownhow the concept ‘at-least-as-desirable’
can be specified relation-algebraically by means of a vectorwith a Cartesian product as domain. The –
again vector-based – specifications of ‘more-desirable’ and ‘dominance’ then are easy consequences
of the theorem’s first part. Recall from Section 3, thatJ andR are the relation-algebraic specification
of set union and element-removal, respectively,X is the relation for exchanging the components of
pairs, the function rel transforms vector representationsinto ‘proper’ relations and the function vec is
the inverse of rel.

Theorem 4.3.2. Let v : 2N↔ 1 be the vector model of a simple game(N,W). Then the vector

alades(v) := L([ ETE , ETE ] ∩ [rel(J v ), rel(Jv)])

of type[2N×2N↔ 1] (whereL : 1↔2N) represents the at-least-as-desirable relation≥D as subset of
2N×2N. For the more-desirable relation>D the same is obtained by the vector

mdes(v) := alades(v) ∩ X alades(v)

of type[2N×2N↔ 1]. Withπ : N×2N↔N as first projection of N×2N, finally, the vector

dom(v) := vec(E) ∩ [π syq(I,E),R] mdes(v)

of type[N×2N↔ 1] represents the dominance relation≫ as subset of N×2N.
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Proof: To prove the first claim, let a pair〈S,T〉 ∈ 2N×2N be given. Then we have the following
equivalence:

alades(v)〈S,T〉 ⇐⇒ L([ ETE , ETE ] ∩ [rel(J v ), rel(Jv)]) 〈S,T〉
⇐⇒ ¬∃U ∈ 2N : L⊥,U ∧ [ ETE , ETE ]U,〈S,T〉 ∧ [rel(J v ), rel(Jv)]U,〈S,T〉

⇐⇒ ¬∃U ∈ 2N : ETE U,S ∧ ETE U,T ∧ rel(J v )U,S ∧ rel(Jv)U,T

⇐⇒ ¬∃U ∈ 2N : ETE U,S ∧ ETE U,T ∧ (J v )〈U,S〉 ∧ (Jv)〈U,T〉
⇐⇒ ∀U ∈ 2N : ETE U,S ∧ ETE U,T ∧ (Jv)〈U,T〉 → ¬(J v )〈U,S〉

Now, we consider the four relationships of the body of the quantification. We calculate

ETE U,S ⇐⇒ ¬∃ j ∈ N : ET
U, j ∧ E j,S ⇐⇒ ¬∃ j ∈ N : j ∈ U ∧ j ∈ S ⇐⇒ U ∩ S = ∅

for the first one. In the same way we get the equivalence of the relationshipETE U,T andU ∩ T = ∅.
For the third relationship we obtain

(Jv)〈U,T〉 ⇐⇒ ∃V ∈ 2N : J〈U,T〉,V ∧ vV

⇐⇒ ∃V ∈ 2N : U ∪ T = V ∧ V ∈ W
⇐⇒ U ∪ T ∈ W.

A similar calculation shows that (J v )〈U,S〉 if and only if U ∪ S <W. Summing up, we have shown
the equivalence

alades(v)〈S,T〉 ⇐⇒ ∀U ∈ 2N : U ∩ S = ∅ ∧ U ∩ T = ∅ ∧ U ∪ T ∈ W → U ∪ S ∈ W,

the right-hand side of which is the formal logical specification of the relationshipS ≥D T and, thus,
concludes the proof of the first claim.

To verify the second claim we assume again a pair〈S,T〉 ∈ 2N×2N to be given. Then the desired
result is shown by the following derivation, since the last line of it is the formal logical specification
of S >D T:

mdes(v)〈S,T〉 ⇐⇒ (alades(v) ∩ X alades(v) )〈S,T〉
⇐⇒ alades(v)〈S,T〉 ∧ X alades(v) 〈S,T〉
⇐⇒ S ≥D T ∧ ¬∃ 〈U,V〉 ∈ 2N×2N : X〈S,T〉,〈U,V〉 ∧ alades(v)〈U,V〉
⇐⇒ S ≥D T ∧ ¬∃ 〈U,V〉 ∈ 2N×2N : S = V ∧ T = U ∧ alades(v)〈U,V〉
⇐⇒ S ≥D T ∧ ¬alades(v)〈T,S〉
⇐⇒ S ≥D T ∧ ¬(T ≥D S)

