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A mathematical model for a pseudo-plastic

welding joint
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and Gérard Michaille∗
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Abstract

An elementary situation in welding involves the perfect assembly of two

adherents and a strong adhesive occupying a thin layer. The bulk energy

density of the hyperelastic adherents grows superlinearly while the one of

the pseudo-plastic adhesive grows linearly with a stiffness of the order of its

thickness ε. We propose a simplified but accurate model by studying the

asymptotic behavior, when ε goes to zero, through variational convergence

methods: at the limit, the intermediate layer is replaced by a pseudo-

plastic interface which allows cracks to appear.
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1 Introduction

Motivated by the mathematical modeling of a problem of welding, we revisit
previous studies ([1], [8]) devoted to the asymptotic behavior of a structure
made of two adherents connected by a thin and strong adhesive layer. In [8]
the adherents and the adhesive were modeled as hyperelastic by bulk energy
densities with the same growth exponent p laying in (1,+∞), the stiffness of
the adhesive being of the order of the inverse of its thickness. Here, our first
attempt to account for some fracture phenomena in soldered joint is to model
the adhesive as pseudo-plastic, that is to say its behavior is described by a bulk
energy density with linear growth. Hence, from the mathematical point of view,
two difficulties appear: the growths of the the bulk energy in the adhesives and
the adherent are different and the linear growth in the adherent will imply to
work in spaces of displacement fields with free discontinuities

The paper is organized as follows. In Section 2, we describe a model problem
with a simplified geometry directly connected to the study [8] where we assume
that the bulk energy density of the adherents is quasiconvex and the one of
the adhesive is convex. In Section 3, a variational convergence result, when the
thickness of the adhesive layer goes to zero, justifies our proposal of simplified
but accurate enough model. The adhesive layer is replaced by a material pseudo-
plastic surface. The case when f is not quasiconvex and g is not convex is
considered in Section 4. In Section 5, we use the previous results to model
a more realistic situation of welding. Eventually, in the spirit of [7], [17], we
consider a variational regularization of the limit functional involved by our model
in Section 6.

2 Description of the model

We make no difference between R3 and the three dimensional euclidean physical
space whose orthogonal basis is denoted by (e1, e2, e3), Greek coordinate indexes
will run in {1, 2} and Latin ones in {1, 2, 3}. For all ζ = (ζ1, ζ2, ζ3) of R3,

ζ̂ stands for (ζ1, ζ2). Let S be a domain of R2 with a Lipschitz-continuous
boundary ∂S and r a positive number. The cylindrical domain Ω := S×(−r, r) is
the reference configuration of a structure made of two adherents and an adhesive
which respectively occupies Ω±

ε := {x ∈ Ω : ±x3 > ε/2} and Bε := {x ∈ Ω :
|x3| < ε/2}. We set Ωε := Ω+

ε ∪ Ω−
ε . The structure is clamped on a part Γ0 of

the boundary Γ of Ω with a positive H2-measure and we assume that there exists
ε0 > 0 such that dist(Γ̄0, B̄ε0

) > 0. The structure is subjected to body forces
of density Φ and to surface forces of density ϕ on the complementary part Γϕ

of Γ0. We assume that the supports of ϕ and Φ lay outside of B̄ε0
. Obviously,

one can consider other type of boundary conditions (e.g. a combination of some
components of the stress vector and of the displacement). At last, adhesive
and adherents are assumed to be perfectly stuck together. In section 5 we
will consider a more realistic structure (see figure 1 for the two geometrical
strucures).
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The stiffness of the material occupying the thin layer Bε is assumed to be
of order 1/ε so that the strain in Bε is expected to be small and we will use
the framework of small perturbations to model the behavior of the adhesive. To
account for possible fracture phenomena inside Bε, we consider the adhesive as
pseudo-plastic. Hence the behavior of the adhesive is described by a bulk energy
density like 1/ε g(e(u)) where g is a convex function with linear growth of the
linearized strain e(u) i.e., the symmetric part (∇u)s of the gradient displacement
∇u. By contrast, the deformations in the adherents may be large and they are
modeled as hyperelastic with a continuous quasiconvex bulk energy density f ,
function of the gradient displacement. More precisely, we assume that there
exists p > 1, and two positive constants α, β such that

f, g : M3×3 → R;

