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Abstract. Smart materials, which present significant multiphysical couplings, are now widely used
for the conception of smart structures whose mathematical modelings are here presented in the case
of thin plates or slender rods made of piezoelectric or electromagneto-elastic materials.

Introduction.

Materials with multiphysical properties are widely used in the design of smart structures. They can
be either bonded or embedded in these structures to measure strains and displacements (sensing
effect) or to provide localized strains through which the deformation of the structure can be
controlled (actuation effect). It is thus of major technological interest to provide efficient modelings
of such structures. Here, taking advantage of the particular shapes of the devices, we derive our
models by a rigorous study of the asymptotic behavior of a three dimensional body when some of
its dimensions, considered as parameters, tend to zero.

It will be shown that, according to the type of boundary conditions, the asymptotic analysis of thin
linearly piezoelectric plates as the thickness approaches zero leads to two distinct models, linked to
sensor or actuator behavior. Extended to linearized electromagneto-elasticity, the same method
leads to four different models, in which sensor and actuator behaviors may be mixed. A similar
result is obtained in the case of piezoelectric slender rods, but the two limit models deal with a
number of state variables greater than in the genuine physical problem which only contains two
variables. We discuss the conditions under which the elimination of these supplementary variables
leads to non standard equations involving non local terms.

Static behaviors of smart plates or rods.

Piezoelectric thin plates. Finding the equilibrium of a thin linearly piezoelectric plate can be
formulated in term of a variational equation set in a suitable Sobolev space through the standard
modeling of continuum physics. Due to the very low thickness of the plate, this classical model may
be difficult to tackle numerically. The essence of our proposal of simplified but accurate modeling
is, as in [1], to consider the thickness ¢ of the plate as a small parameter and to study the asymptotic
behavior of the unique solution of the previous problem when ¢ goes to 0. In fact, two different
limit behaviors indexed by p € {1, 2} will occur according to the type of boundary condition in the
genuine problem. The limit space of displacements will be the space of Kirchhoff-Love
displacements while the limit electrical spaces will be spaces of electrical potentials either short-
circuited (if p = 1) or not (p = 2). Our model involves two dimensional problems set on the middle
surface of the plate, which is very attractive and favourable from the numerical point of view. It is
also accurate due to some convergence results: the thinner the plate, the sharper the modeling. The
model involves reduced” state variables: the in-plane strain and either the in-plane (p = ) or the
out-plane (p = 2) components of the gradient of the electrical potential. The constitutive equations
are supplied by the condensation of the initial operator with respect to the maintained components.
This identification is the keypoint for obtaining some decoupling and symmetry properties very
important in practice (see [2] and [3]) by due account of the influence of the crystalline symmetries.



The first model (p = 1) deals with the physical situation when the plate is used as a sensor, the
second model corresponds to an actuator.

Electromagneto-elastic thin plates. Besides the piezoelectric coupling, some materials are
sensitive to magnetic effects, thus in [4] we extended the previous modeling to linearly
electromagneto-elastic thin plates. The novelty here is that four limit behaviors may appear
according to the type of boundary conditions and the magnitude of the data on the electric and
magnetic fields. These cases can be described by a couple of indices (p, g) € {I, 2} in place of the
sole indice p. The physical situation when the thin plate is used as an electrical (resp. magnetic)
sensor corresponds to p = [ (resp. ¢ = I) while the actuator case corresponds to p, ¢ = 2. It
therefore appears two original mixed behaviors when p#¢. In these situations, the plate is at the
same time a sensor and an actuator excepted for the classes for which the plate is no more
electromagneto-elastic. The two cases p#¢ allow the modeling of electrically commanded magnetic
devices and of magnetically commanded electric ones, which is of considerable interest in the
development of non-volatile magnetic random access memories. We emphasize on the point that
this behavior is here fully described for any admissible crystal class.

Piezoelectric slender rods. From a technological point of view, piezoelectric materials can
also be used in wires or slender rods. To get our simplified models, we proceed as in the case of
plates but of course with different assumptions. In particular, we include the ones which permit the
justification of Bernoulli-Navier theory of elastic slender rods (see [5] and [6]). On the contrary to
the case of plates, the state variables of the model do not reduce to the couple
displacement/electrical potential but involve additional variables: two fields of displacements (easy
to interpret mechanically) and a scalar field of electrical nature. Nevertheless, the kinematics of the
state variables is simpler than the one of the genuine three-dimensional model which is very
favourable from a numerical point of view. As in the purely elastic case it is worthwhile to note that
for particular classes of monoclinic materials the additional variables disappear [7]. Anyway, in the
case p = I, the additional variables can be eliminated but it leads to non standard equations
involving non local terms!

Dynamical response of piezoelectric plates.

The interest of an efficient modeling of the dynamic response of piezoelectric plates lies in the fact
that a major technological application of piezoelectric effects is the control of vibrations of
structures through very thin plates or patches. We present two modelings depending on the various
extents to which the magnetic effects are taken into account. Actually, because of the large
discrepancy between the celerities of the mechanical and electromechanical waves, magnetic effects
can be disregarded. That is why first we propose a modeling in the appropriate framework of the
quasi-electrostatic approximation which claims that the electrical field still derives from an
electrical potential.

Quasi-electrostatic case. A new parameter appears: the density p of the plate. An unified
accurate and simplified modeling is then obtained by simply adding an inertial term in the static
modeling. Thus the relationship between the reduced stress, electric displacement, strain and
gradient of electrical potential remains the same as in the static case: it really describes the
constitutive equations of the plate! Four cases, indexed by ¢, of relative behaviors of the parameters
determine the essential nature of the limit response of the plate to the electromechanical loading:

q=1:p—p e (0, +0), — 0 and p/e® — o,

g=3:p/ > p e (0, +xn),

In the cases ¢ = 2 and g = 4, the limit response of the plate to the electromechanical loading is

N



essentially quasi-static, while the cases ¢ = I and ¢ = 3 involve the acceleration of the
displacement. Moreover (see [8]) a decoupling appears between the membrane and the flexural
motions. If ¢ =1, 2, the flexion is neglectible and the membrane response is dynamic if ¢ = /, quasi-
static if ¢ = 2. When ¢ = 3, 4, the membrane response is quasi-static whereas the flexural response
is dynamic if ¢ = 3 and quasi-static if ¢ = 4. In these last two cases, the equation giving the flexion
does not involve the limit electric potential if p = /. The uncoupled elliptic and hyperbolic involved
problems are two-dimensional and set on the middle surface of the plate.

The fully dynamic case. In the previous case, the electrical field was assumed to be curl-free
and, consequently, equal to the gradient of the so-called electrical potential. If we want to take into
account the magnetic effects, the state of the plate is described by the triplet (displacement,
electrical field, magnetical field) and the Maxwell equations are added to the classical dynamical
equations of motion. The structure of the equations of our model is the same that those of the
genuine model, but the problems are two-dimensional and with a lesser number of degrees of
freedom for the state fields!
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