Finally, the last claim is shown by the following calculation for all pairs〈k,S〉 ∈ N×2N, which
uses the equivalence of syq(I,E)k,T and{k} = T and ends with the logical formula that specifies the
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Figure 6: The more-desirable relation of the Catalonian game

relationshipk≫ S:

dom(v)〈k,S〉 ⇐⇒ (vec(E) ∩ [π syq(I,E),R] mdes(v))〈k,S〉
⇐⇒ vec(E)〈k,S〉 ∧ ([π syq(I,E),R] mdes(v))〈k,S〉
⇐⇒ Ek,S ∧ ∃ 〈T,U〉 ∈ 2N×2N : [π syq(I,E),R]〈k,S〉,〈T,U〉 ∧mdes(v)〈T,U〉
⇐⇒ k ∈ S ∧ ∃ 〈T,U〉 ∈ 2N×2N : (syq(I,E)k,T ∧ R〈k,S〉,U ∧ T >D U
⇐⇒ k ∈ S ∧ ∃ 〈T,U〉 ∈ 2N×2N : {k} = T ∧ S \ {k} = U ∧ T >D U
⇐⇒ k ∈ S ∧ {k} >D S \ {k} �

If we apply the function rel of (8) to the three vectors of Theorem 4.3.2, then we obtain again relation-
algebraic specifications rel(alades(v)), rel(mdes(v)) and rel(dom(v)) for the relations≥D, >D and≫,
respectively, but now as ‘proper’ relations of type [2N↔2N] in the first two cases and [N↔2N] in the
latter case. The RelView-versions of rel(alades(v)) and rel(mdes(v)) allow to visualize the at-least-as-
desirable and the more-desirable relation of a simple game (N,W) with vector modelv : 2N↔ 1 not
only as Boolean matrices but also as directed graphs. As we have already demonstrated, in the latter
case additionally features are provided which allow to drawgraphs nicely and to highlight selected
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Figure 7: The dominance relation of the Catalonian game

portions. The specification rel(dom(v)) at once leads to a RelView-program for determining the
game’s dominant players. Recall that the dominant players are those which are related to an element of
W via the dominance relation≫. Takingv as vector representation ofW and rel(dom(v)) as relation-
algebraic specification of≫, this immediately yields rel(dom(v))v : N↔ 1 as vector representation of
the set of dominant players of the game.

Example 4.3.1. For our running example now we demonstrate howRelView can be used to treat the
concepts of ‘desirability’ and ‘dominance’. In theRelView-picture of Figure 6 we show the Hasse-
diagram of the more-desirable relationrel(mdes(v)) of the parliament of Catalonia after the 2003
election. The directed graph is drawn using the level-oriented graph-drawing algorithm of Gansner
et al. (1993, [21]). The meaning of the arrow is that one coalition is more desirable than another
one. From the level at the top we get that half of the coalitionsis maximal with respect to ‘more-
desirability’ and these coalitions coincide with the winningones (since the row vector representation
of the winning coalitions of Example 4.1.1 says that precisely the columns ofE with labels 14-16
or labels 20-32 represent winning coalitions). In the case ofthe dominance-relationrel(dom(v)) :
N↔2N, theRelView tool delivers the5 × 32 Boolean matrix of Figure 7. It shows that party CIU
(row number 1 in the matrix) is the only dominant player of theparliament because it dominates
the three winning coalitions with column labels 20, 21 and 25. Recall from theRelView-picture of
the vector model in Example 4.1.1 that the coalitions with column labels 17-19 and the coalitions
dominated by the other parties are not winning. �

4.4. Computing Power Indices
In this section we apply relation algebra to some power indices. More precisely, we present

relation-algebraic specifications that immediately lead to the Banzhaf, Holler-Packel and Deegan-
Packel indices. There is a very close relationship between the relation Swingers(v) : N↔2N of
Theorem 4.2.2 and the power indices introduced in (1) and (2)that also is the key for their computation
using the RelView tool. This relationship is presented in the next theorem. Toenhance readability,
for X andY being finite,R : X↔Y andx ∈ X, we denote the number of 1-entries ofR by |R| and the
number of 1-entries of thex-row of R by |R|x. Hence,|R| equals the cardinality ofR (as set of pairs)
and|R|x equals the cardinality of the subsetY′ of Y that is represented by the transpose of thex-row
in the sense of Section 3.2.