α|ξ|p ≤ f(ξ) ≤ β(1 + |ξ|p) for all ξ ∈ M3×3; (1)

α|ξ| ≤ g(ξ) ≤ β(1 + |ξ|) for all ξ ∈ M3×3
s . (2)

Here and in the sequel Mn×n and Mn×n
s stand for the set of n×n matrices and

n×n symmetric matrices with real entries respectively. It is well known that f
and g satisfy the following locally Lipschitz conditions: there exists a positive
constant L such that

|f(ξ) − f(ξ′)| ≤ L|ξ − ξ′|
(
1 + |ξ|p−1 + |ξ′|p−1

)
for all ξ, ξ′ ∈ M3×3; (3)

|g(ξ) − g(ξ′)| ≤ L|ξ − ξ′| for all ξ, ξ′ ∈ M3×3
s . (4)

Thus, if Fε(u) :=
∫
Ωε
f(∇u) dx + 1

ε

∫
Bε
g(e(u) dx and L(u) :=

∫
Ω

Φ.u dx +∫
Γϕ
ϕ.u dH2 respectively denote the total stored energy and the work of the ex-

ternal loading, determining the equilibrium configurations leads to the problem

inf
{∫

Ωε

f(∇u) dx+
1

ε

∫

Bε

g(e(u)) dx− L(u) : u ∈ Aε

}

with
Aε :=

{
u ∈ LD(Ω,R3) : u⌊Ωε

∈W 1,p
Γ0

(Ωε,R
3)
}
;

W 1,p
Γ0

(Ωε,R
3) :=

{
u ∈W 1,p(Ωε,R

3) : u = 0 on Γ0

}
;

LD(Ω,R3) :=
{
u ∈ L1(Ω,R3) : e(u) ∈ L1(Ω,M3×3

s

}
.

We aim to propose a simplified but accurate model where qualitative and
quantitative analysis are able to be done in an easier way than with the starting
problem. For this, we will consider ε as a parameter going to zero and determine
the asymptotic behavior of (approximate) solutions of the previous minimization
problem by identifying the Γ-limit of Fε extended into the fixed space L1(Ω,R3).
More precisely, we still denote by Fε its extension outside Aε given by:
Fε : L1(Ω,R3) → R ∪ {+∞},

Fε(u) :=





∫

Ωε

f(∇u) dx+
1

ε

∫

Bε

g(e(u)) dx if u ∈ Aε

+∞ otherwise.
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Clearly the previous minimization problem is equivalent to the following

(Pε) inf
{
Fε(u) − L(u) : u ∈ L1(Ω,R3)}.

We will use the classical spaces

W 1,p
Γ0

(Ω,R3) :=
{
u ∈W 1,p(Ω,R3) : u = 0 on Γ0

}
;

BD(Ω,R3) :=
{
v ∈ L1(Ω,R3) : e(v) ∈ M(Ω,M3×3

s

}
;

BD(S,R2) :=
{
v ∈ L1(S,R2) : e(v) ∈ M(S,M2×2

s

}

and the set of “horizontal rigid motions” on S, i.e.

R̂H :=
{
v ∈ BD(S,R2) : eαβ(v) = 0

}

=
{
v : v(x) = (a1 − bx2, a2 + bx1), (a1, a2) ∈ R2, b ∈ R

}
.

For reasons clarified in Lemma 2 below, we define the limit admissible set A0

by
A0 :=

{
u ∈W 1,p

Γ0
(Ω,R3) : γS(û) ∈ BD(S,R2)

}

and its subspace A1
0 made of smooth elements

A1
0 :=

{
u ∈ A0 : γS(u) ∈ C1(S̄,R3)

}
.

For simplicity of notation γS will denote indifferently the trace operator from

W 1,p(Ω,Ri) into W 1− 1

p
,p(S,Ri) for i ∈ {1, 2, 3}.

For all ξ ∈ M3×3
s , define ξ̂ ∈ M2×2

s by (ξ̂)αβ = ξαβ and consider the function
g0 : M2×2

s → R defined by

g0(ζ) := min
{
g(ξ) : ξ ∈ M3×3

s , ξ̂ = ζ
}
.

