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Abstract Most of the derivations of the mechanical behavior of a plate as the limit behavior

of a three-dimensional solid whose thickness tends to zero deal with stationary homoge-

neous linear boundary conditions on the lateral boundary. Here, in the framework of small

strains, we rigorously determine a large class of steady-state or transient nonlinear boundary

conditions which provide asymptotic kinematics of Kirchhoff-Love type.
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1 Introduction

Most of the derivations of the mechanical behavior of a plate as the limit behavior of a three-

dimensional solid whose thickness tends to zero deal with stationary homogeneous linear

boundary conditions on the lateral boundary. Here, in the framework of small strains, we

rigorously determine a large class of steady-state or transient nonlinear boundary conditions

which provide asymptotic kinematics of Kirchhoff-Love type. We will first consider the

equilibrium of a plate subject to body and surface forces, clamped on a part of its lateral

boundary and subject to a nonlinear elastic mechanical constraint on the remaining part of
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its lateral boundary. We will deal with constraints deriving from smooth-enough surface

energy densities or from confinement conditions. Next, we study the quasi-static evolution

of the same plate when the previous constraints are replaced by a condition of nonlinear

tangential friction with bilateral contact.

Our paper appears to be a justification, by means of rigorous asymptotic analysis (varia-

tional convergence) of unilateral phenomena in flat plate theory (see for instance [8]). More-

over, by taking into account the relative behavior of several small physical parameters, this

asymptotic analysis supplies various models.

In the sequel, we will identify R3 and the Euclidean physical space. For all ξ = (ξ1, ξ2, ξ3)

of R3, ξ̂ stands for (ξ1, ξ2). The Greek coordinate indices run in {1,2} whereas the Latin ones

run in {1,2,3}. The space of symmetric n × n matrices is denoted by Sn and, for all e in S3,

ê is the element of S2 such that êαβ = eαβ . The Euclidean norm and the inner product in Rn

or Sn as well are denoted by the same symbols | | and · respectively; tr(e) stands for the

trace of the matrix e. If V and W are two linear spaces, we denote by L(V ,W) the set of all

linear mappings defined on V with values in W .

For any open subset G of Rn, H 1
Ŵ(G,Rp) stands for the subspace of the Sobolev space

H 1(G,Rp) composed of the elements which vanish on Ŵ ⊂ ∂G. We will repeatedly use the

Lemma 1 Let G a domain of R3 with a Lipschitz-continuous boundary ∂G and Ŵ a two-

dimensional Haussdorf measurable subset of ∂G, then any bounded sequence in H 1(G,R3)

contains a subsequence which converges pointwise almost everywhere in Ŵ.

This is a straightforward consequence of the compactness of the trace mapping from

H 1(G,R3) into L2(Ŵ,R3) and the fact that any strongly convergent sequence in L2(Ŵ,R3)

contains a subsequence which pointwise converges almost everywhere in Ŵ.

If F is a subset of E, we denote the indicator function of F by IF :

IF (x) :=
{

0 if x ∈ F,

+∞ if x ∈ E\F.

In the sequel, C denotes generic constants, which may vary from line to line.

2 The Static Case

2.1 Problem Setting

The reference configuration of the plate is the closure of a cylindrical domain �ε = ω ×
(−ε; ε) of R3, where ε is a small positive number and ω a bounded open subset of R2,

with a Lipschitz-continuous boundary ∂ω. The plate is composed of a hyperelastic material

with a strain energy density W ε(x, e(v)(x)), where e(v)(x) := 1
2
(∇v(x) + (∇v(x))T ) is

the linearized strain associated with the displacement field v at the point x. The plate is

clamped on a part Ŵε
0 = γ0 × (−ε, ε) of its lateral boundary, γ0 ⊂ ∂ω being assumed of

strictly positive length. It is also subjected to body forces of density f φ and surface forces

of density gφ acting on Ŵε
1 = Ŵε

+ ∪ Ŵε
− ∪ γ1 × (−ε, ε), Ŵε

± = ω × {±ε}, γ1 ⊂ ∂ω. On the

remaining part Ŵε
c = γc × (−ε, ε) of the lateral boundary Ŵlat = ∂ω × (−ε, ε) of �ε , the

plate is subjected to an elastic mechanical constraint, whose energy density is hμ(v(x)) or

to a confinement condition.
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Hence, determining the equilibrium configuration involves a problem P (ε,φ,μ) of mini-

mization on a set of sufficiently smooth fields vanishing on Ŵε
0 of the total energy J (ε,φ,μ),

which formally reads as:

J (ε,φ,μ)(v) =
∫

�ε

W ε(x, e(v)(x))dx +
∫

Ŵε
c

hμ(v(x))ds

−
∫

�ε

f φ(x) · v(x)dx −
∫

Ŵε
1

gφ(x) · v(x)ds. (1)

With standard assumptions on the data, such a problem has a solution u(ε,φ,μ) in a suitable

Sobolev space. When hμ ≡ 0 or γc is empty we then have the starting point of a mathemat-

ical justification of the Kirchoff-Love theory of thin elastic plates by a rigorous study of

the asymptotic behavior of u(ε,φ) when (ε,φ), considered as parameters, tend to a limit,

say (0,0).

We consider three cases of mechanical constraints:

Case 1: the constraint derives from a smooth energy density hμ(ξ) = μh(ξ);

Case 2: the constraint is a confinement condition;

Case 3: a mixing of cases 1 and 2, which separates, as in many practical situations, the roles

played by the normal and tangential components of displacement along Ŵc .

We will impose some slightly more general assumptions on the data W ε, f φ, gφ than those

used in the classical mathematical derivation of the Kirchhoff-Love theory (see [7]). To

formulate these hypotheses and to carry out the following analysis it is convenient to perform

a change of coordinates which corresponds to a 1/ε dilation in the direction normal to the

plate:

x = (x̂, x3) ∈ � := ω × (−1,1) �→ �ε(x) := (x̂, εx3) ∈ �
ε
.

In the sequel we drop the upper index ε for all the images by (�ε)−1 of the previous

geometric set (e.g., Ŵ+ = (�ε)−1Ŵε
+).

Assumptions on W ε: there exists W such that

1. W ε(�εx, e) = W(x, e), ∀x ∈ �, ∀e ∈ S3, ∀ε ∈ (0, ε0];
2. W(·, e) is measurable on �;

3. W(x, ·) is strictly convex and positively homogeneous of degree 2 on S3, for almost every

x in �;

4. ∃α,β > 0 such that α|e|2 ≤ W(x, e) ≤ β|e|2, ∀e ∈ S3, a.e. x ∈ �.

Note that these assumptions imply the existence of γ > 0 such that

|W(x, e) − W(x, e′)| ≤ γ |e − e′|(|e| + |e′|), ∀e, e′ ∈ S3, a.e. x in �. (2)

Actually, we note (see also [9, 11, 12]) that neither space homogeneity nor linear isotropy

is necessary to justify the Kirchhoff-Love theory. This is not a gratuitous mathematical gen-

eralization: bulk energy densities satisfying the previous conditions (1–4) account for ma-

terials with different behavior in traction and compression. They can be obtained (see [2,

13, pp. 109–117]) by homogenization of micro-cracked linearly elastic media and are good

representatives of the macroscopic behavior of concrete, a major component of the plates

used in Civil Engineering.
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Assumptions on f φ, gφ : there exists (f, g) in L2((�,R3)) × L2(Ŵ1,R3) such that

⎧
⎪⎪⎨
⎪⎪⎩

f̂ φ(�εx) = φf̂ (x), f
φ

3 (�εx) = εφf3(x), ∀x ∈ �,

ĝφ(�εx) = εφĝ(x), g
φ

3 (�εx) = ε2φg3(x), ∀x ∈ Ŵ1 ∩ Ŵ±,

ĝφ(�εx) = φĝ(x), g
φ

3 (�εx) = εφg3(x), ∀x ∈ Ŵ1 ∩ Ŵlat.