Theorem 4.4.1. Assume a monotone simple game(N,W) with n players and its vector model v:
2N↔ 1. Furthermore, let a player k∈ N be given. Then we have for the Banzhaf index that

(i) Ba(k) =
|Swingers(v)|k

2n−1
(ii) B(k) =

|Swingers(v)|k
|Swingers(v)|

and for the Holler-Packel index that

(iii) Ha(k) =
|Swingers(minwin(v))|k

|minwin(v)|
(iv) H(k) =

|Swingers(minwin(v))|k
|Swingers(minwin(v))|

.
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Figure 8: The is-swinger relation of the Catalonian game

Proof: Equation (i) is trivial since the transpose of thek-row of Swingers(v) represents the set{S ∈
W | k swinger ofS}. Combining it with the definition ofB(k), we get

B(k) =
Ba(k)∑

j∈N Ba( j)
=

1
2n−1 |Swingers(v)|k

1
2n−1

∑
j∈N |Swingers(v)| j

=
|Swingers(v)|k
|Swingers(v)|

which is (ii). Equation (iii) is again trivial and (iv) is shown analogously to (ii). �

If the RelView tool depicts a relationR as Boolean matrix in the relation-window, then in the win-
dow’s status bar the number of 1-entries ofR is shown. Furthermore, it is able to mark its rows and
columns for explanatory purposes. So far, we have only shownthe possibility to attach consecutive
row and/or column numbers. But also the numbers of 1-entries can be attached as labels. In combina-
tion with Theorem 4.4.1 this immediately allows to compute Banzhaf and Holler-Packel indices. We
demonstrate this by means of our running example.

Example 4.4.1. If we useRelView to compute the is-swinger relationSwingers(v) for the vector
model v of our running Catalonia parliament example and additionally instruct the tool to attach
consecutive row and column numbers, and for each row also thenumber of its1-entries as second
label (after the sign ‘/’), we get the picture of Figure 8. From the second row labels10,6,6,2,2 and
the fact that there are exactly26 1-entries, we immediately obtain the following normalized Banzhaf
indices of the parties:

CIU: 10
26 PSC-CPC: 6

26 ERC: 6
26 PP: 2

26 ICV-EA: 2
26

If in these fractions the denominators26 are changed to25−1 = 16, then the results are the parties’
absolute Banzhaf indices (in the same order)10

16, 6
16, 6

16, 2
16 and 2

16. Next, we evaluate the expression
Swingers(minwin(v)). ThenRelView depicts the labeled Boolean matrix of Figure 9 on its screen.
Hence, the normalized Holler-Packel indices of the Catalonian parties are as follows:

CIU: 3
13 PSC-CPC: 3

13 ERC: 3
13 PP: 2

13 ICV-EA: 2
13

In Example 4.2.1 we have shown that there are five minimal winningcoalitions. As a consequence, a
change of the denominators13 to 5 yields the absolute Holler-Packel indices of the parties as(in the
same order)35, 3

5, 3
5, 2

5 and 2
5. �

Figure 9: The is-swinger relation wrt. the minimal winning coalitions
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Figure 10: Relations for determining the Deegan-Packel indices

The Shapley-Shubik index, the Deegan-Packel index and the Johnston index are three further promi-
nent power indices for measuring power in simple games. In contrast with the Banzhaf and Holler-
Packel indices, their definitions use more arithmetic operations than (1) and (2). As we will show in
the next example by means of the Deegan-Packel index, in principle relation algebra and RelView can
also be applied here. But the example also shows the limit of the use of RelView in respect thereof.

Example 4.4.2. To compute the Deegan-Packel index D(k) of player k∈ N using relation algebra and
theRelView tool, we assume the vector representation m:= minwin(v) of the setWmin of minimal
winning coalitions to be at hand and the player k∈ N to be represented by a point p: N↔ 1 in the
sense of Section 3.2. IfE : N↔2N is the is-element relation, then a little reflection shows that the
vectorET p : 2N↔ 1 represents the set of all coalitions S∈ 2N such that k∈ S , and hence the relation

Deegan(m, p) := E inj(m∩ ET p)
T

(9)

of type[N↔W(k)
min] column-wisely represents the setW(k)

min used in (3) to define D(k). Based on m
and (9), now D(k) can be determined by performing one after another the following three steps:

1. Compute for each column ofDeegan(m, p) the reciprocal value of the number of its1-entries.
2. Add all numbers obtained by the first step.
3. Divide the result of the second step by the number of1-entries of m.

In the case of our Catalonian parliament example, theRelView tool delivered the five relations
Deegan(m, p) which are depicted in Figure 10, where the point p represents (from left to right) the
five parties CIU, PSC-CPC, ERC, PP and ICV-EA. If we apply the above procedure, then we obtain
from the second column labels of these matrices that D(CIU)= 1

5(1
3 +

1
2 +

1
2) = 8

30, D(PSC-CPC)=
1
5(1

3+
1
3+

1
2) = 7

30, D(ERC)= 1
5(1

3+
1
3+

1
2) = 7

30, D(PP)= 1
5(1

3+
1
3) = 4

30, and D(ICV-EA)= 1
5(1

3+
1
3) = 4

30.
�

It is obvious that the calculations of Example 4.4.2 can hardly be done by hand if the number of
minimal winning coalitions is large. For instance, the situation becomes a good deal worse in the
case of the present 10-parties Dutch parliament, since herealready 42 of the 505 winning coalitions
are minimal winning. To overcome the difficulties caused by the restrictive programming language of
RelView4 the Kure library has been developed; see Milanese (2003, [31]), Szymanski (2003, [44]). It
comprises the core functionality of RelView and opens the possibility to integrate relation-algebraic
computations into C- and Java-programs. Particularly with regard to the above example, a use of
Kure allows to perform all the arithmetic computations we have done by hand automatically by the
superordinate C or Java-program.

