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Contact on Multiprocessor Environment:

from Multicontact Problems to Multiscale
Approaches

Pierre Alart™

- Laboratory of Mechanical and Civil Engineering, University of Montpellier 2, Montpellier,
France
¥ CNRS, National Center of Scientific Research, France

Abstract This course is devoted to the recent developments in the numerical
treatment of large multicontact problems requiring multiprocessor computers to
get admissible computer time simulations. Contact conditions lead to non smooth
mathematical formulations of steady-state and dynamical problems arising from
structural and granular mechanics. Specific solvers, as the Non Linear Gauss Sei-
del algorithm and the Conjugate Projected Gradient method, have been developed
and may be adapted to a parallel treatment. The domain decomposition methods
allow to deal with large-scale mechanical problems and take advantage of the mul-
tiprocessor architecture of powerful computers. Their efficiency is proved for linear
problems. Two different strategy for inserting the contact treatment are detailled
and compared: the Newton-Schur approach and the FETI-C method. A multiscale
description is finally coupled with a substructuring technique to tackle multicontact
problems with diffuse non smoothness.

1 When is it relevant to use a multiprocessor environment

1.1 Large scale contact/multicontact problems

A mechanical problem must be large enough to require a multiprocessor environment.
"Large” means that the number of variables to handle is very important. When these
variables are independent between them, a simple distribution of the computations on
different processors is efficient; that means that the problem is easily split into many
independent subproblems. When the variables are coupled by the equations, the prob-
lem may still be split into subproblems, but the crucial point for efficiency of parallel
treatment is the exchange of informations between them, that is the connections between
the processors and the associated memories if the memory is distributed.

Parallel computing strategies have been used in structural mechanics to tackle highly
heterogenous structures as fiber-reinforced composite (Ladeveze et al. (2001)) or steel-
elastomer composite structure (Lene and Rey (2001)). At these scales it is not easy to
distinguish between structure and material. Material science resorts also to parallel com-
puting for composites with complex behaviour components (Feyel and Chaboche (2000)).



In structural and material mechanics using parallel computing, the contact condi-
tions may be involved in different ways. When the contact occurs on the boundary of a
large scale domain previously dealt with a multiprocessor technique, no specific parallel
strategy is to develop. For instance the contact may be treated in a outer iteration loop
in a sequential way, an inner iteration loop being used for solving the material problem
requiring a parallel technique. Low level modifications are necessary for such a weak
coupling.

When the contact occurs in many different areas, we refer to multicontact problems.
Then it may be interesting to define a specific multiprocessor strategy to couple the
contact conditions with the other equations. Ladeveze et al. (2002) verify their strategy
on a micro-cracked medium. Alart et al. (2004) use a multiprocessor approach to tackle
cellular materials submitted to large deformations until selfcontact. Champaney et al.
(1997) present several applications concerning assemblies of pieces.

When the contact is the main constitutive law of the system, we refer to diffuse non
smoothness through the whole structure or domain. The typical example is the granu-
lar medium viewed as a collection of rigid bodies in interaction by contact and friction.
But the tensegrity structures may be considered as diffuse non smooth systems and are
studied specifically in this lecture. Granular media are often large scale system with
several millions grains and have complex behaviours from a solid state to a dilute gas via
a fluid flow. The simulation of such evolutive problems requires parallel techniques to
be performed in a reasonable computing time. Several stages of the simulation software
may benefit from a parallel treatment, the equilibrium or motion equations, but also the
contact detection. A study on the time consuming of the different stages is presented in
the next subsection. The two following subsections attempt to classify some multicontact
problems according to theirs mathematical features. The last subsection is devoted to a
general presentation of a range of discrete non smooth systems.

The second section is dedicated to the adaptation of two classical contact solvers to
the parallel computing. In the third section the extension of the domain decomposition
approaches to multicontact problems is presented. The fourth section closes the course
by a presentation of a domain decomposition method for diffuse non smooth systems
with a multiscale enrichment.

1.2 CPU time consuming for granular systems

A recent study has identified the main CPU time consuming parts of a code devoted
to the simulation of the behaviour of granular systems (Renouf et al. (2004)). Three
computational efforts are evaluated: the contact detection, the contact solver and the
convergence test which should be inserted in the previous solver part. But this iden-
tification strongly depends on geometry and intrinsic properties of the sample, and we
show a relationship between the CPU time consuming rates of the different parts of the
code and the mechanical properties of the sample. The granular medium can be consid-
ered as a gaz (mixing), as a liquid (avalanche, rotative drum, granular flows) or a solid



(quasi-static evolution, compaction, shear test) according to the process. Three different
examples have been chosen to illustrate the main fields of application such as a mixing,
a free surface compaction and a rotative drum (see Figure 1). Each simulation takes into
account one thousand “poly-disperse” disks, with elastic shocks for mixing and inelastic
shocks for the other simulations (Cambou and Jean (2001)).

Figure 2. Force networks in three different simulations: mixing, compaction, drum.

Figure 2 shows the contact network in each case. This network does not exist in the
mixing case, because of the permanent turbulence of the material: each particle moves
in ballistic flight between two impacts. The contact is essentially characterized by binary
collisions which do not interact between them. An implicit integration scheme leads to a
single iteration to solve the non smooth solver like in an explicit scheme. In the two other
cases which involve dense materials, the force network takes up the whole domain with
different intensities due to the gravity and the dynamical solicitation. The drum has the
more complex behaviour; the bottom of the drum behaves like a solid with stable force
network whereas the top flows out as a fluid with regular avalanches. The force network
changes continuously with a week coupling between the contacts. Such a process with
such an intermediate behaviour between fluid and solid is intensively studied by physicists
and mechanicians of granular media (Rajchenbach (2000), Rajchenbach (1990), Bonamy
et al. (2002), Renouf et al. (2005)).



Table 1. Repartition of elapsed time taken by subroutine ( % ).

Problem solver  convergence detection
mixing 18.6% 2.9% 47.44%
compaction  84.68% 2.43% 5.82%
drum 85.68% 2.52% 1.89%

For each simulation we identify the CPU time consumed by the detection of the con-
tacts and the solution of the contact conditions (determination of impulses and relative
velocities satisfying the contact laws). The solution subroutine is itself split into the
solver part and the convergence test. The percentage of elapsed time given in Table
1 confirms this argument: the solver of the non linear contact equations consumes the
major part of the CPU time for the two last examples, although the detection of the
pairs is the most expensive for the mixing case.

However the contact detection is a present research field for the discrete element ap-
proaches (Liu and Lemos (2001)), specially when the geometry becomes complex (Nezami
et al. (2004), Song et al. (2006)), as well as for the finite element methods (Li et al.
(2001)). Such a research is crucial for fast dynamical applications using explicit integra-
tion schemes. But we do not tackle this topic in this lecture.

If we want to deal with a wide range of applications from the equilibrium of a structure
with contact to a strongly shaken granular system, the main effort from a computational
point of view concerns the solver of a large number of non smooth coupled equations.

1.3 Mathematical formulations of multicontact problems

The situations where the contact occurs are very diverse and concern many fields in
engineering science: metal forming, damage in materials, mechanism, crash, robotics, ...
This fact explains in part the variety of the numerical algorithms to solve the relations
modelling the contact conditions. According to the context in which the numerical tools
are developed the formulation itself of the contact interactions may be very different. At
first the contact involves inequalities instead of equalities more suitable for computation.
Concise formulations useful for the mathematical analysis refer to the Convex Analy-
sis, specially to the subdifferential calculus of convex functions. The reader is referred
to some books or papers: Moreau (1974), Kikuchi and Oden (1982), Klarbring (1986),
Wriggers (1995), Moreau (1994), Glocker and Pfeiffer (1996) and Brogliato et al. (2002).
Such a mathematical background may be not known to deal with contact in numerical
softwares, but this leads to very specific numerical procedures strongly dependant of the
problem.

In this section we focus our attention on two extreme typical problems involving
both unilateral constraints but leading to different mathematical formulations, themselves
leading to adopt different efficient numerical strategies, specially in a multiprocessor



context. The first one involves a deformable structure and refers to a structural type
problem and the second concerns a collection of rigid bodies and is granular type.

Static structural problem. The so called structural type problem consists in deter-
mining the equilibrium of an elastic body in grazing contact with a rigid foundation.
As a first characteristic of this case the contact operates as a boundary condition. We
consider directly the discrete case after applying a classical finite element method: n,,
notes the total number of nodes, n. the number of potential contact nodes. The equi-
librium equations consist of a linear system (in a first approximation): stiffness matrix
K, generalized displacement u, contact reactions r on the nodes of the contact area, the
external forces f,

Ku — Hr = f. (1.1)

The matrix H passes from the local frames to the global one for all potential contact
nodes. We have to add the contact conditions written here with two inequalities and a
complementarity condition between the contact reactions and the normal components of
the displacements on the potential contact surface.

Hu>0,r>0, rHu=0 < 0<Hwulr>0. (1.2)

Frictional conditions may complete this system without changing the main features of
the problem except the non symmetry which may be induced by a Coulomb type law.
So the number of contacts n. is small in comparison with the total number of nodes
noted n,: K is a 2n, x 2n, or 3n, X 3n, matrix according to the bidimensional or
three-dimensional modelling; H is a 2n,, X n. or 3n, X n. matrix. Finally the stiffness
matriz is not easily invertible and it is convenient to conserve the global variable u as a
main unknown of the problem. All the more so since other non linearities in addition
to contact may occur in such structural problem: the large strains, in cellular materials
for instance, or a non linear behaviour, as the plasticity in metal forming. To solve the
system (1.1) (1.2) with eventual other non linearities, a Newton like method appears as
a general non linear solver even if it has to be extended to non differentiable equations
(Alart and Curnier (1991), Alart (1997)).

Dynamical granular problem. The situation is quite different for the granular type
problem. Following the approach of Moreau (1998), the main object of the computation
s the wvelocity and a time stepping method is used as time integrator. The reader is
referred to Moreau (1999) and Brogliato et al. (2002) for a discussion about the different
integrators. For comparison with the previous case we consider the problem on a single
time step; we have to predict the velocity distribution in a collection of rigid bodies at the
end of this step. The contact operates now as an interaction law between particles. The
dynamical equations may be easily written at the contact points using the local frame
(see below) by considering the local variables: the relative velocity v between the two
particles passing at the contact point at this time and the impulsion r. The system to
solve is then the dynamics reduced to contacts,

Wr —v =b. (1.3)



The right-hand side of (1.3) takes into account the external forces and impulsions and the
relative velocity at the end of the previous step. The contact condition may be written
using the velocities instead of the displacements,

r>0,v>0rv=0 & 0<rlv >0 (1.4)

The unilateral contact conditions (1.4) may be replaced by more general interaction laws
involving only local variables, indiced by « from 1 to the number of contacts n.,

lawg[Va, o] = true,a = 1, n,. (1.5)

In dense granulates, the number of contacts is larger than the number of bodies. Since the
mass matriz is diagonal, it is easily invertible and the reduced system with the Delassus
matrix W may be considered to be solved, W = H'M~'H. But the W matrix may be
singular giving rise to "wedging” effects and indeterminacy of the impulsions. It is then
convenient to handle the local variables and to carry out an iteration technique which
consists in treating a succession of single-contact problems, according to the approach of
Moreau (1999). Such a procedure may be interpreted as a Gauss-Seidel method; some
convergence results may be obtained in special situations (Jourdan et al. (1998)). The
denomination of "non smooth contact dynamics” (NSCD) algorithm is used in order to
be distinguished from the "molecular dynamics” method based on a smoothing of the
contact conditions (Cundall (1971), Drake and Walton (1995)).