(3)

We emphasize that the magnitude of the ratio of the normal components of the forces to

the tangential components, which is of the same order as the plate thickness, plays a capital

role in obtaining asymptotic kinematics of Kirchhoff-Love type.

2.2 First Case

We first assume that hμ = μh, μ ∈ [0,+∞) and that h is at least lower-semi-continuous on

R3 with values in [hm,+∞), hm > −∞. Proceeding to a change of unknowns (the so-called

scaling operation S(ε,φ))

̂S(ε,φ)v(x) = (1/φ)v̂(�εx), (S(ε,φ)v)3(x) = (ε/φ)v3(�
εx), ∀x ∈ �, (4)

it is clear that considering the problem P (ε,φ,μ) is equivalent to considering the problem

P(ε,φ,μ) = Min{J (ε,φ,μ)(v);v ∈ H 1
Ŵ0

(�,R3)}

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J (ε,φ,μ) = W(ε) + H(ε,φ,μ) − L,

W(ε)(v) =
∫

�
W(x, e(ε, v)(x))dx,

ê(ε, v) = ê(v), eα3(ε, v) = e3α(ε, v) = ε−1eα3(v), e33(ε, v) = ε−2e33(v),

H(ε,φ,μ)(v) =

⎧
⎪⎨
⎪⎩

μ

φ2

∫
Ŵc

h(φv̂,
φ

ε
v3)ds

if x �→ h(φv̂(x),
φ

ε
v3(x)) ∈ L1(Ŵc)

+∞ otherwise,

L(v) =
∫

�
f · vdx +

∫
Ŵ1

g · vds.

(5)

The previous assumptions, the Korn inequality and Lemma 1 imply that J (ε,φ,μ)

is coercive and weakly sequentially l.s.c. in H 1
Ŵ0

(�,R3). Consequently, P(ε,φ,μ) has

at least one solution u(ε,φ,μ). The major interest of introducing �ε and S(ε,φ) is

that, under an assumption like h(0) = 0 or h(0) finite and μ/φ2 bounded which implies

J (ε,φ,μ)(u(ε,φ,μ)) ≤ J (ε,φ,μ)(0) ≤ C, u(ε,φ,μ) is bounded in the Sobolev space

H 1
Ŵ0

(�,R3) which does not depend on (ε,φ,μ). Hence the sequence u(ε,φ,μ) has weak-

H 1
Ŵ0

(�,R3) cluster points u and the aim of the next subsection is to identify the kind of

variational problems u solves. Thus the asymptotic behavior of u(ε,φ,μ) will be obtained

through the de-scaling S(ε,φ)−1 of u.

Actually, a comprehensive study of the problem, which involves a triple (ε,φ,μ) of pa-

rameters and the structure of h, is complex and tedious. For simplicity, we will first consider

the case when φ = ε and, in a second step, the general case when in addition h is assumed

to be p-positively homogeneous (1 ≤ p < +∞). It is worthwhile to note that this last as-

sumption is true in many practical cases and that the surface constraint energy densities

supplied by the mathematical modeling of adhesive bonding joints (see [10]) are convex and

p-positively homogeneous functions.
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2.2.1 The Case φ = ε

(a) A convergence result

Let p be in [1,+∞). We assume that μ/ε2 and μ/ε2−p have limits μ and μ in [0,+∞],
when s := (ε,μ) tends to s ∈ {0} × [0,+∞]. In addition to h being lower semi-continuous

in R3, we make three various assumptions on h that will allow us to treat the subsequent

cases, indexed by I ∈ {1,2,3}, in a unified way:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1: (μ,μ) ∈ [0,+∞) × {0}, (equivalent to μ ∼ O(ε2), if μ �= 0)

h ∈ C0(R; [hm,+∞)), where − ∞ < hm < +∞;

H2: (μ,μ) ∈ {+∞} × [0,+∞), (equivalent to μ ∼ O(ε2−p), if μ �= 0),

∃δ1, δ2 > 0, ∃q ≥ 1 such that δ1|a3|q ≤ h(a) ≤ δ2|a|p, ∀a ∈ R3,

h(a) ≥ h(â,0) ∀a ∈ R3,

∀â ∈ R2, ∀(âε)ε>0 ⊂ R2 with âε → â, ∃h0,p(â) such that

lim
ε→0

ε−ph(εâε,0) = h0,p(â);

H3: (μ,μ) ∈ {+∞} × {+∞}, (equivalent to μ−1 ∼ o(εp−2)),

h(0) = 0 and ∃δ > 0, ∃q ≥ 1 such that h(a) ≥ δ(|â|p + |a3|q), ∀a ∈ R3.

Note that h0,p is necessarily p-positively homogeneous. In this section we denote P(ε, ε,μ),

H(ε, ε,μ), J (ε, ε,μ) by P(s), H(s), J (s) respectively. The expected asymptotic kinematics

being of Kirchhoff- Love type, we introduce the space:

VKL = {v ∈ H 1
Ŵ0

(�,R3); ei3(v) = 0} (6)

which has an equivalent characterization (see [7]):

VKL = {v ∈ H 1
Ŵ0

(�,R3); ∃(vM , vF ) ∈ H 1
γ0

(ω,R2) × H 2
γ0

(ω,R)

such that v̂ = vM − x3∇̂vF , v3 = vF }. (7)

For almost every x in R, the fact that W(x, ·) is strictly convex and coercive on S3 implies

that the function

q ∈ S2 �→ WKL(x, q) := Min{W(x, e); e ∈ S3, ê = q} (8)

is a strictly convex, positively homogeneous of degree 2 and well defined function on S2,

which satisfies growth and continuity properties similar to those of W :

⎧
⎨
⎩

α|q|2 ≤ WKL(x, q) ≤ β|q|2 ∀q ∈ S2, a.e. x in �

|WKL(x, q) − WKL(x, q′)| ≤ γ |q − q′)|(|q| + |q′|) ∀q, q′ ∈ S2 a.e. x in �.
(9)
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The limit total energy will involve the following functionals defined on H 1
Ŵ0

(�,R3) by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WKL(v) =
∫

�
WKL(x, ê(v)(x))dx;

H1(v) =

⎧
⎨
⎩

μ
∫

Ŵc
h(0, v3)ds = 2μ

∫
γc

h(0, vF )dl, if v ∈ VKL,

+∞ otherwise;

H2(v) =

⎧
⎨
⎩

2μ
∫

γc
h0,p(vM)dl + I{vF =0 on γc}, if v ∈ VKL,

+∞ otherwise;

H3(v) = I{v∈VKL,v=0 on Ŵc};

J I = WKL + HI − L with I ∈ {1,2,3}.

(10)

More precisely (for notational brevity, from now on subsequences will be denoted like the

sequences they are extracted from):

Theorem 1 The set of the solutions u(s) of P(s) is sequentially weakly relatively com-

pact in H 1
Ŵ0

(�,R3). If uI is a cluster point, there exists a subsequence such that J I (uI ) =
lims→s J (s)(u(s)), u(s) strongly converges in H 1

Ŵ0
(�,R3) toward uI and uI solves the prob-

lem:

P
I = Min{J I (v); v ∈ VKL}.