It is easily seen that g0 is a convex function on M2×2
s and it will be sometimes

convenient to express g0 as stated in the next lemma:

Lemma 1. For all 3 × 2-matrix ξ, infλ∈R3 g((ξ|λ)s) = g0((ξαβ)s).

Proof. The conclusion is a straightforward consequence of the calculation

min
λ∈R3

g((ξ|λ)s) = min
λ∈R3

g
(



ξ11
ξ12+ξ21

2
λ1+ξ31

2
ξ12+ξ21

2 ξ22
λ2+ξ32

2
λ1+ξ31

2
λ2+ξ32

2 λ3



)

= min
λ∈R3

g
(



ξ11
ξ12+ξ21

2 λ1
ξ12+ξ21

2 ξ22 λ2

λ1 λ2 λ3



)

and the definition of g0.
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In Section 3, we establish the Γ-convergence of the sequence (Fε)ε>0 to the
functional defined by:

F0 : L1(Ω,R3) → R ∪ {+∞}

F0(u) :=





∫

Ω

f(∇u) dx+

∫

S

(
g0(e(γs(û)) if u ∈ A0

+∞ otherwise

when L1(Ω,R3) is equipped with its strong topology. For the defintion of the
scalar measure g0(e(v)), v ∈ BD(S,R2), we refer the reader to [12], [17], [6]. We
recall that the integral over S of the measure g0(e(v)) is given by

∫

S

g0(e(v)) =

∫

S

g0(ea(v)) dx̂+

∫

S

g∞0
( es(v)

|es(v)|

)
|es(v)|

where e(v) = ea(v) dx̂+ es(v) is the Lebesgue decomposition of e(v), |es(v)| de-

notes the total variation of the singular measure es(v),
es(v)
|es(v)| its Radon-Nikodym

derivative, and ξ 7→ g∞0 (ξ) := limt→+∞ g0(tξ)/t is the recession function of g0.
In [3], Ambrosio, Coscia and Dal Maso proved that the singular measure es(v̂)
has the following structure: there exists a rectifiable set Sv ⊂ S with normal νv

and traces v± on both sides of Sv such that

es(v) =
1

2

(
(v+ − v−) ⊗ νv + νv ⊗ (v+ − v−)

)
H1⌊Sv + Cv,

with Cv singular with respect to the Lebesgue measure and vanishing on Borel
sets of σ-finite H1-measure. We will also denote by [v] ⊗s νv the symetrical
tensor product (v+ − v−) ⊗ νv + νv ⊗ (v+ − v−). The set Sv will represent the
macroscopic cracks whereas the support of Cv deals with the diffuse defects or
fractal cracks in S towards the layer shrinks.

We start by establishing a compactness result which justifies the introduction
of the limit set A0 of admissible functions. As usual the arrows → and ⇀ will
denote strong and weak convergences respectively.

Lemma 2 (Compactness lemma). Let (uε)ε>0 be a sequence in L1(Ω,R3) such
that supε>0 Fε(uε) < +∞. Then, there exists u ∈ L1(Ω,R3) and a subsequence
not relabelled such that

i) uε ⇀ u in BD(Ω,R3) and u ∈W 1,p
Γ0

(Ω,R3);

ii) uε ⇀ u in W 1,p
Γ0

(Ωη,R
3) for every η > 0;

iii) γS(û) ∈ BD(S,R2);

iv) ∃rε ∈ R̂H such that
1

ε

∫ ε
2

− ε
2

ûε dx3 + rε ⇀ γS(û) in BD(S,R2).
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Proof. From now on, we do not relabel the various subsequences obtained in
the proof, and C will denote a positive constant which may vary from line to
line. We divide the proof into two steps.
Step 1. We establish (i) and (ii). According to the coerciveness condition (1)
and because uε = 0 on Γ0, (uε)ε>0 is clearly bounded in LD(Ω,R3) so that
there exist u ∈ BD(Ω,R3) and a subsequence satisfying uε ⇀ u in BD(Ω,R3)
and uε → u in L1(Ω,R3). The weak convergence of uε to u in W 1,p

Γ0
(Ωη,R

3) for

every η > 0 is obvious. We are going to prove that u ∈W 1,p
Γ0

(Ω,R3).