The two problems presented above have specific features and led us to mention two
very different algorithms to solve similar contact equations : a Newton like method for
structural type problems and a Gauss-Seidel like one for granular type ones. Other
methods can be used.

The structural type problem benefits from the techniques developed in the domain of
finite elements and specially to solve linear problems. The Newton method consists of
a succession of linear systems which may be solved by a domain decomposition method
(DDM) well suited to parallel architecture computers. Besides most papers in the lit-
erature use the domain decomposition method for introducing a parallel treatment in
contact computational mechanics; in these cases the DDM linear solver is extended to
the (non linear, non smooth) contact conditions using a dual approach (Rebel et al.
(2000), Dostal et al. (1998), Dostal et al. (2000), Dureisseix and Farhat (2001)) or a
mixed one (Champaney et al. (1999), Ladeveze et al. (2002)). The section 3 is dedicated
to the presentation of these approaches.

On the contrary we cannot easily extend some well tried techniques to the treatment
of a granular type problem. Some numerical experiments based on a domain decompo-
sition strategy have been performed leading to difficult load balancing procedures in a
dynamical process (Breitkopf and Jean (1999), Owen D.R.J. and Peric (2000)). Moreover
for granular type problems the nonsmoothness is not only located in some interfaces but
is diffuse through the whole domain. However a domain decomposition method is pro-
posed in the section 4 related to a multiscale approach. But a first attempt, developped
in the section 2, consists in carrying out directly a parallel treatment of the non smooth
solvers of the system (1.3) (1.5).



To illustrate the concepts presented above we develop in the next section a general dis-
crete mechanical model which allows to pass continuously from a structural like problem

to a granular like one.

Table 2. General notations for a system of bars and cables.

b, ¢

Bar and cable subscripts

7V, 7Y, 79 such that B'70 =0

Self balanced prestress

0o 0 0
€7, €, €

Related prestrain

T, Thy Tc

Internal tensions, in bars, in cables

e = Bu, e, = Byu, e. = B.u

Length variations (strain admissibility)

n=—é=—-Biu=—Bo

Relative velocities (strain rate admissibility)

= fttj Tdv

Average impulsions

kb7 kc

Local stiffnesses (in tension for cables)

Ae = —(ec+€9) + k17,

Corrected length variations in cables

M =0 + kP re —hT (e, +€))

Corrected relative velocities

F, F4 Internal and external nodal forces

u, U? Unknown and prescribed nodal displacements
B B Link to node and node to link mappings

Ky, = BlkyBy, K. = B'k.B. Bar network and cable network stiffnesses
K=K+ K, Global stiffness

M Mass matrix

W =BM~ Bt = %l:; %l;z Delassus operator

W =W + h2diag(k, ', k. !) Corrected Delassus operator

1.4 From a truss to a granulate via the tensegrity.

We discuss in this section the static and dynamical modellings of a structure composed
with bars and more or less cables to illustrate the concepts introduced above. Such a
discrete structure may be described as a set of nodes and links between them, the non
smoothness only occuring in the constitutive relations of the links. When the dynamics
is considered, the masses are concentrated in the nodes. In the set of nodes €2, we
distinguish the subset I';, of the nodes where the displacement is prescribed to clamp the
structure to the support. Three configurations are to be considered: the current one €2y
for which the tensions and displacements are unknown, the prestressed configuration €2
before applying additional external loading and the relaxed configuration €2_; for which
the selfstresses are virtually vanished. The three configurations are assumed to be close
enough to preserve the principle of small perturbations and the prestresses are assumed
to be given. In Table 2, the main notations are introduced.



Basic equations. For smooth motions the dynamical equation involves the time-
derivative of the velocities. Since shocks are expected, it is more convenient to write
this equation as a measure differential equation (Moreau (1998), Jean (1999)),

Mdv + Blrdv = Fldt. (1.6)

where dt is a Lebesgue measure, dv is a differential measure representing the acceleration,
dv a non-negative real measure relative to which dv happens to possess a density function,
and 7 is a representative of local density of tension forces. The balance equation consists
in neglecting the inertial term and the measures.

—F+F%=0 with F:=B'r. (1.7)

A dual (or reduced to links) formulation of the dynamics may be preferred using the
Delassus operator W,

dn—Wrdy = —Fedt = —-BM ' Fdt. (1.8)

When a time discretisation is performed an elementary subinterval [¢t~, "] of length h is
considered. Since discontinuous velocities are expected, high order integration schemes
are not necessary and even troublesome; first-order schemes are enough when many
shocks may occur simultaneously. We consider here a fully implicit scheme underlining
the impulsion 7 over the time step as the product of h by an average tension 7 considered
at the end of step,

nt—n~ —Wnr=—-hF? with ©=hrt. (1.9)

For statics, the strain admissibility equation connects the nodal displacements to length
variations of the links; for dynamics the strain rate admissibility equation connects the
nodal velocities to relative velocities of the ends of the links (see the Table 2).

Constitutive laws. The behaviour relation for a bar indiced by « involves a local
stiffness between the tension and the length variation taking into account the prestress,

To = ko(ea +€2). (1.10)

The dynamical version of this relation involves the relative velocity 77 and the impulsion
7Ta7

To = W2ko(—nF + %(e; +e2)). (1.11)

An inextensible cable may be modelled with complementary conditions summarized as
follows,
0< —eq L 7 >0. (1.12)

According to the approach of Moreau (1998), a dynamical discrete version is derived
involving complementarity conditions between relative velocity and impulsion,

e +_
{ if —ey, >0 then 177 =0, (1.13)

if —e; <0 then 0<nl 1L 7, >0.



An integration lemma given by Moreau (1998) proves that the iterates verifying (1.13)
tend to verify (1.12) when the time step h tends to zero.

The modelling of extensible cables is a combination of a bar and an inextensible cable;
the behaviour law takes the form of a piecewise linear function. But we can easily prove
that this relation is equivalent to a complementarity condition between the tension and
a corrected length variation introduced in the Table 2,

. _{ kolea +€2) if eq+e2 >0

0 if cated <o T 0= L7020 (1.14)

According to previous developments the dynamical discrete version links the impulsion
to a corrected relative velocity defined in the Table 2,

+:{ ka(eqg —hnt +¢€%) if ey —hnd +€2 >0

+
0 if oo -4t <o 7 0=Ac L ma >0 (115)

TO(
With these ingredients we can postulate some problems with different mathematical

features.

Truss. If the system is only composed by bars, the equilibrium of the so obtained truss
is classically characterized by a linear system with the nodal displacements as unknowns,

Ku=F%— B'keP. (1.16)

The (smooth) dynamical behaviour is governed by a system of second-order differential
equations,

Mii+ Ku = F¢ — B'ke°, (1.17)

If some inextensible cables are added - for instance to hang up the structure to the
support because it is too flexible and too heavy - the equilibrium depends on the tension
in these cables according to a few complementarity conditions,

{ Kyu + B(t:TC = Fd _ Bikbeg

0<—-B.u 1L 1.>0. (1.18)

It is then a structural type problem as defined in (1.1); the global stiffness matrix of the
truss of bars is invertible and the system (1.18) is equivalent to minimize a lower bounded
quadratic bulk energy under convex constraints i.e. a well-posed problem.

Net and granulate. If alot of bars are replaced by inextensible cables (to make lighter
the structure for instance) the matrix K; may not to be invertible and the problem is no
more well-posed. The dynamical problem may be solved more easily and takes the form
of a linear complementarity problem,

¢ with . cl c _
0<nflm >0, " Fd=_yr 4 hF+ WeWy'lny — hES— Liey +e9)]

(1.19)

{ Wcﬂ-c - 7]2_ = Fd Wc = ch - chWb_lebc



We can imagine to replace all the bars by cables - think to a catenary arch model of
Gaudi (see Figure 3) or to a fishing net. The dynamical discrete behaviour then derives
from the previous system with W.. equal to W and this system is similar to the one
issued from the modelling of a granular system with frictionless contact between grains
i.e. a granular type problem (1.3) (1.4).

Figure 3. Catenary arch model (Gaudi museum) and the Needle Tawer (tensegrity).

Tensegrity. Generally the stiffness of the cables is weaker than the one of the bars.
It is then convenient to consider extensible cables instead of inextensible ones. Such
a structure is a selfstressed tensegrity system if the set of compressed components is
discontinuous and the set of tensioned components is continuous (Motro (2003)). The
matrix K is then singular with a large kernel composed of the rigid modes of all the
bars. Since the global stiffness of the associated truss is invertible, the equilibrium of the
system may be characterized by a linear complementarity problem involving the tensions
in the cables and the corrected length variations defined in the Table 2,

0<A L7.>0 with A = ke — keB.K ™' Blk. (1.20)
— C c — .

{ AN — 7. = —k.B. K 1F? — TB
The one step dynamical discrete problem is still a LCP in considering the corrected
relative velocities A},

Wc = ch - chWbZIWbc

with  ~ A
Fl=F&+ f(e; +¢€2)

Vo, — 2T = [
{ Weme — AT = F (1.21)

0<Af Lm.>0.

10



2 Contact solvers and parallel treatment.

Some non smooth direct solvers exist, like the Lemke algorithm for LCP problems, but
such methods are devoted to small systems and have not been improved to be imple-
mented on multiprocessor computers. For large-scale problems the iterative algorithms
are often chosen; the efficiency is related to the mathematical properties of the problem
and to acceleration procedures as relaxation or preconditioners. The adaptation to a
parallel treatment is facilitated by the simple features of some elementary stages of the
algorithms : small elementary non smooth problems but large linear problems, matrix-
vector products. Indeed such stages are easy to treat on a multiprocessor computer.

2.1 Stationnary iterative methods and multithreading.

It can be taken advantage of the structure of the problem (1.3)(1.5) to extend a
stationnary iterative algorithm from a linear system to a non smooth one. Indeed the
nonsmoothness is restricted to a diagonal operator, while the coupling between the con-
tacts involves the non diagonal part of the W matrix. We focus our attention on the
Gauss-Seidel method.

Non Linear Gauss Seidel algorithm. The solution is made through a contact-by-
contact like non linear Gauss-Seidel method. So we consider the contact a and suppose
that the others are fixed. To reach the unknowns (v, 1, ), the iterative scheme is defined
as follows (iteration k+1) :

{ Waal‘]gj_l - V§+1 = ba - Eﬂ<a WQBI‘Z—HL - Eﬂ>a Waﬁrg = Ba

lawg [VEFL vF 1] = true

(2.1)

Such an algorithm appears as a generic solver to solve general systems modelling the
behaviour of a collection of particles or bodies interacting between them via various
laws. The method is robust enough to converge toward a solution even if the interaction
laws do not assure the uniqueness of a global solution. The indeterminacy may be also
due to the properties of the W matrix i.e. related to the associated linear problem, as in
some hyperstatic trusses of bars.

Implementation. The implementation is very simple if the W matrix is available with
a low cost in term of storage memory. Even if we have only to store the non zero block
matrices W, g, such a storage may be important for large problems. The algorithm is
schematized in the Table 3. This implementation is called SDL.