This variational convergence result is a consequence of the following three propositions:

Proposition 1 Any sequence in H 1
Ŵ0

(�,R3) such that J (s)(u(s)) ≤ C contains a subse-

quence which weakly converges in H 1
Ŵ0

(�,R3) to some u. Moreover u belongs to VKL and

ei3(u(s)) strongly converges to 0 in L2(�).

Proof This is an obvious consequence of the Korn inequality and the fact that h is bounded

from below. �

Proposition 2 For all u in VKL and for every sequence u(s) in H 1
Ŵ0

(�,R3) such that u(s)

weakly converges to u we have:

(i) WKL(u) ≤ lim infs→s

∫
�

W(x, e(ε,u(s))(x))dx;
(ii) HI (u) ≤ lim infs→s H(s)(u(s));

(iii) J I (u) ≤ lim infs→s J (s)(u(s)).

Proof The definition (8) of WKL implies

lim inf
s→s

∫

�

W(x, e(ε,u(s))(x))dx ≥ lim inf
s→s

∫

�

WKL(x, ê(u(s))(x))dx

≥
∫

�

WKL(x, ê(u)(x))dx,

while (ii) is a consequence of Lemma 1, Fatou’s lemma and of the coercivity assumption

in H2 and H3. The last point is a trivial consequence of (i) and (ii). �

6
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Proposition 3 For all u in VKL, there exists a sequence u(s) in H 1
Ŵ0

(�,R3) which weakly

converges in H 1
Ŵ0

(�,R3) toward u and such that:

(i) lim sups→s

∫
�

W(x, e(ε,u(s))(x))dx =
∫

�
WKL(x, ê(u)(x))dx;

(ii) lim sups→s H(s)(u(s)) ≤ HI (u);
(iii) lim sups→s J (s)(u(s)) ≤ J I (u).

Proof W(·, e) being measurable and W(x, ·) being strictly convex with quadratic growth

implies that there exists q ∈ L2(�,S3) such that q̂ = ê(u), WKL(x, ê(u)(x)) = W(x,q(x)),

a.e. x ∈ � (cf. [6]). Consequently, there exists q(s) in D(�,S3) such that

∫

�

|q(s) − q|2 + |W(x,q(s)) − W(x,q)|dx ≤ Cε2. (11)

The field v(s) defined by

v(s)3(x) = ε2

∫ x3

0

q(s)33(x̂, τ )dτ,

v(s)α(x) = 2ε

[∫ x3

0

(
q(s)α3(x̂, t) − ε

2

∫ t

0

∂αq(s)33(x̂, τ )dτ

)
dt

]
,

belongs to H 1
Ŵ0∪Ŵc

(�,R3) and u(s) := u + v(s) satisfies

u(s) ∈ H 1
Ŵ0

(�,R3), |e(ε,u(s)) − q(s)|L2(�,S3) ≤ Cε.

Indeed from the definition of v(s), one easily checks that e3i(ε, u(s)) = q3i(s) and from (11)

that |ê(ε, u(s)) − q(s)|L2(�,S3) ≤ Cε. Hence, u(s) strongly converges in H 1
Ŵ0

(�,R3) toward

u and

lim
s→s

∫

�

W(x, e(ε,u(s))(x))dx = lim
s→s

∫

�

W(x,q(s)(x))dx

=
∫

�

W(x,q(x))dx =
∫

�

WKL(x, ê(u)(x))dx.

To establish (ii) and, consequently, (iii) we first note that when I = 3 (ii) is true because

H(s)((s)) = μ

ε2 |Ŵc|h(x,0) = 0. The Sobolev embeddings imply that for any u in VKL, uF

belongs to C0(γ c) and uM belongs to Lr(γc,R2) for all finite r . Hence according to the

Lebesgue dominated convergence theorem, (ii) is true when I = 2 and when I = 1 with,

moreover, uM smooth. In the last case the proof is completed by a diagonalization argu-

ment [2] taking into account the continuity of H1 on VKL. �

Proof of Theorem 1 Since J (s)(u(s)) ≤ J (s)(0) = |Ŵc| μ

φ2 h(0), a classical combination

(see [1] for a detailed proof) of the previous three propositions shows that a subsequence

u(s) weakly converges in H 1
Ŵ0

(�,R3) toward a minimizer uI in VKL of the coercive se-

quential weakly lower semicontinuous functional J I and that lims→0 J (s)(u(s)) = J I (uI ).

Furthermore, Propositions 2 and 3 imply

lim sup
s→s

W(ε)(u(s)) ≤ lim
s→s

J (s)(u(s)) + L(u) − lim inf
s→s

H(s)(u(s))

≤ WKL(uI ) ≤ lim inf
s→s

W(ε)(u(s)),

7
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lim sup
s→s

H(ε)(u(s)) ≤ lim
s→s

J (s)(u(s)) + L(u) − lim inf
s→s

W(ε)(u(s))

≤ H
I (uI ) ≤ lim inf

s→s
H(s)(u(s))

and

lim sup
s→s

WKL(u(s)) ≤ lim sup
s→s

W(ε)(u(s)) = WKL(uI ) ≤ lim inf
s→s

WKL(u(s)),

because of the continuity and convexity of WKL on H 1
Ŵ0

(�,R3). From Proposition 1 and

the Korn inequality, it remains to establish that ê(u(s)) strongly converges toward ê(uI )

in L2((�,S2)). This is a consequence of the weak convergence in L2((�,S2)) of ê(u(s))

toward ê(uI ) and the convergence:

∫

�

WKL(x, ê(u(s))(x))dx →
∫

�

WKL(x, ê(uI )(x))dx,

the function WKL(x, ·) being strictly convex on S2 and positively homogeneous of degree 2

(see for instance [3] Theorem 4.9, where such an argument is used). �

(b) An asymptotic model of behavior for a plate of thickness 2ε

Clearly , uI,ε := S(ε, ε)−1uI solves the problem

P
I,ε = Min{J I,ε(v); v ∈ V

I,ε
KL}

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ε
KL = {v ∈ H 1

Ŵε
0
(�ε,R3), ei3(v) = 0} and V

1,ε
KL = V ε

KL,

V
2,ε
KL = {v ∈ V ε

KL;vF = 0 on γc}, V
3,ε
KL = {v ∈ V ε

KL;v = 0 on Ŵε
c };

H1,ε(v) = 2με3
∫

γc
h(0, vF )dl, H2,ε(v) = 2με3−p

∫
γc

h0,p(vM)dl,

H3,ε(v) = 0;

J I,ε(v) =
∫

�ε WKL(x, ê(v))dx + HI,ε(v) −
∫

�ε f ε · vdx −
∫

Ŵε
1
gε · vds

(12)

where, of course vF , vM are the flexural and membrane parts of v defined in a similar way

to (7). Moreover uI,ε yields the asymptotic behavior of u(ε,ε,μ) because Theorem 1 implies:

lim
s→s

(
ε−3

∫

�ε

|ê(uI,ε) − ê(u(ε,ε,μ))|2dx

)
= 0,

ε−3

∫

�ε

|ei3(u
(ε,ε,μ))|2dx bounded.

We note that ε3 is the order of magnitude of J I,ε(uI,ε) if it differs from zero. Hence, P I,ε

provides a simpler model than P (ε,ε,μ), because it involves displacement fields of Kirchhoff-

Love type, but of the same accuracy.