We extend every function w ∈W 1,p
Γ0

(Ωε,R
3) by reflexion on S×(±r,±2r∓ ε

2 )

so that the extended function, denoted by w̃, belongs to W 1,p(S × (± ε
2 ,±2r ∓

ε
2 ),R3) and satisfies

∫

S×(± ε
2
,±2r∓ ε

2
)

|∇w̃|p dx ≤ 2

∫

Ω±
ε

|∇w|p dx.

Set Ω± := Ω ∩ [±x3 > 0] and, for every function w ∈ W 1,p
Γ0

(Ωε,R
3), define its

ε-translate Tεw in W 1,p(Ω \ S,R3) by

Tεw(x̂, x3) =

{
w̃(x̂, x3 + ε/2), if x ∈ Ω+

w̃(x̂, x3 − ε/2), if x ∈ Ω−.

Because

sup
ε>0

∫

Ω\S

|∇Tεuε|
p dx ≤ sup

ε>0

∫

S×( ε
2
,2r− ε

2
)∪S×(−2r+ ε

2
,− ε

2
)

|∇ũε|
p dx

≤ 2 sup
ε>0

∫

Ωε

|∇uε|
p dx < +∞,

Poincaré’s inequality implies that there exist z ∈ W 1,p(Ω \ S,R3) and a sub-
sequence of (uε)ε>0 such that Tεuε ⇀ z in W 1,p(Ω \ S,R3) and uε → z
in Lp(Ω,R3). Actually u = z (so that u ∈ W 1,p(Ω \ S,R3)) since for all
ψ ∈ D(Ω \ S,Rm),

∫

Ω\S

u.ψ dx = lim
ε→0

∫

Ω\S

uε.ψ(x̂, x3 −
ε

2
) dx

= lim
ε→0

∫

Ω\S

Tεuε.ψ dx

=

∫

Ω\S

z.ψ dx.

For all w ∈W 1,p(Ω \ S,R3), we will denote the traces on S of w considered
as a function of W 1,p(Ω±,R3) by w± and its jump accross S by [w] := w+−w−.
Take θ ∈ C∞

c (S)), Green’s formula yields

2

∫

Bε

eα3(uε) θ dx =

∫

S

θ[Tεu
ε
α] dx̂+ Iε (5)
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where

Iε := −

∫

Bε

∂uε
3

∂xα
θ dx.

The left hand side term of (5) tends to 0 by coercivity condition (2), and from

uε
3(x̂,±|x3|) = uε

3(x̂,±ε/2) +

∫ ±|x3|

±ε/2

∂uε
3

∂x3
(x̂, t) dt

= (Tεu
ε
3)

±(x̂) +

∫ ±|x3|

±ε/2

∂uε
3

∂x3
(x̂, t) dt,

we deduce
∫

Bε

|uε
3(x̂, x3)| dx ≤ ε

∫

S

(
|(Tεu

ε
3)

+(x̂)| + |(Tεu
ε
3)

−(x̂)|
)
dx̂+ ε

∫

Bε

|
∂uε

3

∂x3
| dx

≤ Cε(1 + ε) (6)

so that

|Iε| =
∣∣∣
∫

Bε

uε
3

∂θ

∂xα
dx
∣∣∣ ≤ Cε(1 + ε),

and the right hand side term of (5) tends to
∫

S
θ[uα] dx̂. Going to the limit on

ε in (5) yields [uα] = 0 a.e. on S. Similarly, by letting ε→ 0 in
∫

Bε

∂uε
3

∂x3
θ dx =

∫

S

θ[Tεu
ε
3] dx̂,

and by using coercivity condition (2), we obtain [u3] = 0 a.e. on S.