If the storage of the W,z matrices is too important, the right-hand side of the first
equation in (2.1) may be computed without storing the matrices W, previously. This
step depends of course on the problem type and how the matrix W is built. In a finite
element context with gathering of the elementary matrices, the splitting of W into W,z
is not so easy to perform. For granular type softwares (as LMGC90 Jean (1999)), in
which we have to pass often from the global level of the bodies to the local level of the
contacts, the procedure is natural. The Table 4 provides in this case the additional tasks

11



Table 3. Non Linear Gauss Seidel algorithm with storage of the matrices (SDL).

(0) Evaluating all the matrices W,z
k =k+1 (NLGS iteration)
a = a+ 1 (Contact index)
(a) Evaluating the right-hand side
Ba = bOé - Zﬂ<a Waﬁrg+l - Zﬁ>a Waﬁrg
(b) Solving the local problem (2.1),
Convergence test for k = 0...kqz

to insert in the scheme. From a mechanical point of view, in the right-hand side of the
first equation in (2.1), computed at the step (a), the terms involving the W,z matrices
represent the contribution of the stresses R; and R; applied to the two bodies concerned
with the « contact, indiced here by 7 and [. The matrix H,, passes from the local frame of
the « contact to the global one of the grains. The step (o) is reduced to the computation
of the only block diagonal matrices W, (step (0')). After solving the local contact
problem the stresses in the two bodies are updated at step (i¢). This implementation is
called ELG.

Table 4. Non Linear Gauss Seidel algorithm without storage of the matrices (ELG).

(0o') Evaluating the block diagonal matrices W,
[ k=Fk+ 1 (NLGS iteration)
[ o= a+1 (Contact index)
(7) Identifying the contacting bodies (o« = jl)
Computing an auxiliary value
bgr = HE[(M;) 'R} — (My) 'Ry
(a) Evaluating the right-hand side
b, = by — b2 + W,k
(b) Solving the local problem (2.1),
17) Updating the stresses on bodies 7 and [, R, an !
ii) Updating th bodies j and I, R; and R
R, 1% R. 1"
J — j k+1 _ Lk
I [Rl } - { R, ] T Ho(ra™ o)
Convergence test for kK = 0...k0z

Before analyzing the behaviour of the two implementations in a multiprocessor en-
vironment, it is instructive to study the additional cost of the second implementation
for a sequential treatment. We consider a depositing process of particles in a box under
gravity with an increasing number of particles. The relevant parameter is the average
number of contacts < n. > successively equal to 1 070, 4 100, 8 200, 17 100, 33 500,
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70 400 and 137 040. The Figure 4 shows the evolution of two ratios; < it > denotes the
average number of ELG iterations over the average number of SDL iterations; it under-
lines the eventual perturbations due to roundoff errors cumulated in extra computations.
T's is the average ELG iteration time over the average SDL iteration time; it gives the
additional cost in CPU time due to extra computations.

) average ELG iteration number average ELG iteration time
< it >= - - Ts = - - , (2.2)
average SDL iteration number average SDL iteration time

o \
=5 G-—a 1
0.8
o6
10° 10 10°
leg(nc)

Figure 4. Extra cost of ELG implementation with respect to SDL one in terms of
iteration number and time consuming.

Two types of computer are tested. In the Figure 4 le ratio < it > is almost constant
equal to 1 except for one simulation < n. >= 17 100 for which a crisis occurs at the
end of the process where the iteration number blows up with the SDL implementation.
But this situation is exceptional : a dynamical crisis may be delayed by the use of an
implementation or an other, but it is not erased as it can be viewed in the middle of the
process described in the Figure 5 in terms of iteration number. The CPU time extra cost
is 1.5 on average with a slight decrease with respect to the number of contacts (cf Figure
4).

Multithreading. The approach developed here want to be the simplest one in using
multiprocessor techniques available on shared memory computers. Indeed the distributed
memory architecture requires the splitting of the data into different memories in such
away this splitting reduces at best the informations to exchange between the processors
and theirs memories. Such a strategy is inherent to domain decomposition methods that
are presented in a next section and that impose important developments. Moreover the
solver cannot be separated from the storage of the whole problem.

Otherwise a Gauss-Seidel type algorithm is essentially sequential because it is a "line-
by-line” solver. From a mechanical point of view and using the terminology of gran-
ular problems, an impulsion in a contact between two bodies has to be updated in
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Figure 5. Iteration number versus time steps for the two implementations.

Table 5. Inserting OpenMP directives in the NLGS scheme (SDL).

(0) Evaluating all the matrices Wz
[k =Fk+1 (NLGS iteration)
1$OMP PARALLEL PRIVATE(...) SHARED(...) ...
ISOMP DO ...
a = a+ 1 (Contact index)
(a) Evaluating the right-hand side
by = b — Z,@<a Waﬁr§+l - Z,@>a Waﬁr’;
(b) Solving the local problem (2.1),
1ISOMP END DO
1ISOMP END PARALLEL
Convergence test for k = 0...knqz

the memory as soon as it has been computed. A shared memory architecture is then
more practical. We propose to parallelize the NLGS algorithm itself, independently of
any geometric or topologic information. Technically this is performed using OpenMP
(http:\\www.openmp.org, Gondet and Lavallee (2000)) directives. It presents major ad-
vantages: its use is transparent, and its implementation allows to keep the same source
code for parallel or scalar use.

The multithreading procedure consists in splitting the contact loop between P threads
which may be related to different processors. In the context of shared memory archi-
tecture, this splitting is easily performed via OpenMP directives, removing the control
of message passing for distributed memory architecture. The only difficulty consists in
identifying which variables must be shared between the processors or be private for each
one.

This strategy leads to a contact loop renumbering in such a way the sequence of the
iterates is modified even if a single processor is used (it is useful to debug for instance).
With a multiprocessor computer this renumbering is stochastic and can generate a race
condition when two processors have to update the stress applied to a same body (this
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concerns the ELG implementation). We evaluate the algorithmic performance for P
processors Pa(P) as the ratio of the average sequential iteration number < it >,., over
the average iteration number with P processors < it >p. The parallel performance is
given by a relative speed-up S(P), taking into account the algorithmic performance, using
the time consuming in the solver for a sequential running T, and for P processors T'(P),

Tseq

<t >
T(P)

Pa(P) = 5 S(P) = Pa(P) (2.3)

Numerical tests. In this part we discuss the results obtained on different simulations:
a free surface compaction and a biaxial test. We put poly-disperse disks under gravity
(for 95% average radius equal to 0.01m and 5% equal to 0.02m) in a box. For all disks,
the mass density is 580kg.m 3. After depositing, the velocity of the lateral walls is
governed by the following equation :

1 .
l0a| = @(l—cos(%)).

The process is performed using 10000 time steps (h = 6.1072 s). The compaction is
performed considering three situations.

The biaxial test consists in imposing a biaxial deformation to a square box: a constant
pressure is applied on the lateral wall since a constant velocity is prescribed above. The
process is carried out until 10% deformation. The samples have 1 016 and 10 251 disks.
In the Figure 6 the gain in terms of time using the SDL implementation decreases with
the number of processors for the two problems while the iteration number is weakly
perturbed.

25 T T | T | T |

o—o comp. s.l. 7
15" bi-axial

1
0 4 8 12 16

Figure 6. Evolution of the extra cost of the ELG implementation versus the number of
processors. In insert the evolution of the ratio of iteration number.

The parallel performances of the ELG implementation are better than these of the
SDL one (cf Figure 7). The speed-up may be greater than P, but it is an artefact,
called superlinear behaviour due to the management of the memory in multiprocessor
architecture.
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Figure 7. Speed-up for two samples and the two implementations performed on SGI
Origin 3800.

3D extension. Generally the solution of the local contact problem (2.1) requires an
iterative algorithm as the generalized Newton method because frictional contact law
involve non smooth projection operators on a non polyedral set C(prq,n),

Waarktl — vE+l —p,
Tan — Projr+ (Tan — PnVan) =0, (2.4)
Yot = PrOje(ura.,) (Yot — PtVa,t) = 0.

Such an iterative procedure may be avoided for granular system involving spheres because
the W,, matrix is then diagonal. A study with two samples (Figure 8) shows that
the ELG implementation is now more attractive than the SDL one and the advantage
increases with the number of processors. Such a behaviour is quite different than in a
2D modelling (cf Figure 4). Moreover the number of iterations is much more perturbed
by the implementation type. In the Figure 9 the speed-up is analyzed on a depositing
process under gravity with two samples (1 317 and 3 530 spheres). The multiprocessor
behaviour of the ELG implementation is still better than the SDL one, but the speed-up
moves away from the optimal curve when the processor number increases. Moreover the
algorithmic performance of the ELG implementation is strongly penalized with an extra
iteration number around 40% (cf insert in the Figure 9).
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Figure 8. Evolution of the extra cost of the ELG implementation versus the number of
processors. In insert the evolution of ration of iteration number (3D case).
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Figure 9. Speed-up for two samples and the two implementations performed on SGI
Origin 3800 (3D case).

2.2 Projected conjugate gradient algorithms.

Conjugate gradient methods have been used to solve frictionless contact problems in
the eighties (Dilintas et al. (1988); May (1986)) in the context of finite element modelling.
An extension for frictional contact is proposed by Raous and Barbarin (1992), but it is
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restricted to structural problems using the displacement field as the main unknown; more-
over a fixed point loop is introduced for satisfying the Coulomb law, and the friction law
is regularized to be inserted as a non quadratic but smooth additional term in the energy
to minimize. We propose in the following a single loop algorithm very close to a standard
conjugate gradient method with local adaptations consisting in iterate corrections and
gradient projections. This approach is motivated by granular type problems that may be
expressed as a box constrained quadratic problem (Dostal (1997)). Duality based methods
may also transform a structural problem in such a problem. The frictional laws lead to
quasi-optimisation formulations and require specific treatments developped in a second
section. In the following we consider a standard constrained quadratic problem,

r € argmin 1fW/Vf' —b.r. (2.5)
rec 2

It is interesting to specify the geometric features of the constraint set C according to
the kind of the problem. If the unilateral contact is only accounted for, the set C is
the non negative cone of R™¢ or the non negative orthant. If friction is only considered
(the contact is assumed to be maintained and the normal component of the contact
reaction known), the convex set is an hyper rectangle depending on a parameter: the
contact by contact Tresca threshold s,. For a Tresca like frictional contact problem in a
bidimensional modelling the set C is the cartesian product of infinite half-bands in R2.

C(s) = 1—1 Rt X [~54, 5a) (2.6)

For these three cases the set C is a polyhedral convex set, and even box type. For a three-
dimensional Tresca like frictional contact problem the set C is the cartesian product of
infinite half-cylinders in R? and it is no more polyhedral.

The classical Coulomb law links the friction threshold to the normal component of the
contact force (or impulsion) via a friction coefficient u. The coupled frictional contact
problem is not an optimization problem anymore. Formally it is always possible to
formulate a ”quasi”-optimization problem (in reference to more classical quasi-variational
inequalities which derive from it) for which the constraint set depends on the normal
components of the solution as a parameter; only the granular type frictional contact
problem is given,

1
r € argmin —T.Wr — b.r. (2.7)
reC(pury)

Frictionless case. The frictionless granular type problem (1.3) (1.4) is so reformulated
as a cone constrained quadratic problem,

1
r € argmin —t.Wr — b.r. (2.8)
i>0 2

We define a conjugate gradient type approach by conjugating the previous descent di-
rection pF~! with the current gradient u® after projecting them on the tangent cone
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Table 6. Conjugate Projected Gradient algorithm.

r’, u® and p° given
[ k—k+1
k k
Update t"+% =r* 4 o**1ph  with of 1 = 2P

Project iterate r*+1 = proje(rft2)

Compute residual u*tt = b — Wrkt+!
Precondition uF*t! — Puft!