The asymptotic constraint is of pure adhesion when I = 3, it is in plane elastic pull back

with no flexion when I = 2 and it is elastic pull back when I = 1.
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2.2.2 The Case when h is p-Positively Homogeneous

Here we denote the triple (ε,φ,μ) of effective parameters by s and we assume that it has a

limit s ∈ {0} × [0,+∞)2. In that case, H(ε,φ,μ)(v) reads as:

H(s)(v) =

⎧
⎪⎪⎨
⎪⎪⎩

(μ/φ2−pεp)
∫

Ŵc
h(εv̂(x), v3(x))ds

if x �→ h(εv̂(x), v3(x)) ∈ L1(Ŵc),

+∞ otherwise,

(13)

and we summarize the assumptions as follows: let p ∈ [1,+∞); the function h is p-

positively homogeneous and lower semi continuous on R3 with values in [hm,+∞),

hm ∈ R; when s → s, μ/φ2−pεp and μ/φ2−p have limits μ, μ in [0,+∞], and

case I = 1: (μ,μ) ∈ [0,+∞) × {0}, h is continuous on R3;

case I = 2: (μ,μ) ∈ {+∞} × [0,+∞),

∃δ1, δ2 > 0 : δ1|a3|p ≤ h(a) ≤ δ2|a|p, ∀a ∈ R3

h(a) ≥ h(â,0) ∀a ∈ R3, h(·,0) is continuous in R2;
case I = 3: (μ,μ) ∈ {+∞} × {+∞}, ∃δ > 0 : h(a) ≥ δ|a|p, ∀a ∈ R3.

Since the h0,p function, introduced in Sect. 2.2.1, reduces to h(·,0), it is clear that the analy-

sis done there remains valid. Thus the statement of Theorem 1 is still true with the new

notations.

As a matter of fact, the “de-scaled” field uI (ε,φ) := S(ε,φ)−1uI solves a problem:

P
I (ε,φ) = Min{J I (ε,φ)(v); v ∈ V

I,ε
KL}.

This yields a simplified but accurate model of behavior of the linearly elastic plate with

thickness 2ε, the effective total energy and accuracy being:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J I (ε,φ)(v) =
∫

�ε WKL(x, ê(ε, v(x)))dx

+ HI (ε,φ)(v) −
∫

�ε f φ · vdx −
∫

Ŵε
1
gφ · vds;

H1(ε,φ)(v) = 2εμεpφ2−p
∫

γc
h(0, vF (x̂))dl,

H2(ε,φ)(v) = 2εμφ2−p
∫

γc
h(vM(x̂),0)dl, H3(ε,φ)(v) = 0;

lims→s
1

εφ2 (
∫

�ε |ê(uI (ε,φ) − u(ε,φ,μ))|2dx) = 0;
1

εφ2

∫
�ε |ei3(u

(ε,φ,μ))|2dx bounded.

(14)

We note that εφ2 is the order of magnitude of J I (ε,φ)(uI (ε,φ)) if it does not vanish.

2.3 A Confinement Constraint

Let a, b, c and d be four real numbers such that a ≤ b, 0 ≤ c ≤ d . Let I = [a, b] and

K = dK\c
◦
K where K is a compact subset of R2 starshaped with respect to the origin of

coordinates. If λ, ν are two positive parameters, the confinement condition reads as:

v(x) ∈ λK × νI a.e. x ∈ Ŵε
c . (15)
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Thus determining equilibrium configurations involves the problem:

P
(ε,φ,λ,ν) = Min

{∫

�ε

W ε(x, e(v)(x))dx −
∫

�ε

f φ(x) · v(x)dx

−
∫

Ŵε
1

gφ(x) · v(x)ds; v ∈ H 1
Ŵε

0
(�ε,R3),

v ∈ λK × νI a.e. x in Ŵε
c

}
. (16)

Lemma 1 implies that the set {v ∈ H 1
Ŵε

0
(�ε,R3); v ∈ λK × νI a.e. x in Ŵε

c } is a sequential

weakly closed subset of H 1
Ŵε

0
(�ε,R3). Hence, P (ε,φ,λ,ν) has at least one solution u(ε,φ,λ,ν).

To determine its behavior, when the quadruple s = (ε,φ,λ, ν) of parameters tends to some

s ∈ {0} × [0,+∞)3, we assume that ( λ
φ
, ( ε

φ
)ν) has a limit (λ, ν) in [0,+∞)2. Moreover, if

λ = 0 or ν = 0 we assume that the distance (γ0, γc) > 0 and lims→s
ν
φ

= 0 when ν = 0.

2.3.1 A Convergence Result

Using the scaling operator S(ε,φ) defined in Sect. 2.2.2, we have that u(s) := S(ε,φ)×
u(ε,φ,λ,ν) solves:

P(s) = Min{J (s)(v); v ∈ �(s)},

�(s) :=
{
v ∈ H 1

Ŵε
0
(�ε,R3), v ∈ λ

φ
K × ν

(
ε

φ

)
I a.e. x in Ŵc

}
,

J (s)(v) =
∫

�

W(x, e(ε, v)(x))dx − L(v).

(17)

The convergence result for u(s) will be a simple consequence of the following proposition:

Proposition 4

(i) Any sequence u(s) in H 1
Ŵ0

(�,R3) such that J (s)(u(s)) ≤ C contains a subsequence

which weakly converges in H 1(�,R3) toward some u and

u ∈ �KL := {v ∈ VKL; v(x) ∈ λK × νI a.e. x in Ŵc},

J (u) :=
∫

�

WKL(x, ê(v)(x))dx − L(u) ≤ limJ (s)(u(s));

(ii) For all u in �KL, there exists (u(s)) in �(s) which weakly converges to u in H 1(�,R3)

such that J (u) ≥ limJ (s)(u(s)).

Proof The first point is an easy consequence of the Korn inequality, the properties of WKL

and Lemma 1. To prove (ii), we proceed as in Proposition 3 but, in a preliminary step, we

need to modify u in order to match the confinement conditions. When λ �= 0 we replace û

by (λ/φ)û/λ and u3 by ν(ε/φ)u3/ν if ν �= 0. When λ = 0 we add ((λ/φ)w,0) to u where

w is any extension to H 1
Ŵ0

(�,R3) of the constant field equal on Ŵc to some element of K;

if ν = 0 we add (0, ν(ε/φ)z) to u, z being any extension to H 1
Ŵ0

(�,R3) of the constant

function equal on Ŵc to some element of I . �
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Since, there exists a constant C such that

J (s)(u(s)) ≤ J (s)((λ/φ)w,ν(ε/φ)z) ≤ C,

similarly to Theorem 1 we can prove:

Theorem 2 The set of solutions u(s) of P(s) is weakly relatively compact in H 1
Ŵ0

(�,R3).

If u is a cluster point, there exists a subsequence such that J (u) = lims→s J (s)(u(s)) and

u(s) strongly converges toward u in H 1(�,R3) which solves:

P = Min{J (v); v ∈ �KL}.

2.3.2 An Asymptotic Model of Behavior for the Confined Plate of Thickness 2ε

Clearly, us := S(ε,φ)u solves the problem:

P
s = Min{J s

(v); v ∈ �s
KL},

with

�s
KL := {v ∈ VKLε ; v(x) ∈ φλK × (φ/ε)νI a.e. x ∈ Ŵε

c },

J
s
(v) :=

∫

�ε

WKL

(
x, ê(ε, v(x))

)
dx −

∫

�ε

f φ · vdx −
∫

Ŵε
1

gφ · vds.
(18)

For the reasons explained in Sects. 2.2.1(b) and 2.2.2, this yields a simpler but accurate

model.