Step 2. We establish (iii) and (iv). Coercivity condition (2) implies

sup
ε>0

1

ε

∫

Bε

|ê(uε)dx| < +∞

so that there exists a subsequence of vε :=
1

ε

∫ ε
2

− ε
2

ûε dx3, rε ∈ R̂H and v ∈

BD(S,R2) such that vε + rε ⇀ v in BD(S,R2). It remains to prove that
v = γS(û). For arbitrary θ ∈ C∞

c (S) and x3 ∈ (− ε
2 ,

ε
2 ), one has

uε
α(x̂,±|x3|)θ(x̂) = (Tεu

ε
α)±(x̂))θ(x̂) +

∫ ±|x3|

±ε/2

∂uε
α

∂x3
(x̂, t)θ(x̂) dt

so that

1

ε

∫ ε
2

− ε
2

∫

S

uε
α(x̂, x3)θ(x̂) dx =

1

2

∫

S

(Tεu
ε
α)+(x̂) + (Tεu

ε
α)+(x̂))θ(x̂) dx̂+ Jε (7)

where

Jε :=
1

ε

∫ 0

− ε
2

∫

S

∫ −|x3|

−ε/2

∂uε
α

∂x3
(x̂, t)θ(x̂) dt dx+

1

ε

∫ ε
2

0

∫

S

∫ |x3|

ε/2

∂uε
α

∂x3
(x̂, t)θ(x̂) dt dx.
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We claim that limε→0 Jε = 0. Indeed
∫

S

∫ x3

ε/2

∂uε
α

∂x3
θ(x̂) dtdx̂ =

∫

S

∫ x3

ε/2

(
2e3α(uε) −

∂uε
3

∂xα

)
θ dtdx̂

=

∫

S

∫ x3

ε/2

(
2e3α(uε)θ + uε

3

∂θ

∂xα

)
dtdx̂,

thus

|Jε| ≤ C

∫

Bε

(
|e3α(uε)| + |uε

3)|
)
dx,

and the claim follows from (6) and coercivity condition (2). Letting ε → 0 in
(7), we obtain ∫

S

vαθ dx̂ =

∫

S

γS(uα)θ dx̂

thus vα = γS(uα) a.e. in S since θ is arbitrary.

3 The main convergence result

The main result of this section is the following theorem.

Theorem 1. The sequence (Fε)ε>0 Γ-converges to the functional F0.

The proof consists in establishing Proposition 1 and Proposition 2 below,
corresponding to the lower bound and the upper bound in the definition of the
Γτs

-convergence.

Proposition 1 (Lower bound). For all u and all sequence (uε)ε>0 in L1(Ω,R3)

such that uε
τs→ u, the following inequality holds:

F0(u) ≤ lim inf
ε→0

Fε(uε). (8)

Proof. Clearly one may assume that lim infε→0 Fε(uε) < +∞ so that from

Lemma 2, u belongs to A0, and e
(

1
ε

∫ ε
2

− ε
2

ûε dx3

)
= 1

ε

∫ ε
2

− ε
2

ê(uε) dx3 ⇀ e(γS(û))

in M(S,M2×2
s ). Thus from Jensen’s inequality

lim inf
ε→0

Fε(uε) = lim inf
ε→0

(∫

Ωε

f(∇uε)dx+
1

ε

∫

Bε

g(e(uε))dx

≥ lim inf
ε→0

∫

Ωε

f(∇uε)dx+ lim inf
ε→0

1

ε

∫

Bε

g(e(uε))dx

≥ lim inf
ε→0

∫

Ωε

f(∇uε)dx+ lim inf
ε→0

1

ε

∫

Bε

g0(ê(uε))dx

≥

∫

Ω

f(∇u)dx+

∫

S

g0(e(γS(û)).

In the last inequality, we used the weak lower semicontinuity of the second in-
tegral functional with respect to the weak convergence of measures. For the
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convergence of the first integral, we proceeded as follows: take η > ε, write∫
Ωε
f(∇uε)dx ≥

∫
Ωη
f(∇uε)dx, and apply the lower semicontinuity of the in-

tegral functional u 7→
∫
Ωη
f(∇u)dx for the weak convergence in W 1,p(Ωη,R

3).

Then let η → 0.

For proving the upper bound, we need to establish the following relaxation
result.