4Caused by the specific application domain of the tool, relations are the only pre-defined datatype of this language and
all further datatypes have to be modeled via them. In particular, real numbers and their base operations do not exist and
it seems to be very difficult to model the reals in the same elegant and efficient way as, e.g., sets and a lot of structures of
discrete mathematics and computer science.
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5. Concluding Remarks

In this paper we have presented two relation-algebraic models of simple games. For the vec-
tor model, we have developed relation-algebraic specifications for testing fundamental properties of
simple games and for computing specific players and coalitions, and some relations which are im-
portant for determining dominance and power indices. All specifications are algorithmic and can be
evaluated by the BDD-based tool RelView after a straightforward translation into the tool’s program-
ming language. To demonstrate the visualization facilities of RelView, we have used the Catalonian
Parliament after the 2003 election as example.

The correctness of all relation-algebraic specifications we have presented and, hence, also of the
corresponding RelView-programs is guaranteed by the extremely formal calculations that drastically
reduce the danger of making errors. In fact, we have obtainedthe results by developing formally
the relation-algebraic expressions and formulas from the original predicate-logic specifications. The
formulation in the prevalent mathematical theorem-proof-style has only been chosen to emphasize
the results and to enhance readability. We regard this goal-oriented development of programs from
formal specifications that are correct by construction as the first advantage of our approach. As the
second advantage of our approach we regard its computer-support by means of an appropriate tool. All
relation-algebraic specifications we have developed are expressed by extremely short and concise Rel-
View-programs. Consequently, these are easy to alter in the case of slightly changed specifications,
e.g., if winning coalitions additionally have to be connected (i.e., to form intervals w.r.t. a given policy
order) as in Einy (1985, [18]) or to be feasible w.r.t. a set ofpolicies in the sense of Berghammer et
al. (2007, [8]) or if, as in van Deemen (1989, [15]), in the definition of S ≥D T only for all non-empty
U ∈ 2N from U ∩S = ∅, U ∩T = ∅ andU ∪T ∈ W it has to follow thatU ∪S ∈ W. Combining this
feature of RelView with its possibilities for visualization and stepwise execution of programs allows
the user to experiment and play with established as well as new concepts while avoiding unnecessary
expenditure of work. This makes the tool very useful for scientific research. Nowadays, systematic
experiments are accepted as a way for obtaining new insightsand scientific results, and tools for this
purpose become increasingly important as one proceeds in investigations. The very efficient RelView
implementation of relations via BDDs was of immense help for the problems we have treated in this
paper. Due to it, without any problems we have been able to apply our algorithms to a lot of simple
games originating from real political life. Such simple games are presented, e.g., in Peleg (1981,
[33]), van Deemen (1989, [15]), van Roozendaal (1990, [36]) and Freixas and Molinero (2009, [20]).

Many problems appearing in connection with simple games areknown to be intractable in terms
of complexity theory, for instance, #P-complete5 or NP-hard. See e.g., Prasad and Kelly (1990,
[35]) for more details. There are special algorithms tailored for such hard problems, like theO(n · 2

n
2 )

algorithm for the Banzhaf index and theO(n2·2
n
2 ) algorithm for the Shapley-Shubik index of weighted

majority games presented in Klinz and Woeginger (2005, [26]), and the multilinear-extension-based
algorithms mentioned in Alonso-Meijide et al. (2008, [1]) and Lorenzo-Freire et al. (2007, [30]). In
spite of the fact that RelView implements relations very efficiently, frequently it cannot compete with
these special algorithms. To give an example, with the programs resulting from the present paper we
have not been able to tackle the United States Federal Systemgame with 537 players that is described
in Freixas and Molinero (2009, [20]).

5This complexity class was introduced in Vailant (1979, [45]) to characterize the number of solutions to an NP-
complete decision problem.
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It is impossible to estimate the largestn for which RelView can reasonably perform calculations
for simple games, because this very much depends on the relation one wants to evaluate, on the
number of minimal winning coalitions and other things. But RelView has dealt with many examples
from real life with up till 20 players in a very efficient way.