2.4 A Mixed Case (Bilateral Contact with Tangential Pull-back)

Here we assume that the surface energy density hμ is a function of the sole tangential com-

ponent vT of the displacement v along Ŵc, while the normal component vN is assumed to be

zero (a so-called condition of bilateral contact). We recall that if n denotes the outward unit

normal then vN = v · n and vT = v − vNn and note that n = (ν,0) on Ŵc. We make the same

assumption on hμ as in Sect. 2.2.2 and the problem of equilibrium reduces to:

P
(ε,φ,μ) = Min

{∫

�ε

W ε(x, e(v)(x))dx + μ

∫

Ŵε
c

h(vT (x))ds

−
∫

�ε

f φ(x) · v(x)dx −
∫

Ŵε
1

gφ(x) · v(x)ds; v ∈ H 1
Ŵε

cN (�ε,R3)

}
,

which clearly has a solution, H 1
Ŵε

cN
(�ε,R3) = {v ∈ H 1

Ŵε
0
(�ε,R3); vN (x) = 0 a.e. x ∈ Ŵε

c }
being a closed subspace of H 1

Ŵε
0
(�ε,R3). Determining the asymptotic behavior of u(ε,φ,μ)

is a variant of the previous analysis and we will only state the result which will be used in

Sect. 3.

Theorem 3 Let s = (ε,φ,μ),

P(s) = Min{J (s)(v); v ∈ H 1
ŴcN

(�,R3)}

11
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where H 1
ŴcN

(�,R3) = {v ∈ H 1
Ŵ0

(�,R3); vN (x) = 0 a.e. x in Ŵc} and

J (s)(v) =
∫

�

W(x, e(ε, v)(x))dx + μ

φ2−pεp

∫

Ŵc

h(εv̂T (x), vT 3(x))ds − L(v).

Then, u(s) = S(ε,φ)u(ε,φ,μ) solves P(s). The set u(s) is sequentially weakly relatively com-

pact in H 1
ŴcN

(�,R3) and for every cluster point uI there exists a subsequence u(s) which

strongly converges in H 1
Ŵ0

(�,R3) to uI with J I (uI ) = lims→s J (s)(u(s)),

J I (v) =
∫

�

WKL(x, ê(v)(x))dx + H
I (v) − L(v);

H
1(v) =

⎧
⎨
⎩

2μ
∫

γc
h(0, vF (x̂))dl, if v ∈ VKL,

+∞, otherwise;

H
2(v) =

⎧
⎨
⎩

2μ
∫

γc
h(vM

T (x̂))dl if v ∈ VKL,

+∞ otherwise,
H

3(v) = 0.

Moreover uI solves:

P
I = Min{J I (v); v ∈ V I

KL N },

with

V 1
KL N = VKL N = {v ∈ VKL; vN = 0 a.e. x in γc}

= {v ∈ VKL; vM · ν = ∂νv
F = 0 a.e. x in γc},

V 2
KL N = {v ∈ VKL; vN = 0, vF = 0 a.e. x in γc}

= {v ∈ VKL; vM · ν = vF = ∂νv
F = 0 a.e. x in γc},

V 3
KL N = {v ∈ VKL N ; v = 0 a.e. x in γc}

= {v ∈ VKL; vM = vF = ∂νv
F = 0 a.e. x in γc}.

Of course, a de-scaling of uI yields a suitable simplified and accurate model of behavior of

the real plate.

2.5 Concluding Remarks

First, as previously announced we have established that neither space homogeneity, nor

linear isotropy is necessary to justify the Kirchhoff-Love theory. When W(x, e) reduces to

Wλ,μ(e) = λ
2
(tr e)2 + μ|e|2 this corresponds to homogeneous isotropic linearized elasticity

(the so-called Hooke’s law). In this case it has been shown (see [7]) that the asymptotic

behavior of the plate involves a reduced bulk energy acting on Kirchhoff-Love fields which

reads as:

ê ∈ S2 �→ Ŵλ,μ(ê) = 2λμ

λ + 2μ
(tr ê)2 + 2μ|ê|2.

A straightforward calculation gives that (Wλ,μ)KL = Ŵλ,μ.

12
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More generally, if W(x, e) = 1
2
A(x)e · e with A(x) ∈ L(S3, S3), the decomposition of

S3 into S2 and its orthogonal complement S⊥ induces a decomposition of A into A22 ∈
L(S2, S2), A⊥2 ∈ L(S⊥, S2), A2⊥ ∈ L(S2, S⊥), A⊥⊥ ∈ L(S⊥, S⊥).

Classically we know that WKL(x, ê) = 1
2
AKL(x)ê · ê, with AKL = A22 −A2⊥(A⊥⊥)−1A⊥2

being the Schur complement of A22 in the decomposition (S2, S⊥) of S3. Note that

a derivation by Ŵ-convergence of the Kirchhoff-Love plate theory when Ŵc = ∅ and

W(x, e) = Wλ,μ(e) has been done in [4].

Next, we have stated sufficient conditions on the mechanical constraint in order for the

asymptotic kinematics to be of a Kirchhoff-Love type, with an asymptotic bulk energy of

“Kirchhoff-Love type” (say given by WKL as previously defined by (8)) and an asymptotic

constraint obtained as the limit of the three-dimensional one. Due to the Korn inequality

and Lemma 1, no convexity conditions for the constraint have to be included in the assump-

tions. But if the mechanical constraint is convex, then, by the strict convexity of the genuine

bulk energy density W(x, ·), the problem P(s) has a unique solution u(s) and the whole

sequence u(s) strongly converges in H 1
Ŵ0

(�,R3) to the unique solution of the limit prob-

lem. We can easily consider the case of nonhomogeneous constraints by assuming that hμ is

such that hμ = μh with h defined on Ŵc × R3, h(·, e) measurable and h(x, ·) satisfying as-

sumptions HI. Considering nonhomogeneous confinement conditions is more involved and

tedious but feasible.

It is worthwhile to note that the whole previous analysis still works if W(x, ·) is assumed

to be strictly convex and q-positively homogeneous, q ∈ (1,∞), the basic space H 1
Ŵ0

(�,R3)

being replaced by W
1,q

Ŵ0
(�,R3). Moreover, as in practice ε, φ, μ, λ, ν are not parameters

at all, but the corresponding values for thickness, strength, stiffness of the pull-back and

size of the confinement, we believe that a reasonable proposal for a simpler and efficient

model of the constrained plate is to replace the limits μ, μ, λ, ν by their actual values

ν/φ2−pεp, ν/φ2−p, λ/φ, (ε/φ)ν in the expressions of the total energy in our asymptotic

models.

3 The Quasi-Static Case

3.1 Problem Setting

Now, we assume that the plate is made of a linearly elastic material and is in bilateral contact

with friction along Ŵε
c with a rigid body; moreover the forces are time-dependent. We are

going to formulate the determination of the quasi-static evolution of the plate from the initial

state us
0 in terms of a nonlinear evolution equation in a Hilbert space of possible states with

finite energy. The study of the asymptotic behavior, when the thickness tends to zero, is

easily carried out by simply using the results obtained in the static case, Sect. 2.4. This

occurs through a suitable nonlinear extension of the Trotter theory of convergence of semi-

groups of operators, acting on variable spaces (see Appendix). Hence we will make use of

the notations of Sect. 2.4 and of some classical ones of Convex Analysis: J ∗ and ∂J (v)

respectively stands for the Legendre-Fenchel conjugate of J and the sub-differential of the

convex function J at v, with domain D(J ).