Project gradient w*t' = proj(uFtl; Tp(rk+1))
Project gradient zFT' = proj(p”; Te(rF+1))

) ) . ) k1 k
| Conjugate pFtl = whtl 4 ghtlghtl  with ght! = 7wpk.WYE

Te(rF+1), and so defining a Conjugate Projected Gradient (CPG) algorithm (cf table 6).

The conjugating process is a priori fully efficient if the iterates stay during several
iterations in the same set of active constraints, that is to say on the same facet or edge
of the constraint set. An interesting case is the set of active constraints to which the
solution belongs; this set corresponds in contact mechanics to the set of the solution
statuses contact by contact. After this set is found the Gauss-Seidel algorithm is slow to
reach the solution; we can hope in this case a better behavior of the conjugate gradient
algorithm; numerical tests have to confirm or to invalidate this prediction. Such a strategy
was proposed by May (1986) and Dilintas et al. (1988) for frictionless contact problems,
but our formulation is more general and synthetic. Indeed Dilintas et al. (1988) fixes the
set of active constraints to perform the CPG algorithm until convergence before updating
the active constraints.

Such an algorithm does not benefit from a theoretical convergence result but is simple
to carry out and may be easily treated by parallel computing because the extra instruc-
tions in comparison with a conjugate gradient linear solver are projections (iterates and
gradients) only performed component-wise,

M = proje(rfte) <= for a=1,n, rft!= max(riJr%,O). (2.9)
Wt = proj(uft; Te(rf 1)) «—= (2.10)
kol REL — gkt (2.11)

87 [e3

r

for a=1,nq, if r"™ =0 then W™ = max(u*t0) else w
Frictional case. For a Coulomb frictional contact law, the Tresca like frictional contact
problem may be viewed as an intermediate problem in a numerical solution strategy.
A classical approach consists in carrying out a fixed point algorithm on the friction
threshold. But we formulate in the Table 7 directly a diagonalized version (with a
single loop) which may be justified in (Renouf and Alart (2005)). The modifications of
the previous algorithm concern the correction of the iterate and the projection of the
gradients. They are presented contact by contact (locally) and restricted to the two-
dimensional modelling.
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Table 7. Conjugate Projected Gradient Algorithm (CPG), frictional contact version.

Initialization of u® =b — Wr?, w® = u®, p° =u°
k=k+1
[ k+1 k4 ok +1pk with oft! u”.p”
r 2 =r « P wl fe% .
pk . Wpk

. . 1
Correction of the iterate : rFtz — pkFtl

uftl = b — Wr**!  (preconditioner: u**! = P(b — Wrl*+1))
Convergence criterion : if true then r®1mV = rpk+1
W = proj(ut; Ty (1541))
2" = proj(pF; Tors (rFH1))
k1 Pk

wiTE W
prtl = whtl o ghtlgh+l with gh+l — _ . 5
p".Wp

Projection of gradients:

. . k+1 . .
The correction of the iterate ro 2 is then carried out on a new local convex set,

1
related to a new local threshold st = maz(0, uriﬁf), if the iterate does not belong

to it. But when the iterate is inside C*¥*!, the situation is quite complicated. A strict

application of a projection procedure would lead to confirm rly% as 1 and so consider
a "stick” status for this contact, which is not optimal if the previous status was "slip”.
Indeed, assume that the solution status is "slip” (backward or forward), the iterate may
oscillate between 7slip” and "stick” because of the conical form of the Coulomb criterion.
For taking advantage of the conjugating process it is more convenient to keep the descent
directions in the same subspace corresponding to the ”slip” status. Consequently if the
current local descent direction p* has no tangential component, the local contact status,
which was then "slip” previously, has to be maintained even if the iterate is inside the
friction cone and inside its approximated cylindrical set C**!; such a situation is shown
with the case (b) in the Figure 10. The status provides the pertinent information on the
iterate at which the tangent cone T has to be evaluated.

Since the approximating convex set is well defined the projection of the gradients on
the tangent cone is standard. But it is instructive to illustrate these procedures according
to the previous contact status first stored in memory (cf the Figure 11).

In order to preserve a parallel treatment ”contact by contact” a simple diagonal pre-
conditioner is only considered. We refer the reader to the paper of Renouf and Alart
(2005) for details about pre-conditioning and convergence criteria.

Sequential numerical tests. In this section the CPG algorithm is essentially com-
pared with the NLGS method. All simulations are performed with the LMGC90 software
Dubois and Jean (2003) dedicated to multicontact problems, very useful for granular ma-
terials. The presentation is restricted to the analysis on a single step in a simulation of
a granular system. One step is isolated at the end of a depositing process of particles
in a box in the field of gravity. This amounts to determine the distribution of the con-
tact forces in a equilibrium state of a granular packing. As the number of contacts is
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Figure 10. Iterate correction (some situations according to the previous status).
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Figure 11. Gradient projection (some situations according to the previous status)
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an important parameter of the study several numerical samples are created in the same
box (1m x 1m) with different sizes of circular particles. Thus the capacity of the box
goes from 1 000 to 33 000 disks. Four algorithms are tested: Non Linear Gauss-Seidel
(NLGS), Projected Gradient without conjugating (PG), Conjugate Projected Gradient
(CPG), Preconditioned Conjugate Projected Gradient (PCPG). For frictionless contact
(Figure 12a) the better behavior of conjugate gradient methods is not surprising but has
to be confirmed for frictional contact problems with the adaptations proposed above.
The sample for the Figures 12 and 13 comprises 15 000 contacts. The conjugating process
reveals to be necessary for a good behavior of gradient method in comparison with the
Gauss-Seidel one. The NLGS solver provides a smooth convergence since the CPG meth-
ods converge faster but with large perturbations and a final drop. The large oscillations
with the gradient methods can be attributed to the corrections of the iterate specific to
the Coulomb frictional contact law as proved by the smoother curves obtained with a
zero friction coefficient (Figure 12).We verify in the Figure 13 the increase of the oscilla-
tions with a stronger friction coefficient equal to 0.4. In this example the pre-conditioner
improves significantly the algorithm. Two parameters are relevant to appreciate the per-
formance of the gradient methods: the size of the system characterized by the number
of contacts n. and the required accuracy e.

=0 p=0.2
T T T i i—! . ¥ J ¥
: 4
1o } 10 r 1
q
i o ]
— 10 i — P
4 o
2 10° i & 101’ -
& i g n:
10"k 1 10} S
S| oG —— | a; PG ———— _ NLGS
Y . N Nu—:-s__4 W0 L0 .. DO e & ]
gt — L 1 1 T | !0"?' 1 L I 1 1
0 400 800 1200 1800 2000 2400 0 B00 1200 1800 2400 3000 3800
eralions lerdtions

Figure 12. Convergence behavior of CPG/NLGS (n. = 15000) for two friction coethi-
cients.

We present in the Figure 14 the evolution of the gain of iterations from the NLGS to
the CPG or PCPG (6 =(number of NLGS iterations) / (number of (P)CPG iterations))
according to the number of contacts and for the three required accuracies. The gain is
at least equal to 2.98 (n. = 15 249 and € = 1.66 10~°) and may reach 9.3 for CPG (n. =
15 249 and € = 1.66 10~*) and even 9.47 for PCPG (n. = 28 014 and € = 1.66 10~°).
Due to the erratic convergence behavior underlined in the Figure 13, it is not simple to
conclude below 40 000 contacts. Beyond this value the gain seems to stabilize around 4
for the CPG algorithm and 7 for the preconditioned one. Finally the gain is all the more
important since the required accuracy is high.
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Figure 13. Convergence behavior of the fourth algorithms (n. = 15000) for p = 0.4.
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Figure 14. Gain of iterations, §, of the CPG and PCPG in regard of the NLGS.
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Multiprocessor numerical tests. Gradient algorithms are intrinsically parallel due
to the fact that they are essentially composed of matrix-vector products. The implemen-
tation of a parallel version is thus not a difficulty itself. Like for the NLGS algorithm
Renouf et al. (2004), we opt for a multithreading on shared memory computer to avoid
the message passing. The implementation is so easily performed via OpenMP directives
(see Gondet and Lavallee (2000)). Although our algorithm is intrinsically parallel, using
parallel treatment modifies slightly the solution on a whole process. On one time step
sequential and parallel versions give the same solution. But during a process we accumu-
late numerical errors which can have more visible consequences in a granular material,
and this for the reasons evoked previously. Recall that the infinity of solutions makes
the simulations very sensitive to the numerical error accumulations; these errors may be
due to the parallelization but also to the implementation procedure as proved above on
NLGS algorithms. So during the process, the evolution of the iterations number with
sequential and parallel treatment diverges after some time steps. We use once again the
relative speed-up, S(P), introduced previously. The Figure 15 represents the evolution
of S(P) for a simple shear test and free surface compaction.

=—s= Shear test
[| & Free surface compaction

Figure 15. Evolution of the relative Speed-Up. Simulations have been performed on a
SGI Origin 3800 using processors R14000/500 Mhz.

The evolution of speed-up is quite curious. This phenomenon is due to the increase
of usable size memory. For a sequential computation only 500 Mo are available. This
capacity is multiplied by P for a P-parallel simulation. So to the efficiency of parallel
computing, we add the benefit of a large memory stack, very useful for large simulation.
Consequently, the superlinear speed-up can be explained by this phenomenon until 4
processors. In other word the sequential computation is penalized by the large required
memory and should not be taken in reference to evaluate the multiprocessor perfor-
mances. This illustrates the difficulty to evaluate the parallel performances depending
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on many parameters related to the hardware architecture.

3D extensions. The extension to 3D problem is not an easy task due to the non
polyedral form of the friction constraints. The projection of the gradients is relevant for
polyedral constraints sets because the iterates stay on a facet of active constraints. A
first way consists in approximating the Coulomb cone by a pyramid and so recovering
a polyedral set (Klarbring (1986)). But a first study shows that the gains in terms
of iterations are lower for three-dimensionnal modellings than for bidimensionnal ones
(Renouf and Alart (2004)).

3 Domain decomposition approaches

Domain decomposition strategies have been developed in computational structural me-
chanics to deal with large-scale problems discretized by the finite element method. The
domain decomposition methods (DDM), or more generally the substructuring techniques,
are efficient methods because they allow to reduce memory storage and calculation time.
Moreover these methods take advantage of the new multi-processor generation of comput-
ers as they exhibit an intrinsec parallelism with a high granularity. The main component
of the domain decomposition algorithm is a numerical solver based on the solution of
local independent subproblems on subdomains. In addition, these methods are efficient
solvers in a classical monoprocessor environment as well. In a first time, we investigate
two domain decomposition approaches introduced for linear systems. In a second time,
we discuss two strategies to solve large-scale multicontact problems in using at best the
advantages of the two approaches. In the context of these lectures we give some elemental
examples developped with the MAPLE software to well understand the technical aspects
inherent to these approaches.

3.1 Primal / dual DDM formulations for linear problems.

This section consists of a "parallel” presentation of the primal and dual formulations
in a domain decomposition strategy for a better understanding of the insertion of the
contact treatment in these approaches. The features of the two methods modify not only
the solver algorithm but so the substructuring of the domain itself with respect to the
potential contact areas. We present an algebraic version of the DDM without introduc-
ing the underlying continuous problem (in elasticity for instance) even if some steps are
characterized in reference to continuous problems (Dirichlet or Neumann problem). The
primal approach refers to the BDD method (Balancing Domain Decomposition) inten-
sively studied by Le Tallec (1994); the dual approach refers to the FETT method (Finite
Element Tearing and Interconnecting) introduced by Farhat and Roux (1991).