Lemma 3 (Relaxation). The functional F0 is the l.s.c. regularization for the
strong topology of the functional defined on L1(Ω,R3) by

F̃0(u) :=





∫

Ω

f(∇u) dx+

∫

S

g0(e(γS(û)) dx̂ if u ∈ A1
0,

+∞ otherwise.

Proof. Step 1. By using standard lower semicontinuous arguments, it is easily
seen that for every sequence (un)n∈N strongly converging to u in L1(Ω,R3),
one has

F0(u) ≤ lim inf
n→+∞

F̃0(un).

Step 2. We assume u ∈ A0 and we construct a sequence (uδ)δ>0 in A1
0 such that





uδ → u strongly in W 1,p(Ω,R3);
γS(ûδ) = vδ → v := γS(û) strongly in L1(S,R2);

lim
δ→0

∫

Ω

f(∇uδ) dx =

∫

Ω

f(∇u) dx;

lim
δ→0

∫

S

g0(e(vδ)) dx̂ =

∫

S

g0(e(v)).

Consider the open cylinder Ω̃ := S̃ × (−r, r) containing Ω, where S̃ is an open
set of R2 strictly containing S and extend u into a function ũ in W 1,p(Ω̃,R3).
We also extend v into a function ṽ in BV(S̃,R3). More precisely, let P3 denote
the extension operators

P3 : W 1,p(Ω,R3) →W 1,p(Ω̃,R3),

and γS̃ the trace operator associated with the Sobolev space W 1,p(Ω̃,R3). We

define ṽ in BV(S̃,R3) by ṽ := γS̃ ◦ P3(û), i.e., ṽ = γS̃(ˆ̃u).
For all δ > 0, consider the open ball Bη(δ)(0) of R2 centered at 0 with a

radius η(δ) > 0 small enough so that S + Bη(δ(0) ⊂ S̃. Let φ in C∞
c (S̃) with

φ = 1 on a neighborhood S+Bη(δ(0) included in S̃ and ρη(δ) a standard mollifier
with support B̄η(δ)(0). Set vδ := ρη(δ) ∗ (φṽ), uδ := ρη(δ) ∗ (φũ) and choose η(δ)
small enough so that:

‖vδ − v‖L1(S,R2) < δ; (9)
∣∣∣
∫

R2

g0(ρη(δ) ∗ (φe(ṽ))) −

∫

R2

g0(φe(ṽ))
∣∣∣ < δ; (10)

‖uδ − u‖W 1,p(Ω,R3) < δ. (11)
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Estimates (9) and (11) are standard (note that the mollification of ũ takes
place only on the x̂ argument). Estimate (10) is a straightforward consequence
of the narrow convergence of the measure g0(ρη(δ) ∗ (φe(ṽ))) to the measure
g0(φe(ṽ)) in M+(R2) (see for instance Lemma 5.2 and Remark 5.1 in [17], or, if
g0 is positively homogeneous of degree 1, use Reshetnyak’s continuity theorem,
Theorem 2.39 in [4]).

Clearly vδ ∈ C∞(S̄,R2) and, from (9), vδ → v in L1(S,R2). Moreover, from
(10), and noticing that φ = 1 on S +Bη(δ)(0),

∣∣∣
∫

S

g0(e(vδ)) −

∫

S

g0(e(v))
∣∣∣ ≤

∣∣∣
∫

R2

g0(ρη(δ) ∗ (φe(ṽ)) −

∫

R2

g0(φe(ṽ))
∣∣∣ < δ,

so that

lim
δ→0

∫

S

g0(e(vδ)) =

∫

S

g0(e(v)).

From (11), uδ → u in W 1,p(Ω,R3) and, from (3),

lim
δ→0

∫

Ω

f(∇uδ) dx =

∫

Ω

f(∇u) dx.

According to the definition of vδ, uδ, and from the fact that ṽ = γS̃(ˆ̃u), one has
γS(ûδ) = vδ.

The sequence (uδ)δ>0 fulfills all the conditions of the set A1
0 except the

boundary condition. By using De Giorgi’s slicing method in a neighborhood
of Γ0 (see for instance Theorem 11.2.1 in [6]), one can modify uδ into a new
function ũδ ∈ A1

0 which has the same trace as its weak limit u on ∂Ω, and
satisfies

lim sup
δ→0

∫

Ω

f(∇ũδ) dx ≤

∫

Ω

f(∇uδ) dx,

thus, finally

lim
δ→0

∫

Ω

f(∇ũδ) dx =

∫

Ω

f(∇u) dx.