The strain energy density is such that:

W(x, e) = 1

2
A(x)e · e a.e. x ∈ �, ∀e ∈ S3 with

A ∈ L∞(�, L(S3, S3), A(x)e · e ≥ α|e|2, a.e. x ∈ �, ∀e ∈ S3. (19)
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The constraint along Ŵc reads as:

−σ s
T ∈ ∂hμ(u̇s

T ), us
N = 0, (20)

where σ s
T := σ sn− (σ sn ·n)n denotes the tangential component of the stress vector σ sn, the

convex function hμ satisfies the same assumptions as in Sect. 2.2.2, the overdot “˙” denotes

the time derivative. Note that hμ = μh, μ ∈ [0,+∞), with h = | |p corresponds to a Norton

(p > 1) or to a Tresca (p = 1) friction.

The principle of virtual power leads us to seek us smooth enough such that:

∫

�ε

A((�ε)−1x)e(us)(x, t) · (e(v)(x) − e(u̇s)(x, t))dx

+
∫

Ŵs
c

hμ(vT (x))ds −
∫

Ŵs
c

hμ(u̇s
T (x, t))ds

≥
∫

�ε

f φ(x, t) · (v(x) − u̇s(x, t))dx +
∫

Ŵε
1

gφ(x, t) · (v(x) − u̇s(x, t))ds

∀v ∈ {v ∈ H 1
Ŵε

0
(�ε,R3); vN = 0 a.e. in Ŵε

c }. (21)

Keeping the same assumptions on the magnitude of the forces f φ, gφ as in the static case,

the scaled displacement u(s) = S(ε,φ)us has to satisfy:

∫

�

A(x)e(ε,u(s)) · e(ε, v − u̇(s))dx

+ μ

φ2−pεp

(∫

Ŵc

h(εv̂T , v3T )ds −
∫

Ŵc

h(ε ˙̂uT (s), u̇3T (s))ds

)

≥ L(t)(v − u̇(s)), ∀v ∈ H 1
ŴcN

(�,R3), (22)

where

L(t)(v) :=
∫

�

f (x, t) · v(x)dx +
∫

Ŵ1

g(x, t) · v(x)ds

and H 1
ŴcN

(�,R3) was defined in Sect. 2.4. We denote by V (s) this space equipped with the

scalar product

(u, v)s :=
∫

�

A(x)e(ε,u) · e(ε, v)dx, (23)

which, associated with the scaled strain energy, depends on s. Due to the Korn inequality, it

is equivalent to the usual one, for all strictly positive fixed value of ε.

We make the additional assumption:

(f, g) ∈ H 1(0, T ;L2(�,R3) × L2(Ŵ1,R3)), (24)

so that there exists a unique solution ue(s) in H 1(0, T ;V (s)) of the equilibrium problem:

(ue(s), v)s = L(t)(v), ∀v ∈ V (s), ∀t ∈ [0, T ] (25)
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and we define on V (s) the lower semi-continuous and convex function

H(s)(v) =

⎧
⎪⎪⎨
⎪⎪⎩

(μ/φ2−pεp)
∫

Ŵc
h(εv̂T (x), vT 3(x))ds

if x �→ h(εv̂T (x), vT 3(x)) ∈ L1(Ŵc)

+∞ otherwise.

(26)

Thus, (22) yields

−u(s) + ue(s) ∈ ∂H(s)(u̇(s)), (27)

or

u̇(s) ∈ ∂(H(s))∗(ue(s) − u(s)). (28)

Hence, if

ū(s) := u(s) − ue(s);
Ȟ(s)(v) := H(s)(−v), ∀v ∈ V (s);

ū(s)0 := u(s)0 − ue(s)(0),

(29)

where u(s)0 := S(ε,φ)us
0 is the scaled initial displacement of the plate, the problem can be

written in terms of an evolution equation in V (s):

⎧
⎨
⎩

˙̄u(s) + ∂(Ȟ(s))∗(ū(s)) ∋ u̇e(s),

ū(s)(0) = ū(s)0.
(30)

From a classical result [5], we deduce the

Proposition 5 For all ū(s)0 ∈ D((Ȟ(s))∗), (30) has a unique solution in H 1(0, T ;V (s)).

Note that the condition ū(s)0 ∈ D((Ȟ(s))∗), equivalent to:

∃M > 0; (u(s)0, ϕ)s − L(0)(ϕ) − Ȟ(s)(ϕ) ≤ M ∀ϕ ∈ V (s), (31)

is a compatibility assumption between the initial state and the loading at time t = 0:

divσ s
0 + f φ(0) = 0, σ s

0 = Ae(us
0) in �ε,

σ s
0 n = g(0) on Ŵε

1, σ s
0T ∈ Lp(Ŵε

c ,R3), us
0N = 0 on Ŵε

c .

As in the static case, we will derive an asymptotic model for the behavior of the given plate of

thickness 2ε by studying the asymptotic behavior of ū(s) when s goes to s ∈ {0}×[0,+∞]2.

3.2 A Convergence Result

We will show that ū(s) converges toward ūI which solves a nonlinear evolution equation in

the Hilbert space V
I

equal to V I
KL N , I ∈ {1,2,3}, equipped with the scalar product:

(u, v)s =
∫

�

AKL(x)ê(u) · ê(v)dx, (32)
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where V I
KL N and AKL have been introduced in Sects. 2.4 and 2.5, respectively. The previous

bilinear form can be extended into V (s) and the definition (8) of WKL implies:

|v|2s := (v, v)s ≤ |v|2s := (v, v)s ∀v ∈ V (s). (33)

The properties of A make it possible, by the Lax-Milgram lemma, to define P (s) ∈
L(V

I
,V (s)) by

v ∈ V
I �→ P (s)v ∈ V (s), (P (s)v,w)s = (v,w)s, ∀w ∈ V (s), (34)

which is useful to “compare” elements of V (s) and V
I
.

Proposition 6 For all v ∈ V
I

we have:

(i) |P (s)v|s ≤ |v|s ;

(ii) lims→s |P (s)v|s = |v|s .

Proof First, (i) stems from (33) and (34) with w = P (s)v. Next, because P (s)v minimizes

the functional 1
2
| · |2s − (v, ·)s on V (s), (ii) is a mere consequence of Theorem 3 by choosing

μ ≡ 0 and replacing the linear form L by (v, ·)s . �

We will say that v(s) ∈ V (s) converges toward v ∈ V
I

in the sense of Trotter if

lims→s |P (s)v − v(s)|s = 0. It is useful to relate this convergence to some classical ones.

Proposition 7 For all v in V
I

and every sequence v(s) in V (s) the two properties are

equivalent:

(i) lims→s |P (s)v − v(s)|s = 0;

(ii) v(s) strongly converges in H 1(�,R3) toward v and lims→s |v(s)|s = |v|s .

Proof (ii) ⇒ (i) By definition of P (s) we have:

|P (s)v − v(s)|2s = |P (s)v|2s − 2(P (s)v, v(s))s + |v(s)|2s
= |P (s)v|2s − 2(v, v(s))s + |v(s)|2s ,

which, according to Proposition 6, tends to zero.