Reference problem and substructuring. The reference problem is a linear system
of equations involving an unknown displacement vector w4, a square, symmetric positive
definite matrix K, arising from the finite element discretization of a linear, elliptic, self-
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adjoint boundary value problem on a domain {2, and a right-hand side force vector f,,
Kgug = fy- (3.1)

The global domain €2, which may be viewed as a set of nodes with degrees of freedom, is
split into n, non-overlapping subdomains Q(%), Q = Uiz, Q). The global interface I is
the assembly of the local interfaces defined from the boundaries of each subdomain,

r=r® with 1® =00"n | [(J 0¥ | -oq. (3.2)
s=1 p=1,p#s

The vectors u, and f, are split into the internal degrees of freedom u; and f; and the
interface ones ur and fr. For each subdomain a same splitting is introduced.

(s) (s)
ug:{ ZII‘ } ) fg:{ }CI{ } ) u(s):{ Z:(;S) } ) f(S):{ fZ(S) } (3.3)

The primal formulation consists in imposing the displacement continuity on the interface
by introducing the restriction operators from the global interface to the local ones,

R®) . 1—r®  RG). ur—>ul(f) = R®up. (3.4)

The reference problem (3.1) is then reformulated as follows,

(A3 K2 7

K9l 4 K-(;)R(S)up = fi(s) , s=1,n, 35
Z R(s)tK(S)u(5)+Z RO Rs)y, = fr=% R(s)tf(s) (3.5)
s bi Y s bb r r s b

The dual formulation consists in controlling the displacement continuity on the interface
by a signed Boolean matrix that extracts from a subdomain vectors u(®) its signed (£)
restriction (or trace) to the subdomain interface boundary, without reference to the
interface components of the global vector ur,

B®) . Q) 1) gl g s) :f:ul(f). (3.6)

The reference problem is then replaced by a constrained problem involving all the local
unknowns u(*),s = 1,n, by introducing a Lagrange multiplier A associated with the
displacement continuity on the interface,

(8),(8) — £(s) _ g(s)t -
{K u f BYIN s =1,n, (3.7)

ZS By (s) =0

Interface problems. To get the interface problem the primal approach uses a block
Gaussian elimination of the internal degrees of freedom, easily performed because the
matrix Ki(f) is generally invertible,

W = KON KO RO ur) | s =1,n,. (3.8)

(23
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The interface problem of the dual approach requires a dualization process to eliminate
the primal variable on each subdomain,

u = KO — BOY) | s =1,n,. (3.9)

If the matrix K) is not invertible a specific procedure is needful as developped later.
But we assume for the present that u(*) is well defined by the equation (3.9).

The primal interface problem involves the interface displacements as unknowns using
the global Schur matrix S as the assembly of local Schur matrices S,

Sur = b, with S= ZR(G”S@R@ (3.10)

SO =Kk - KKK 0= RO - K(Q)K(g) Y. (3a1)

S

The dual interface problem involves the interface multipliers as main unknowns and the
Fr matrix characteristic of the FETI method,

Fi\ = d, with Fy =Y BWK®OIBO —g=3"BOKE-1fe) (312

With the assumptions on the reference problem the two interface problems are equivalent
to the quadratic optimisation problems,

1
Min 5 vkSvr — bor. (3.13)
up
Min, 1 W Frp—d'p. (3.14)
~— 2
o

Local problems. To benefit from a multi-processor environment, the interface matri-
ces have not to be directly computed but the interface problems underline how to deal
with the connections between the parallel solution of subproblems performed on differ-
ent processors. The modern domain decomposition methods solve the interface problem
by an iterative preconditionned conjugate gradient type algorithm. Such an algorithm
requires as the main consuming part a matrix-vector product. For the primal inter-
face problem the matrix-vector product g := Sp is naturally split into ns matrix-vector
products glgs) = S(S)pl()s) with pl()s) :=RU)p

7 = K LA it 0 = KD 319

The computation of ggs) amounts to solve a Dirichlet problem on the subdomain (%)
with —R®)p as the Dirichlet condition,

(s) (s) 7(9)
K; K, 0
. 3.16
Ex I Aa (310
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For the dual interface problem the matrix-vector product g := Fyp is equivalent to solve
ns Neumann problems,

(5) = B(s)g(s) ) (s ~(s) { 0 }
g g PEN ii ib 9; _ _ ps)

g'® s)—1B\s s s ~(s - ~(s =B . 3.17
g( ) = K()-15( )tp [ Klgi) Kng) gl() ) p( ) p ( )

Coarse system for the dual approach. When the subdomain Q(*) has not sufficient
Dirichlet boundary conditions to prevent K (%) from being singular (Q() is called a float-
ing subdomain), the Neumann problem (3.17) has not a unique solution. For elasticity
problems on a single domain, such a situation appears when the decomposition of the
whole domain is fine enough to provide subdomains without clamp conditions. For multi-
body systems for which some bodies are equilibrated by contact with the neighbouring
bodies such a situation is inherent to the mechanical problem and generated some re-
searches in term of semi-coercive problems (Dostal et al. (1998)). The dualization process
(3.9) is completed in considering a generalized inverse K ($)* the rigid body modes of
Q) collected in the kernel N of K (%) and the set of amplitudes «(®) that specifies the
contribution of the null space to the solution u(*),

ul® = K(s)'*'(f(s) _ B(S)t)\) + NG ) (3.18)

The coefficients a® may be determined by requiring that each subdomain problem be
mathematically solvable - that is, each floating subdomain be self-equilibrated - which
can be written as,

N — BNy = 0. (3.19)

The interface problem (3.12) is then replaced by the following one,

[—123 _gl]{i}:{_de}» (3.20)

where F; and d are defined in (3.12) replacing K(*)~1 by K(*)* and

Gy = [BOND . BN
a=[aMr ato] (3.21)
e=[fOIND f(nﬁ)tN(nﬁ)]t

A constrained quadratic optimisation problem may be associated with this last problem
useful to deal later with contact constraints,

. 1
Min, 3 w Frp — d'p. (3.22)
Gt p—e=0

Since the constraints are linear, the Conjugate Projected Gradient algorithm, as formally
presented in Table 6 and reformulated in Table 8, requires only the projection of the
gradient defined by the following linear operator,

P:=1-G (GGG, (3.23)
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The initialisation of the algorithm uses the splitting of the multiplier A\, where \° is a
particular solution of G{t\ = e,

A=\ + P\ with \°=G(GLGr) e, (3.24)

This initialisation and the projection of the gradient at each iteration p := Pg requires
the solution of a FETI coarse problem concerning only the « coefficients,

p=Pg=g—G(G'G) 'Glg, where (G1Gr)a=p=Glg. (3.25)

Preconditioning. Even without preconditioning the interface systems have a better
condition number - for instance cond(S) = O (42 (1+ 4 ))) - than the reference problem,
cond (K,) = O (7)), where H is the subdomain size and h the mesh size. But the
conjugate gradient type algorithms are overall efficient when a preconditionner is added.

The Neumann-Neumann preconditioner for the Schur approach consists in approxi-
mating the inverse of the sum S = Y 7°, RO1SGIRE) by a weighted sum of the local
Schur inverse matrices S(5)=1,

§71 =Y RO -1 peI R, (3.26)

where D) is a diagonal weighting matrix verifying E:L ROIDEIRG) = In. For in-
stance if the domain is homogeneous D) may store in each of its entries the inverse
of multiplicity of the associated interface degree of freedom, that is, the inverse of the
number of subdomains to which the interface d.o.f. belongs. For heterogeneous problems
others choices are possible.

The preconditioner of the FETI method is built in a same way,

_ 0 0
Frl=D <Z B®) [ 0 A® ] B<S>t> D, (3.27)

bb

where the matrix Al()z) may be chosen equal to S’lgi) (Dirichlet preconditioner) or equal to
K élf) (lumped preconditioner).
The preconditioning step must have nice parallel properties for implementation. The

preconditioning step of the Schur method z := S~!g amounts to solve n, Neumann

problems with f]lgs) = D) R®) g as the Neumann condition,

© @ 1 2@ 0
2(8) . a(s)—14(s) K" Ky, Z _ { } _ A(s)
2 .= 8 J & ; b . =< (s =g\, (3.28)
’ ’ [ Klgi) Klgb) Zzg ) gé :

The preconditioning step of the FETI method z := Fl_lg is split into ns matrix-vector
products ébs) = Agz)gés) with ¢ := B®)*Dg. With the lumped preconditioner Al()z) is
simply replaced by K és). With the Dirichlet preconditioner, we have,

2= KWg) - K92 with 2 = K TKY 5. (3.29)

3
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The computation of ZZ-(S) amounts to solve a Dirichlet problem on the subdomain (%)

with —g,ﬁs) = —B®)!Dg as the Dirichlet condition,

(s) (s) 5(s)
K Ky aoL_fo (3.30)
(s) (s) - (s) 0 (- :
Ky Ky, 9
Coarse system for the Schur approach. Since the Neumann problem of the Schur
preconditioner is not always well-posed, this preconditioner is not optimal. The condition

number is then: cond (S715) = O (% (1 + [log (%)]2>> This preconditioner is not
optimal as it does not scale well with the number of subdomains. To improve it, Mandel

(1993) proposes a strategy, called the balancing method, similar to the one of the FETI
standard iteration. The preconditioning procedure with coarse variables may be written,

z:=8"'g=>Y ROIDOSIITDEORE G 4 Gy =2+ Gy, (3.31)
S

where S)* is a generalized inverse of S*) and G contains the rigid body modes of all
the floating subdomains and  the set of amplitudes of them,

G = [R(l)tD(l)N(l) R(ns)tD(ns)N(ns)]
t .
v = [7(1)t W(ns)t]

The determination of vy requires the solution of a global coarse system in order to improve
the condition number of the conjugate gradient algorithm. This system is defined by the
following optimization problem that consists in minimizing a specific norm of the gap
between the inverse of the Schur matrix S~! and its preconditioning one S,

(3.32)

Min ¢'(S™! -8~ 1HS(§71 — 5 1)g. (3.33)
Y

Using the equality Gtg = 0, « is solution of the coarse problem,
(G'SG)y = —G'Sz. (3.34)

The preconditioning procedure may be summarized in the following formula replacing
(3.26),

ST =(I-G(G'SG)'G'S) Y RO DT DI RE). (3.35)

The implementation requires two steps with a parallel treatment. The first one consists
in computing Z using Neumann problems subdomain by subdomain (with regularizing
for floating ones) (3.28). The second step is the solution of the coarse problem; but
the preparation of the coarse matrix G*SG, and specially the product SG is performed
by solving Dirichlet problems with G(*) as the Dirichlet condition (see 3.15). With the
balancing method, the condition number is now asymptotically optimal (cond (S™15) =
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o (1 + (log %)2)) . that is, the preconditioner is then insensitive to the number of

subdomains.

This "parallel” presentation of the primal and dual formulations shows that the two
approaches comprise the same basic ingredients: Dirichlet and Neumann local problems
and a global coarse problem. These ingredients are not located at the same step of a con-
jugate gradient type algorithm. Finally the scalability of the two methods is assured by
the asymptotical behaviour of the condition number. The insertion of contact conditions
in the reference problem introduces a non linear (and even non smooth) component and
we have to define a strategy to combine a non linear solver with a domain decomposition
method. Two extreme approaches may be developed with different features concerning
at once the substructuring procedure and the adaptations of the algorithm.