In RelView it is possible to indicate for a relationRof its workspace the number of vertices of the
BDD implementingR. By the experiments performed with the tool we have noticed that in almost all
cases the numbers of vertices of the BDDs for the vector of winning coalitions are relatively small and
the same is true for the BDDs of the results of the computations. E.g., the BDD of the vector model
of the 13-parties Dutch parliament after the 1972 election consists of 13 vertices only and 17 BDD-
vertices suffice to implement the is-swinger relation of this game. If problems appeared in the form
of very large BDDs, then those typically implemented intermediate results during the computations
and were then caused by modifications of BDDs for which the use of the relation-algebraic operations
proved to be unnecessarily complicated. As a consequence, we came to the insight that BDDs seem to
be an excellent means for solving game-theoretic problems efficiently if they are manipulable in full
generality and not only via the relation-algebraic operations (the programming language of RelView,
respectively). In the following, we briefly sketch our present work in this regard.

Due to RelView’s particular implementation of relations using BDDs, relational vectors with 2n

rows as introduced in Section 3.2 correspond exactly to Boolean functions withn input variables
that are implemented by BDDs (see Leoniuk (2001, [29]) and Berghammer et al. (2002, [6]). So,
if we represent the set of winning coalitionsW of a simple game withn players by a relational
vector in RelView (or the Kure library mentioned above), it internally uses a BDD withn variables
to implement the characteristic function ofW. This representation of the set of winning coalitions
of a simple game using a BDD is the starting point of Bolus (2010,[12]). In this paper, besides
the representation size of (vector-)weighted majority games, also the computation of the minimal
winning coalitions and the computation of some common powerindices is investigated. Due to the
relationship between relational vectors and BDDs, the results are directly transferable and usable in
the context of RelView. For instance, a BDD — and thus a vector model in our sense — of a weighted
majority game with quotaq andn players can be built in expected worst-case running timeO(n · q)
and the resulting BDD has size at mostn(q + 1). Provided constant time arithmetic on integer and
rational numbers, Banzhaf and Holler-Packel indices of all players can be computed in expected worst
case running timeO(n · q) and the Shapley-Shubik and Deegan-Packel indices of all players can be
computed in expected worst case running timeO(n3 · q), if the players are ordered by non-increasing
weights. In Bolus (2010, [12]) results for vector-weighted games and the general case are presented
for most of the four power indices. In the BDDs framework one can also apply, e.g., the upper bound
of O(2

n
2 ) to the size of the BDD of any weighted majority game; see Hosaka et al. (1994, [24]).

But, in contrast to the purely relation-algebraic approach of the present paper, the development
of game-theoretic algorithms based on BDDs requires much more effort, the implementation has
to be much more elaborated, and it often requires further knowledge of more technical issues such
as complementary edges. Moreover, the correctness proofs are much more complicated and much
less formal than ours – with all negative consequences. Additionally, using relation algebra as “in-
termediate language” does not produce less efficient algorithms in general. To the contrary, many
algorithms are usable in practice and are reasonably fast. If they are not adequate for the problem do-
main, the implementation of relations often allows to change perspective and to utilize BDDs directly
without friction as seen here. This way, RelView can be seen as a platform which incorporates not
only relation algebra, but also BDDs, which are known to be applicable to a lot of computationally
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hard problems. The current direction in the development of RelView is to make it more extensible
by expanding its interface in such a way that it is possible tooutsource program logic into small
problem-specific modules, so-called plug-ins. By specific game-theoretic plug-ins that are based on
Bolus (2010, [12]), in the meantime we are able to deal also with large problems that cannot be solved
with the original RelView tool, such as the above mentioned United States Federal System game with
537 players. To give an impression of concrete running times, for this example the algorithm of Bolus
(2010, [12]) computes a BDD for the set of winning coalitions that has about 67000 vertices and, from
it, then the Banzhaf indices of all players — altogether in less than 1 second. But it is most important
that the experiments with RelView led to this new BDD-approach to game-theoretic problems. It
should additionally be remarked that the experiments frequently even gave the decisive hints how the
algorithms have to work.

In Bolus (2010, [12]) only a portion of the problems we have solved in this paper is investigated.
For the future, we plan to extend this approach also to the remaining problems, i.e., to implement cor-
responding plug-ins for RelView. First experiments in respect thereof led to the impressionthat test-
ing fundamental properties and determining key players directly by means of the BDD-representation
ofW should not be very difficult. But we fear that computing the relations decisive for dominance
from this BDD remains as difficult as in the case of the relation-algebraic approach.
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