(i) ⇒ (ii) Using the remark made in the second part of the proof of Proposition 6, we

have that P (s)v converges strongly in H 1(�,R3) toward v. Moreover

lim
s→s

|e(P (s)v − v(s))|L2(�,S3) ≤ lim
s→s

|e(ε,P (s)v − v(s))|L2(�,S3)

≤ lim
s→s

(α−1/2|P (s)v − v(s)|s) = 0,

and so Korn’s inequality implies that v(s) strongly converges toward v in H 1(�,R3). Fi-

nally from Proposition 6(i) we have:

lim
s→s

|v(s)|s = lim
s→s

|P (s)v|s = |v|s . �

16



Acc
ep

te
d 

M
an

us
cr

ip
t

Now we define a priori a limit evolution equation in V
I

which will describe the asymptotic

behavior of ū(s):
⎧
⎨
⎩

˙̄uI + ∂(ȞI )∗(ūI ) ∋ u̇Ie,

ūI 0 = ūI
0,

(35)

with ȞI := HI (−v), HI being defined in Sect. 2.4 and uIe the unique element of

H 1(0, T ;V I
) such that:

(uIe,w)s = L(t)(w), ∀w ∈ V
I
, ∀t ∈ [0, T ]. (36)

The initial condition ūI
0 will be defined later (see (37), (38)). As for (30), a classical result

of [5] gives the:

Proposition 8 For all ūI
0 ∈ D((ȞI )∗), (36) has a unique solution in H 1(0, T ;V I

).

According to our nonlinear version of the Trotter theory of approximation of semi-groups

acting on variable spaces (see Appendix), to prove the convergence, in the sense of Trotter,

of ū(s) towards ūI it suffices to establish the following last two propositions:

Proposition 9

∀f ∈ V
I : lim

s→s
|P (s)(I + ∂(Ȟ

I )∗)−1(f ) − (I + ∂(Ȟ(s))∗)−1(P (s)f )|s = 0.

Proposition 10

lim
s→s

∫ T

0

|P (s)u̇Ie(t) − (u̇e(s))(t)|sdt = 0,

lim
s→s

|P (s)uIe(t) − (ue(s))(t)|s = 0 uniformly on [0, T ].

Proof of Proposition 9 Classically, (I + ∂(ȞI )∗)−1(f ) = ξ I + f , (I + ∂(Ȟ(s))∗)−1 ×
(P (s)f ) = ξ(s) + P (s)f where ξ I and ξ(s) satisfy

ξ I + f + ∂Ȟ
I (ξ I ) ∋ 0, ξ(s) + P (s)f + ∂Ȟ(s)(ξ(s)) ∋ 0.

Hence the definition of P (s) implies that ξ I and ξ(s) are the unique minimizers of the

convex lower semi-continuous functions

J
I (·) = 1

2
| · |2s + H

I (·) + (f, ·)s and J (s)(·) = 1

2
| · |2s + H(s)(·) + (f, ·)s

and it suffices to establish lims→s |P (s)ξ I − ξ(s)|s = 0. Obviously, the assertions of The-

orem 3 are still true when the linear form L is replaced by (f, ·)s . Thus ξ(s) converges

strongly in H 1(�,R3) toward ξ I and lims→s J (s)(ξ(s)) = J I (ξ I ). Arguing as in the proof

of Theorem 1, we deduce lims→s |ξ(s)|2s = |ξ I |2s which, according to Proposition 7, ends the

proof. �
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Proof of Proposition 10 First, the definition of ue and Proposition 6(i) imply:

|P (s)u̇Ie(t) − (u̇e(s))(t)|s ≤ |u̇Ie(t)|s + |(u̇e(s))(t)|s
≤ C(|ḟ (t)|L2(�,R3) + |ġ(t)|L2(Ŵ1,R3)).

As previously observed, since uIe and ue(s) are minimizers of 1
2
| · |2s −L(·) and 1

2
| · |2s −L(·),

we have

lim
s→s

|P (s)u̇Ie(t) − (u̇e(s))(t)|s = lim
s→s

|P (s)uIe(t) − (ue(s))(t)|s = 0

a.e. on [0, T ].

Thus the first part of the proposition is a consequence of the Lebesgue dominated con-

vergence theorem while the second is due to the uniform equi-continuity of t ∈ [0, T ] �→
|P (s)uIe(t) − (ue(s))(t)|s which stems from (24). �

We make an additional assumption on the initial states:

∃uI
0 ∈ uIe(0) + D((ȞI )∗); u(s)0 ∈ ue

s(0) + D((Ȟ(s))∗),

lim
s→s

|P (s)uI
0 − u(s)0|s = 0.

(37)

The first condition is a compatibility condition between the initial limit state and the initial

loading; the second is a convergence condition which, due to Proposition 9, is satisfied by:

u(s)0 = ue
s(0) + (I + ∂(Ȟ(s))∗)−1(P (s)(I + ∂(Ȟ

I )∗)(uI
0 − uIe(0))).

Hence, from the nonlinear Trotter theorem (see Appendix) we deduce the uniform conver-

gence on [0, T ], in the sense of Trotter, of the solution of (30) toward the solution of (34)

with ūI
0 = uI

0 − uIe(0). Taking into account the previous propositions, we may rephrase this

convergence result in the more explicit form:

Theorem 4 The solution u(s) of (27) with an initial data u(s)0 converges in C0([0, T ];
H 1(�,R3)) toward the solution of

{
−uI + uIe ∈ ∂HI (u̇I ),

uI (0) = uI
0,

(38)

with lims→s

∫
�

W(e(ε,u(s)))dx =
∫

�
WKL(ê(uI ))dx uniformly on [0, T ].

Note that a more explicit writing of (38)1 is:

∫

�

AKLê(uI (t)) · ê(v − u̇I (t))dx + H
I (v) − H

I (u̇I )

≥
∫

�

f · (v − u̇I (t))dx +
∫

Ŵ1

g · (v − u̇I (t))ds,

∀v ∈ V I
KL N a.e. t ∈ [0, T ].
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3.3 An Asymptotic Model for the Behavior of the Plate

As in the static case, a de-scaling of uI yields a suitable simplified and accurate model for

the behavior of the real plate:

uI (ε,φ) := S(ε,φ)−1uI ∈ H 1(0, T ;V I,ε
KL N ) satisfies a.e. t in [0, T ],

∫

�ε

AKLê(uI (ε,φ)(t)) · ê(v − u̇I (ε,φ)(t))dx + H
I (ε,φ)(vT ) − H

I (ε,φ)(u̇
I (ε,φ)

T )

≥
∫

�ε

f · (v − u̇I (ε,φ)(t))dx +
∫

Ŵε
1

g · (v − u̇I (ε,φ)(t))ds, ∀v ∈ V
I,ε
KL N ,

where HI (ε,φ) are defined in (14) and V
I,ε
KL N are the analogues of V I

KL N , defined in

Sect. 2.4, with �ε in place of �. The accuracy of the model is due to the fact that

lims→s
1

εφ2

∫
�ε |ê(uI (ε,φ) − u(ε,φ,μ))|2dx = 0, uniformly on [0, T ].

Eventually, note that our model corresponds to a condition of bilateral contact on Ŵε
c

associated with flexural friction when I = 1, tangential membrane friction with no flexion

when I = 2 and pure adhesion when I = 3.

Appendix

Most of the boundary values problems obtained by mathematical modeling in Continuum

Mechanics and Physics are parametrized, the parameters being the coefficients of the partial

differential equations, the domain, the boundary, etc. . . Thus the Trotter theory (see [14])

of approximation of semi-groups of operators acting on variable Hilbert spaces is useful

and powerful for questions of convergence in transient boundary value problems. Here we

propose a nonlinear extension of the theory of Trotter.