3.2 Newton-Schur method for contact problems.

The Newton-Schur approach is a general combination of the Newton method as the
non linear solver and the primal domain decomposition method as a linear solver. Such
a strategy has been used by De Roeck and Le Tallec (1992) for large strain elasticity
problems. The Generalized Newton Method coupled with an augmented lagrangean
formulation of frictional contact problems (Alart and Curnier (1991)) may be coupled
with the Schur method, but this imposes some important adaptations presented below.

Substructuring. The main feature of this non-linear domain decomposition strategy
consists in distinguishing the physical contact interfaces from the numerical subdomain
interfaces. Contrary to current approaches using dual or mixed methods (Ladeveze et al.
(2002), Dostal et al. (1998), Dostal et al. (2000), Schoberl (2001)), we suggest to treat the
physical contact interfaces inside the subdomains. Danek et al. (2005) develop a similar
approach. This choice is flexible enough to deal with the diffuse non smoothness of the
systems presented in the first section, because the decomposition of the mechanical system
is not forced to respect the geometry of its components. It makes it possible to balance
the size of the subdomains and get an optimal decomposition for parallel efficiency. The
Figure 16 gives such a decomposition of a collection of deformable grains. This example is
not the most relevant because the two types of interfaces intersect themselves, leading to
specific treatment at the inersections. The Figure 17 provides a suitable substructuring
of a cellular structure for which each cell is a subdomain, the (self)contact interfaces are
the internal wall of the cells and numerical interfaces are in the middle of the walls.

Extra rigid body modes. Since the contact interfaces are inside the subdomains
eventual extra rigid body modes may occur when the contact interfaces go through the
subdomain. But the number of extra rigid body modes depends on the global contact
status on these interfaces associated with the current Newton iteration. The rigid body
modes are automatically detected by the local solver but it is interesting to foresee the
maximal number. In the Figure 19 for a given global contact status given in the Figure
18, the extra rigid body modes are displayed taking into account some motions of grains,
parts of grains or aggregates of parts of grains. The given status involves slip and stick
statuses because friction is accounted for even if one needs further adaptations presented
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Figure 16. Contact (red) and numerical (black) interfaces for a collection of deformable
grains.

Figure 17. Contact (red) and numerical (black) interfaces for a cellular structure.
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below.

Figure 18. A global contact status on a subdomain: G for gap, + and - for forward slip
and backward slip.

H B 51 87

Figure 19. Extra rigid body motions for the global contact status of the previous figure.

A simple frictionless example with MAPLE. We develop in annex a simple fric-
tionless example using the Newton-Schur method. But the interface linear Schur system
is solved directly without carrying on a conjugate gradient algorithm and a parallel treat-
ment. The reference problem is displayed in the Figure 20 where some degrees of freedom
are underlined: squares for contact nodes, stars for multipliers. A decomposition in three
subdomain is proposed; only the second subdomain is concerned with the contact. Some
degrees of freedom are mentioned: squares for internal contact nodes, stars for multipliers
and black circles for the nodes of the numerical interfaces.

Adaptations for frictional contact. The generalized Newton method coupled with
an augmented Lagrangean formulation leads to non symmetric matrices (Alart and
Curnier (1991)). The first adaptation consists in replacing the conjugate gradient algo-
rithm by a GMRes algorithm (Saad and Schultz (1986)) that needs a single matrix-vector
product as the conjugate gradient and then has the same parallel properties than it. The
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Figure 20. Frictionless contact reference problem and substructuring.

numerical experiments reported in the Figure 21 show that the behaviour of the iterative
Schur complement solver is strongly perturbed when friction occurs, that is, when non
symmetry is introduced in the tangent matrices. Indeed the minimization problem (3.33)
is not well defined for non symmetric problems. The first idea is to replace the matrix
S by the symmetrized matrix S* (5% = (S + S%)/2). But a better choice is to use a
symmetric matrix which has a mechanical meaning : the Schur complement matrix asso-
ciated with a frictionless contact status by imposing p equal to zero; this preconditioner
is called specific.

In order to underline the influence of the non symmetry on the algorithm, we present
in the Figure 21 the average number of GMRes iterations with respect to the friction
coefficient varying from 0 to 2 for an example of a rolling shutter (for details refer to Ach
and Alart (2001), Barboteu et al. (2001)) composed with 16 slats and 15x2 subdomains
(26 floating subdomains). If the friction coefficient is zero the problem is symmetric
and the different methods are equivalent and efficient. As soon as we introduce a small
friction coefficient, the number of GMRes iterations increases quickly because nearly all
contact elements have a slip status which introduce the non symmetry in the matrices.
For 1 equal to 0.2 we have the higher ratio of slip status. For p larger than 0.2 the
ratio of sticking status increases and the non symmetry decreases. For p greater than
2, we have only stick status and we recover a symmetric problem. The algorithm with
the two methods behaves like the evolution of the ratio of slip status, even if the friction
coefficient is weak. Notice that the specific balancing method is less sensitive to the non
symmetry : it requires twice less iterations than the standard one.

In order to avoid such a behaviour, a general non symmetric preconditioner has been
proposed by Alart et al. (2000b) and Alart et al. (2000a). The presentation is quite tech-
nical and uses the concept of additive Schwarz method. In fact it consists in introducing

the dual rigid modes as the kernel Nis) of the transpose matrix Kt of K() to define
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Figure 21. Influence of the friction on the behaviour of some preconditioned GMRes
algorithms (standard A, specific O, non symmetric Q).

the matrix G, replacing G,
G, = |RVIpOND - Rra)t pine) Nma)) (3.36)

But the regularizing of the local Neumann problem is performed using the standard
rigid modes previously stored in the kernel N(*) of K(): for instance the regularized
matrix of the Neumann problem may be defined by K&+ = (K() 4 NG N8 =1 The
preconditioner may be then summarized in the following formula,

S = (I - G.(GLSG.)T'GLS) Y RWIDE ST DI R, (3.37)

With this preconditioner we recover a behaviour of the GMRes algorithm independant
of the friction coefficient as underlined in the Figure 21.

In a multiprocessor environment it is essential to analyze the scalability properties of
the different Neumann-Neumann preconditioners, that is the convergence is not damaged
by the number of subdomains. For the rolling shutters (Figure 22), we can verify that for
a problem without friction (u = 0, symmetric problem), the 2-level Neumann-Neumann
preconditioner has the expected behaviour (curve *). But with friction, the standard
procedure leads to a high increase of the number of iterations (curve A) with the num-
ber of subdomains. The results are even worse than without coarse solver (curve OJ).
The specific preconditioner (curve o) improves the convergence but is not optimal. On
the other hand, the 2-level non symmetric Neumann-Neumann preconditioner (curve ¢)
leads to a full recovery of the numerical scalability properties obtained with a symmetric
problem.

For the collection of deformable grains (Figure 23) the good behaviour of the non sym-
metric preconditionner is confirmed when the number of floating subdomains increases.
This non symmetric procedure is more efficient than the standard and specific balancing
method specially in presence of shear. Indeed, the friction (and then the non symmetry)
plays a more important role in shear than in compression (Figure 23).
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Figure 22. Numerical scalability of the preconditioners (rolling shutters).

To conclude this section subsequent works have shown the efficiency of the approach to
tackle more complex problems. Alart et al. (2004) have coupled an arc-length technique
with the Newton-Schur method to deal with large deformations in finite elasticity and
multiple selfcontact in cellular media. Barboteu (2005) proposes an extension of the
previous preconditioner to elastodynamical finite deformations.
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Figure 23. Numerical scalability of the preconditioners (deformable grains).
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3.3 FETI-C method for contact problems.

The dual approach of the FETT method is based on Lagrange multipliers for enforcing
the continuity conditions of the displacements on the interfaces. It is then natural to try
to extend the FETT method to contact conditions on these interfaces. We present here
the method detailled in Dureisseix and Farhat (2001) because the strategy consists in
defining a single loop algorithm - called “one-shot iterative procedure”. It is quite different
from the Newton-Schur algorithm presented previously and from the other approaches
based on the FETI method. For instance Dostal et al. (1998) and Dostal et al. (2000)
propose two levels of iterations, the first one aimed at satisfying the contact conditions,
and the second one at at satisfying the equilibrium equations. In the outer-iterations,
an active zone of contact is updated by a mathematical programming technique. In the
inner-iterations, a minimal subregion of the previously predicted area of contact is frozen
and a state of equilibrium is sought after.

We try to compare the algorithm proposed by Dureisseix and Farhat (2001) with
the projected conjugate gradient of the section 2 even if the context is quite different
(structural versus granular problems).

Substructuring. The first consequence of the choice of a dual method concerns the
substructuring. The number of subdomains must be larger than the given number of
(elastic) bodies and foundations - that is, each body itself may be decomposed into
several subdomains. In other words the minimal number of subdomains is imposed
by the number of bodies. This leads to distinguish between two types of subdomain
interfaces: the perfect (or numerical) interfaces, and potential contact interfaces. For a
given subdomain Q%) the associated interface is splitted into a perfect one and a contact
one,

e =1% urd. (3.38)

For each subdomain the trace operator B(*) must be replaced by a new operator still
noted B defined as follows,

+ul®  if MeT

B® Q@1 BE Lyl 8 0t e e pl) (3.39)
0 if M¢T®)

where M is a generic node of Q(*) and ng\f[) an oriented normal to the interface at M - at

the facing node M’ on the neighbouring subdomain ¢ the normal is ns\?, = —ng\z). Note

that B®) is no more a Boolean matrix, except when the contact interface is parallel to
the reference axis. This operator may be split according to the two types of interface,
BG) . Q(S)—Tgf) restricted to perfect interfaces, B() : Q(S)—TS) restricted to contact in-
terfaces. The crosspoints between four subdomains (in 2D discretisation) require specific
treatments. For perfect interfaces we need usually six Lagrange multipliers to connect
all the bodies. For four contact interfaces only four Lagrange multipliers have only to be
introduced. (cf. Figure 24).
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Figure 24. Corner Lagrange multipliers: perfect interfaces (left), contact interfaces
(right), Dureisseix and Farhat (2001) .

Frictionless interface problems. The constrained problem replacing the system (3.7)
involves both equality and inequality constraints,

KEu®) = f&) — BO - BO, s = 1,n,
(3.40)
C A0, ALY BOU® = g

For the sake of simplicity no initial clearance is taken into account in this formulation;
the Lagrange multipliers \ are interpreted as contact forces restricted to its normal
components. The constrained quadratic dual problem extending (3.14) associated with
this formulation extending is then,

1 .. . 1 ., - N
Mi — pEp—dp+ = ptF - d. 3.41
in, 5 BF = d it g f = d (3.41)
i, =0
In concatenating all the multipliers in a single vector, p := [jit, 4']¢, the minimisation
problem is formally simplified,
Min, 1 W Frpn—dp (3.42)
B T . .
n>0

The FETI-C non linear solution algorithm. Although they use a preconditioned
conjugate projected gradient algorithm for solving the FETI problem with equality con-
straints, Dureisseix and Farhat (2001) introduce the treatment of the inequality con-
straints, not with the projection on constraints set or on its tangent cone, but with the
concept of active set. This leads to a detailled but complex presentation. We follow here
this presentation but we try to compare it with the algorithm presented in the Table 6,
to identify the common steps and the differences. Dureisseix and Farhat (2001) define
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the set of active contact interfaces Lo depending on the current value of the multiplier
Ay at node M,

M € Te if Au > 0. (3.43)
An "active” trace operator B() is then defined depending on the current 5\,

+uls) if MeT®

B - gy i wer .40
0 if MeQ®ury /)

It follows the different modified "active” definitions,

G = [fg(l)N(l) B(nsw(ns)} (3.45)
P =1 — é[(étléj)_létl
and curiously,
Fr =Y BOWEKE®TBHL (3.46)

S

Dureisseix and Farhat (2001) note that the operator F7 is unsymmetric, but it follows
from the previous definitions that the set of admissible Lagrange multipliers on which F7
operates is such that,

B\ = B!\ (3.47)

The resulting FETI-C solver for frictionless contact problems is summarized in the Table
8. It is interesting to compare this algorithm with the one of the Table 6. The projection
procedure and the "primal planing” (so called in Avery et al. (2004)) correspond to the
projection of the residual on the tangent cone to the constraints set. The re-projection
procedure does not exist in the Table 6 because the projection of the gradient occurs
after the preconditioning. On the other hand, in the table 6, the projection operates on
the residual and on the previous descent direction, since the projection concerns only
the residual in the Table 8. Conjugating of the gradients and updating of the iterate
are similar. The ”dual planing” procedure corresponds to the projection of the iterate on
the constraints set, but this is an iterative procedure to enforce the self-equilibrium of
each subdomain simultaneously with the projection that may modify the coarse problem.
This procedure is described in the Table 9.

Note that the step 2.a of the planing procedure incorporates a coarse problem modifying
the active contact zone. Experience shows that in general, the planing procedure con-
verges after a small number of subiterations. The complexity of this algorithm is due to
the choice of a single loop algorithm to deal with the inequality constraints issued from
contact and with the equality constraints deriving from the floating subdomains. The
approach developed above has been recently extended to frictional contact.
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Table 8. FETI-C algorithm.

¢, =Tc
A0 = G](GtIsz_le

Initialize ¢ A° = Planing(\°)

P = P(Tg)
10 =d— F})\°
[ Iterate k=1,2,... until convergence
Project wk=1/2 = plk=1t k-1

k—1/2
; . —1 | w on I'p
Primal planing w 17— { <whV2>. on f‘]év
Precondition zF 1 = l*z‘flwk_1

Re — project yF—1 = ph—1) k=1

Conjugate p* =y*=1 + (FpF=—1 with ¢F = Zi:lzii
Update NF=1/2 = Ne=1 pfpk with nF = %

Dual planing N\ = Planing(\*~1/?)

rk=1 — nkFI’“pkz’f no status change
d— FIkH/\k if status change

Compute residual ™% = {

Table 9. Dual planing procedure.

Iterate n=1,2,... until convergence

l.a Project: N« { i A s 00: II:;

Lb Active contact : determine T from X\ and updateG"

Le Test equilibrium : if G3¥TA™ =e end

2.a Self — equilibrium : A" «— (I — GHGPTGH) LGN + GH(GRT G e
2.b Test positiveness: if IM € I'c N}y, <0 goto l.a
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4 Multiscale approach for diffuse non smoothness

Domain decomposition methods, as presented above, provide a general framework to the
multiscale numerical analysis of structures. Indeed, substructuring appears as a naturally
multiscale numerical strategy where each substructure is related to an intermediate scale
between the basic components inside the subdomains and the global structure. Moreover
multiscale approaches can enrich the substructuring in incorporating either a micro-macro
splitting of some variables (Ladeveze and Dureisseix (2000)) or even an homogenization
procedure (Ladeveze et al. (2001)). By this way the domain decomposition approaches are
not only efficient numerical methods to solve large-scale problems but may also provide a
numerically homogenized behavior of each substructure, which is useful from a mechanical
point of view. We present in this section a first attempt to extend the LATIN (Large Time
Increment) Ladeveze and Dureisseix (2000) micro-macro approach, initially developed
for continuous media (Ladeveéze and Dureisseix (2000)), to strongly nonsmooth discrete
systems. This strategy is applied to the tensegrity structure presented in section 1 whose
the equilibrium is characterized by the LCP expressed in (1.20). For details refer to
Nineb et al. (2007).

4.1 Substructuring strategy

The first step of the problem reformulation consists of a decomposition of the structure
into substructures and interfaces (see Figure 25). Each of these components possesses its
own variables and equations. We can proceed in two ways: either nodes are distributed
among substructures, and interfaces are links joining a substructure to another, or links
are distributed among substructures, and interfaces are nodes joining a substructure to
another. Only this last case is considered herein (see Figure 25).

\/
_i l‘t L‘; .l‘,
Y%y,

%
."_‘I"‘l
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Perfect discrete

Substructure .
interface

Figure 25. Discrete interface (left) and substructuring of a tensegrity grid (right) with
16 subdomains.
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Table 10. Substructuring notations

Fg, FZ || Internal and external nodal forces to substructure F

Ug, U}dj Internal and external nodal displacements to substructure F
Tee Interface between substructures E and E’

r Global interface

Cgr Boolean mapping matrix of substructure boundary dofs

Fer Forces of interface I' acting on substructure F

Fgg Forces of interface I'p g/ acting on substructure £

Ugg Displacement of I' g nodes connected to F

Ugr Displacement on substructure E boundary

A substructure E is submitted to the action of its neighbouring interfaces I' pg/: forces
Frr and displacements Ugpp/. Extended to all the interfaces local to the substructure
E, the assembling of the previous fields are denoted with Fgr and Ugr. An interface
I'g g transfers the forces Fpps and the displacements Ugp on each of its sides.

The solution s = |Jz sg with sg = (eg,tg,Uge, Fgrs) of the reference problem
must satisfy to:

e the balance equation (local version of (1.7):

—Fp+ Ff 4+ ChrFer =0 (4.1)
where Fp = Bh7p;
e the strain admissibility:
Ugpr = CerUg
Cp = BEUE (4.2)
Ug Ir,=Ug

e the constitutive relations (1.10), (1.14);
e the interface behavior:
force balance:
Fgp +Fpp=0 (43)

continuity of displacements:
Ugpp =Upg (4.4)

The interfaces exhibit a perfect behavior because of the continuity of the displacements
and because the nonsmoothness is localized within the substructures. This modelling
choice is identical to the one of Barboteu et al. (2001) and somehow the dual of the one
proposed by Ladeveze et al. (2002) where the nonlinearity (contact in crack) is isolated
in the interfaces. This substructuring strategy can be easily extended to the dynamical
behaviour and even to granular materials where the nodes are the mass centers of the
grains and the links are the punctual contacts. But some relations have to be modified
according to a velocity—impulse formulation.

42



4.2 A micro-macro LATIN method

In order to take into account the multiscale aspect of the behavior of a large scale
tensegrity structure, especially when it is designed as an assembly of identical modules, a
suited numerical strategy has to be settled. A multilevel domain decomposition approach
can tackle this task, when the so-called coarse space is related to an homogenized model
of the structure as considered by Farhat and Roux (1991). We choose herein to follow the
approach proposed by Ladeveze and Dureisseix (2000) and completed by Ladeveze et al.
(2001) that was designed for continuum media, and to extend it to discrete systems.

Table 11. Micro-macro notations

m, M || Denote micro and Macro subscripts

l Search direction parameter per substructure

d Search direction parameter per interface

fEE Macro generalized forces of interface I'pps acting on substructure FE
fET Macro generalized forces of interface I' acting on substructure £
UEE Macro generalized displacements of I' pgr nodes connected to E
UET Macro generalized displacements on substructure £ boundary

RY. .. || Projector onto generalized macro space

Micro-macro description. Once a substructuring has been performed, the first step
is to describe the media from a microscopic and a macroscopic point of view. These
descriptions arise from the mechanical fields lying on each interface I' pg/ independently.
Both displacement Ug g and forces Fpps are split into two parts: the macro part, denoted
with a superscript M, and the additional micro part, denoted with a superscript m.
Therefore, one gets

Fpp = FM, + F, and  Upp = UM, + Uy, (4.5)

The micro and macro spaces must be uniquely defined: they should be "orthogonal” in a
way an orthogonal projector can be used on each subspace. The energy splitting is used
in such a way:

Z(FEE’)t Ugpp = Z(Fgm)t U + (FEp)' Ubp (4.6)
EE' EE'

Superscript ¢ denotes the Lo transposition: this energy measure is specific to discrete
systems.

Macro representation. The macro part lies in a small sized subspace, therefore the
macro fields are described with few parameters; a basis of macro fields can be chosen as:
FM., = Rpp fer where fpp stores the macro parameters for forces and Rpps is the
set of basis vectors. For sake of simplicity, the corresponding macro parameters for the
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displacement field, up g is chosen such that the same vector basis holds:
U]{;\‘/[E’ = REE’UEE’ and Fg[E/ = REE/fEE/ (47)

The macro parameters can be selected depending on the problem one has to model;
herein, we choose the generalized averages of fields Fgp and Uggs on I'ggs, up to the
order 1. For 3D analysis, we get:

e for fpp/, the 3 resultants of forces, the 3 moments, the 2 tensions and the shear in

the interface plane, and the dilatation in the interface plane;

e for upp/, the corresponding generalized averages are the 3 mean translations, the

3 mean rotations, the 2 stretchings and the ‘shearing’ in the interface plane, and
the expansion in the interface plane.
Therefore, 10 parameters are needed per interface for generalized macro force fields, as
well as for the generalized macro displacement fields. As an additional simplification, the
basis Rgg/ is orthonormalized:
R%E’ Rpp =1

to get
M N\t M t t t
(Fge)" Ugp = fep Rpp Repuse = fppuse

The consequences when using (4.6) are the expressions of the orthogonal projector
onto the macro space:

fEE’ = RtEE/ FEE/ and UEE — RtEE/ UEE/ (48)

and the orthogonality: RYp, Uply =0 = Ryp Fib,.

Figure 26. LATIN method principles

LATIN method. The LATIN method, introduced by Ladeveze (1999), is used as a
solver to find the solution of the previous problem. Briefly, it consists of several steps:
e the equations are split into two sets: (i) the admissible set Agq with balance equa-
tions per substructure (4.1) and strain compatibility per substructure (4.2), and
(ii) the constitutive relation set I' with link behaviors (4.3) and interface behavior
(4.4). In the present case, I' is not differentiable due to the diffuse non smoothness
of cable behavior;
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e an iterative procedure producing alternatively a solution in Ag4, and a solution in
T, using search directions E4+ and E—, see Figure 26. The solution of the problem,
Sex = {(eg,78) ; (Uggr, Fpr/)} is the intersection of A4 and T.

Building § once s is known, is the so-called local stage; it involves positive scalar
search direction parameters d and [:

(e —TE) +1(ég —er) =0 (4.9)

and . .
(FEE/—FEE/)—d(UEE/—UEE/)ZO (4.10)

Building s once § is known, is the so-called linear stage: it involves the same
parameters as soon as the directions E+ and E— are conjugate: (1p —7g) —l(eg —
éE) =0 and (FEE/ — FEE') + d(UEE/ — UEE’) =0.

Such a choice for the search directions ensures the convergence of the method, see
Ladeveze (1999).

4.3 Local stage — local non smooth solvers

As previously mentioned, this stage consists in finding § once s is known from the
previous stage. It leads to local and linear problems on (perfect) interfaces I'gg/, and
diffuse non smooth local linear complementary problems (LCP) on substructures Q.