Theorem 5 Let Hn,H be Hilbert spaces and let An : Hn → 2Hn , A : H → 2H be maximal

monotone multivoque operators. Define Pn : (H, | · |) → (Hn, | · |n) such that Pn ∈ L(H,Hn)

and

1. |Pn(x)|n ≤ C|x|, ∀x ∈ H , with C constant, independent of n;

2. |Pn(x)|n → |x|, ∀x ∈ H .

Let fn ∈ L1(0, T ;Hn) and f ∈ L1(0, T ;H), u0
n ∈ D(An) and u0 ∈ D(A). Let un and u be

the weak solutions of the equations:

{
dun

dt
+ Anun ∋ fn,

un(0) = u0
n,

{
du
dt

+ Au ∋ f,

u(0) = u0.

If |Pnu
0 − u0

n|n → 0,
∫ T

0
|Pnf (t) − fn(t)|ndt → 0,

|(I + λAn)−1Pnz − Pn(I + λA)−1z|n → 0 when n → ∞,∀λ ≥ 0, ∀z ∈ H,

then

|Pnu(t) − un(t)|n → 0 when n → ∞, uniformly on [0, T ].

19



Acc
ep

te
d 

M
an

us
cr

ip
t

Proof In ([5] Theorem 3.16) an analogous result is given for the case Hn = H and conse-

quently Pn the identity on H . Our proof is a slight variation of the previous one in this more

general case, by simply proceeding to a suitable insertion of the linear operators Pn which

compare elements of the variable space Hn and the limit space H .

(i) First step: fn = f = 0.

Let λ > 0 be fixed, y = (I +
√

λA)−1u0 and yn = (I +
√

λAn)−1Pnu
0. Let v, respectively,

vλ, vn, vλ
n be the solution of the following problems:

dv

dt
+ Av ∋ 0; v(0) = y,

dvλ

dt
+ Aλv

λ ∋ 0; vλ(0) = y,

dvn

dt
+ Anvn ∋ 0; vn(0) = yn,

dvλ
n

dt
+ An

λv
λ
n ∋ 0; vλ

n(0) = yn,

where

Aλ := I − (I + λA)−1

λ
, An

λ := I − (I + λAn)−1

λ
.

Then

|un(t) − Pnu(t)|n ≤ |un(t) − vn(t)|n + |vn(t) − vλ
n(t)|n + |vλ

n(t) − Pnv
λ(t)|n

+ |Pnv
λ(t) − Pnv(t)|n + |Pnv(t) − Pnu(t)|n.

Since A and An generate semigroups of contractions we have:

(1) |un(t) − vn(t)|n ≤ |u0
n − yn|n = |u0

n − (I +
√

λAn)−1Pnu
0|n

≤ |u0
n − Pn(I +

√
λA)−1u0|n

+ |(I +
√

λAn)−1Pnu
0 − Pn(I +

√
λA)−1u0|n

≤ |u0
n − Pnu

0|n + C |u0 − (I +
√

λAn)
−1u0|n

+ |(I +
√

λAn)−1Pnu
0 − Pn(I +

√
λA)−1u0|n,

where the first and third term of the last inequality go to 0 when n → ∞,

(2) |Pnv(t) − Pnu(t)|n ≤ C|v(t) − u(t)| ≤ C|u0 − (I +
√

λA)−1u0|.

It is proven in [5] that:

|vλ(t) − v(t)| ≤
√

λT |A0y|,

where A0y := Argmin{|ξ |; ξ ∈ Ay},

|vλ(t) − v(t)| ≤
√

T |u0 − (I +
√

λA)−1u0|.
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Hence we have:

(3) |Pnv
λ(t) − Pnv(t)|n ≤ C

√
T |u0 − (I +

√
λA)−1u0|.

By the same argument we obtain:

(4) |vn(t) − vλ
n(t)|n ≤

√
T |Pnu

0 − (I +
√

λAn)−1Pnu
0|n

≤
√

T [C|u0 − (I +
√

λA)−1u0|
+ |(I +

√
λAn)−1Pnu

0 − Pn(I +
√

λA)−1u0|n],

where the second term of the last inequality goes to zero when n → ∞. Since

vλ(t) = vλ(0) +
∫ t

0

Aλv
λ(τ )dτ, vλ

n(t) = vλ
n(0) +

∫ t

0

An
λv

λ
n(τ )dτ,

a trivial computation gives:

(5) |vλ
n(t) − Pnv

λ(t)|n ≤ |Pny − yn|n +
∫ t

0

|An
λv

λ
n(τ ) − PnAλv

λ(τ )|ndτ

≤ |Pny − yn|n +
∫ t

0

|An
λv

λ
n(τ ) − An

λPnv
λ(τ )|ndτ

+
∫ t

0

|An
λPnv

λ(τ ) − PnAλv
λ(τ )|ndτ

≤ |Pny − yn|n + 1

λ

∫ t

0

|vλ
n(τ ) − Pnv

λ(τ )|ndτ

+
∫ t

0

|An
λPnv

λ(τ ) − PnAλv
λ(τ )|ndτ,

because An
λ is a Lipschitz operator of constant 1

λ
. Then, the Gronwall inequality implies:

|vλ
n(t) − Pnv

λ(t)|n ≤
[
|Pny − yn|n +

∫ t

0

|An
λPnv

λ(τ ) − PnAλv
λ(τ )|ndτ

]
e

t
λ

and finally

∫ t

0

|An
λPnv

λ(τ ) − PnAλv
λ(τ )|ndτ

≤ 1

λ

∫ t

0

|(I +
√

λAn)−1Pnv
λ(τ ) − Pn(I +

√
λA)−1vλ(τ )|ndτ.

By Lebesgue’s dominated convergence theorem the last term goes to 0 when n → ∞ and

|Pny − yn|n = |Pn(I +
√

λA)−1u0 − (I +
√

λAn)−1Pnu0|n → 0

when n → ∞.

Thus, for a fixed λ we have:

lim
n→∞

||un(·) − Pnu(·)|n|L∞(0,T ) ≤ (C + C
√

T )|u0 − (I +
√

λA)−1u0|.
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The conclusion follows since the right-hand side of the last inequality is arbitrarily small

when λ → 0.

(ii) Second step: general case.

Let g be a step function on [0, T ]. Let wn, w be the solutions of:

{
dwn

dt
+ Anwn ∋ Png,

wn(0) = u0
n,

{
dw
dt

+ Au ∋ g,

w(0) = u0.

The previous result, applied for each interval of [0, T ], where g is constant and for the

operators Lnun := Anun −Png and Lu := Au−g, which are obviously maximal monotone,

gives:

|Pnw(t) − wn(t)|n → 0 uniformly on [0, T ].
Then we have

|Pnu − un|L∞(O,T ,Hn) ≤ |Pnu − Pnw|L∞(O,T ,Hn) + |Pnw − wn|L∞(O,T ,Hn)

+ |wn − un|L∞(O,T ,Hn)

≤ C|u − w|L∞(O,T ,H) + |Png − fn|L1(O,T ,Hn)

+ |Pnw − wn|L∞(O,T ,Hn)

≤ C|f − g|L1(O,T ,H) + C|f − g|L1(O,T ,H)

+ |Pnf − fn|L1(O,T ,Hn) + |Pnw − wn|L∞(O,T ,Hn).

Thus

lim sup
n→∞

|Pnu − un|L∞(O,T ,Hn) ≤ 2C|f − g|L1(O,T ,H).

The conclusion follows since the last term is arbitrarily small. �
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