The perfect behavior of the interface I'p g/, coupled with search directions using the
parameters d,,, and djs, leads to an explicit expression (a similar expression is obtained
for the macro part),

A A 1 1
U'p = Up = 3l(Ugp + Uglp) = 7 (FEp + Fiip)]
. R 1
Fpip = —Fgp = 5[(F179n/E = Fgp) —d"(Ugip — Ugp)]
For substructure Qp, using a scalar search direction parameter [, the problem is

independent for cables and bars. For bars, (é,,75) must verify the constitutive relation
(1.10) and the search direction (4.9). One gets:

ép = (ky + 1) t(lep + 7 — kbeg)
T, = k‘b(éb + 62)

For cables, (é.,7.) must verify the constitutive relation (1.14). The resulting problem
is a LCP once the change of variables is used, to get:
Ae = (k714177 = X
0<7.L A >0

where A = —[[7'7, 4 e. + k;'t°] is known at this stage. Its solution is
XC =< X >4 ~
Fo=—(k;t+ 17 <A >_
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Note that this is the simplest choice for the local stage. Subsequent work will deal
with a version where admissibility per substructure is enforced at the local stage, leading
to a LCP coupling bars and cables, and for which there exists efficient solvers. Such a
version is under development, in the same spirit as to improve direct linear global solvers
with domain decomposition techniques by maintaining them for the smaller problems
of independent substructures, and coupling them with iterative procedures on interface
only, see Le Tallec (1994) and Farhat and Roux (1991). Indeed, this would replace global
LCP solvers on the whole problem with local LCP solvers per substructure, as the one
used in Section 2.

4.4 Linear stage — macro homogenized problem

This stage is similar to the one described in Ladeveze et al. (2001). Once § is known
from the previous stage, the linear stage consists in finding s that satisfies the balance
equations and strain admissibility per substructure (4.1), (4.2). Considering the macro
part, an additional constraint is to enforce macro continuity of the fields at interfaces:
with a force-oriented approach, this constraint is to prescribe, on each interface I'gp,

FYo 4+ FM . =0 (4.11)

To avoid an overconstrained problem, the search direction requires a weak formulation.
The presentation of this part is quite technical and uses the same ingredients than the
approach developed for heterogenous structures (see Ladeveze et al. (2001)), because
the interfaces are also perfect without perturbation due to the non smooth relations
isolated inside the subdomains. Nevertheless, due to the discrete nature of the problem,
an algebraic formulation needs to be derived, that is detailled by Nineb et al. (2007).
This leads to a macro homogenized problem enriching the coarse problem of the domain
decomposition methods according to the macro representation introduced in Section 4.2.

4.5 A first test on a tensegrity system

Problem settings. We consider as a test case a tensegrity grid obtained with the
duplication of a self stressed elementary module Quirant et al. (2003). Such a module is
composed of 8 nodes, 12 cables and 4 bars, see Figure 27 on the left. The characteristic
parameters of this module are given in Table 12. Prestressing is such that this module is
selfstressed, i.e. Bt = 0. Therefore, any assembly of such modules will be self balanced
automatically. The tested tensegrity grid possesses 16 x 16 = 256 modules, it is split into
4 x 4 = 16 substructures (each containing 16 modules) and 24 strong interfaces, see
Figure 25.

As a comparison point of view, a similar substructuring of a continuum media plate
would lead to 16 substructures and only 24 interfaces. As boundary conditions, the lower
nodes on two opposite edges are clamped, and a uniform vertical force field F¢ = 40 N
is prescribed on every node.

Choice of search directions. There are two parameters for this approach that define
the search directions: d™ and [. For the parameter [, we used the simplest choice: [
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Table 12. Characteristic parameters

H=05m Module height

L=1m Module length
S.=0.510"% m? Cable section

E.= 10! Pa Cable Young modulus
Sy =2.8107% m? Bar section

E, =2 10" Pa Bar Young modulus

t9 = 2000 N Lower cables prestress
9 = /2 x 2000 N Upper cables prestress
0 = \ﬂl + 4%2) x 2000 N Bracing cables prestress
t9=—/(5+ 4%;) x 2000 N || Bar prestress

Figure 27. Used modules (initial module on the left and modified module on the right)

is the stiffness of the links of the underlying networks of cables and bars, i.e. | = k.
for the cables, and [ = k; for the bars. Concerning the parameter d™ at the interfaces,
a global stiffness of a module has been computed, and the corresponding values of an
equivalent stiffness arising from the interfaces alone has been chosen. This procedure has
the advantage of being automatic, though the obtained value is not exactly the optimal
one. In the present case, it leads to d™ = 3.92 10° N/m. For all of the subsequent
simulations, these values have been selected once for all, and not been changed in all of
the following.

Numerical results. For the considered test case, the loading level is close to, but less
than its ultimate limit value for which there is a lack of stability of the whole structure
(similar to global buckling in continuum media and corresponding herein to mechanism
occurring).

We consider several loading amplitudes aF; with 0 < o < 1. For such values of «, the
simulation is performed in one step from the reference configuration 2y to the current
one (2, without time stepping. This can be done for the considered problem because it
is not an evolution-type one: the final solution does not depend on the loading path.
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Figure 28 shows the values of 7. on each of the 3072 cables, for the different values
of «, sorted by increasing values. For a = 0, one recovers the values 70 in the cables (cf
Table 12). Obviously, as « increases, the stress redistribution is larger and larger: the
number of slack cables increases (as well as the maximum value of internal tensions 7.)
to reach about 14 % of the whole set of cables when o = 1. For this value of loading, the
structure is still within its stable domain for which it still possesses a stiffness reserve.
Such simulations are useful to check the integrity of such a structure under extreme
loading conditions above normal service usage for which, in general, one assesses that no
cable slackens; if this is the case, the strength of the structure could be endangered when
the load decreases again and when slacken cables suddenly reload: the rapid change in
local apparent stiffness lead to dynamical loadings that can damage the nodes. Figure 29
shows the non linear evolution of this fraction of slack cables when the loading increases.

5000
4500F
4000F
3500F
2 3000F
2500F

2000

Total internal tension /N

(93

(=3

(=}
T

1000}

500

500 1000 1500 2000 2500 3000
Sorted cable number

Figure 28. Internal tension in cables for different values of the loading parameter «

Concerning the convergence of the algorithm, Figures 30 reports the evolution of the
error e along the iterations, for several values of the loading parameter «. For small
values of «, no cable slackens and the convergence is very similar to the one of the linear
case. When « increases, i.e. when the number of slack cables increases, the convergence
is affected and soon exhibits two different rates: an initial one, and an asymptotic one
for small values of the energy error (here, about 10~%). Such a behavior has to be
investigated thoroughly, for instance with a max norm of the error, its projection on the
eigenmodes...

Moreover, the proposed approach does not exhibit a constant convergence rate with
respect to the non smoothness ratio, defined as the fraction of slack cables of Figure 29.
Indeed, when the number of slack cables increases, the tangent stiffness of numerous links
can be largely changed. A first improvement of the approach would consist in adapting
the search direction [ to the local status of cables, but it leads to re-factorizations of
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Figure 29. Fraction of slack cables vs loading parameter «

the subdomain stiffness matrices, which is a costly part of the algorithm. Doing so only
few times during iterations could recover a constant convergence rate along iterations,
but probably not along different values of «. A second possibility, mentioned above and
which is under development, is to use a global search direction per subdomain, adding
local admissibility to the local stage problem. In this case, one gets a global LCP problem
per subdomain.

Comparison with a monodomain approach. To compare the methods, we use
the same algorithm on the same test problem with a unique domain, and therefore
without any multiscale feature. In this case, the LATIN approach becomes equivalent
to an augmented Lagrangian approach; this is also the case for unilateral conditions
arising from frictionless contact, see Alart et al. (2006). The evolution of the error with
respect to the number of iterations is shown on Figure 31 for a loading parameter a = 1.
Obviously, the monodomain exhibits a higher convergence rate, which is not surprising if
one consider the case of a linear problem, for which the monodomain method is a direct
method, while domain decomposition methods require iterations to converge. Therefore,
one needs a cost evaluation to compare the two approaches.

Each approach consists of two distinct phases: (i) the initialization phase where the
costs are dominated by factorizations of the stiffness matrices, (ii) the iteration phase
where, for each iteration, the cost is related on one hand to the local stage for solving
the links behaviors, and on the other hand, for solving linear problems (with forward and
backward substitutions); during this second phase, the cost is usually dominated by the
linear solves and the local stage has the same cost for both approaches.

For the initialization phase, the monodomain approach requires the factorization of
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Figure 30. Evolutions of the error with respect to a reference solution, for different
values of the loading parameter «

the global stiffness matrix, while the multiscale approach requires the factorization of
all the local substructure matrices, as well as the macroscopic problem matrix. For the
same reasons as the domain decomposition methods outperform direct solvers, the cost
of initialization is always higher for the monodomain approach.

For the iteration phase, the cost of one linear solve for the monodomain approach
is (in terms of floating point operations) nl, where n is the number of dofs, and [ is
the bandwidth of the global stiffness matrix. Considering the proposed test case, n =
2500 and [ = 200 (using a reverse Cuthill-McKee renumbering scheme). The number of
substructures is Ng = 16, the number of dofs for the local substructure stiffness matrix
is ng = 195 and its bandwith [g = 50; finally, the number of dofs for the coarse problem
is N = 216 and its bandwidth L = 60. The ratio of the costs for 1 iteration of the
monodomain approach and 1 iteration of the multiscale approach (on a monoprocessor
machine) is

nl

—— =29
Ngngls + NL

Qiter ~

The ratio of convergence rates obtained on Figure 31 to reach an error threshold of

1 % is also close to 3: during the iteration process, the two algorithms are of the same

efficiency. The potential gain therefore lies in the initialization phase, for which the
factorization cost ratio is

%le _
%Nsnsl% + %JVL2

11.6

Qinit ~
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When the problem size increases, if the convergence rate is maintained, we can expect
an increase in the efficiency. Indeed, the factorization costs do not increase in the same
manner for each approach (typically, ng ~ n/Ng, and lg ~ [/\/Ng).

T T T T T
— multiscale multidomain approach
- = monodomain approach

Error

I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Number of iterations

10” I I I

Figure 31. Comparison of error evolutions for different approaches

5 Conclusion

The contact treatment in a multiprocessor environment depends on the problem in which
the contact occurs, essentially on the ratio of degrees of freedom concerned by non smooth
contact conditions.

If the contactless problem associated with the contact problem requires itself a parallel
computing strategy, the multiprocessor approach to deal with contact has to adapt the
previous strategy. But the choice of a strategy is a modelling choice depending on the
problem itself. For instance the contact area may be located inside the subdomain
(section 3.2) or on the interfaces between the subdomains (section 3.3).

The parallel computing may be carried out at different levels in a software archi-
tecture. It may consist in extending linear solvers to non linear and even non smooth
ones: Gauss Seidel to Non Linear Gauss Seidel (section 2.1), Conjugate Gradient to Pro-
jected Conjugate Gradient (section 2.2), FETI to FETI-C (section 3.3). But the contact
treatment may be also taken into account in a more general parallel computing strategy
to solve non linear large scale problems: Newton-Schur method (section 3.2), LATIN
method (section 4).

Finally we can predict that the panel of strategies could still increase with the variety
of large scale mechanical problems to tackle.
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