Note that uδ is not affected on a neighborhood of S by this modification because
dist(Γ0, ∂Bε ∩ Γ) > 0. Thus ũδ that we denote now by uδ is the expected
sequence.

Proposition 2 (Upper bound). The following inequality holds in L1(Ω,R3)

(Γ − lim supFε) ≤ F0. (12)

Proof. Step 1. We establish Γ − lim supFε ≤ F̃0.
Take u ∈ A1

0. In what follows we set v := γS(û). For every fixed ξ in
D(S,R3), consider the function vε in W 1,p(B,R3), B = S × (− 1

2 ,
1
2 ) defined by

{
vα

ε (x̂, x3) := vα(x̂) + εx3ξ
α(x̂)

v3
ε(x̂, x3) := εu3(x̂, 0) + ε2x3ξ

3(x̂)

10



and set

uε(x̂, x3) :=





u(x̂, x3 −
ε

2
) +

ε

2
ξ(x̂) in Ω+

ε

vε(x̂,
x3

ε
) in Bε

u(x̂, x3 +
ε

2
) −

ε

2
ξ(x̂) in Ω−

ε .

Clearly uε ∈ Aε except the boundary condition and uε → u in L1(Ω,R3). An
easy calculation and the local Lipschitz conditions (3), (4), yield

lim
ε→0

∫

Ωε

f(∇uε) dx =

∫

Ω

f(∇u) dx

and

lim
ε→0

1

ε

∫

Bε

g(e(uε)) dx = lim
ε→0

∫

B

g
(
(∇̂vε|

1

ε

∂vε

∂x3
)s

)
dx

=

∫

S

g
(
(∇̂v|ξ)s

)
dx̂,

so that

lim
ε→0

Fε(uε) =

∫

Ω

f(∇u) dx+

∫

S

g
(
(∇̂v|ξ

)
s
) dx̂.

By using again De Giorgi’s slicing method in a neighborhood of Γ0, one can
modify uε into a function still denoted by uε, satisfying the boundary condition
on Γ0 and

lim
ε→0

Fε(uε) =

∫

Ω

f(∇u) dx+

∫

S

g
(
(∇̂v|ξ

)
s
) dx̂. (13)

According to a well known interchange result between infimum and integral
(see [2]) we have

∫

S

g0(e(v)) dx̂ = inf
ξ∈D(S,R3)

∫

S

g
(
(∇̂v|ξ)s

)
dx̂. (14)

By taking the infimum over all ξ ∈ D(S,R3) in (13) and by using Lemma 1 we
deduce

inf
{

lim sup
ε→0

Fε(uε) : uε → u in L1(Ω,R3)
}
≤ F̃0(u),

i.e. Γ − lim supFε ≤ F̃0.

Step 2. Taking the lower semicontinuous envelope of each two functionals for
the strong topology of L1(Ω,R3), the conclusion then follows from the lower
semicontinuity of Γ − lim supFε and from Lemma 3.

According to Lemma 2 and to variational properties of the Γ-convergence,
we obtain :

11



Corollary 1. Let ūε be a solution of (Pε). Then there exist a subsequence of
(ūε)ε>0 and ū in W 1,p

Γ0
(Ω,R3) such that

ūε ⇀ ū in BD(Ω,R3);

ūε ⇀ ū in W 1,p
Γ0

(Ωη,R
3) for every η > 0;

γS(ˆ̄u) ∈ BD(S,R2).

Moreover ū is solution of the minimization problem

(P) min
{
F0(u) − L(u) : u ∈ L1(Ω,R3)

}

and

min
{
Fε(u) − L(u) : u ∈ L1(Ω,R3)

}
→ min

{
F0(u) − L(u) : u ∈ L1(Ω,R3)

}
.

Thus, in this simplified case (see Section 5 for a realistic geometry), our
proposal of model is given by the limit problem (P) which describes the equilib-
rium of a structure made of two adherents perfectly stuck to a material surface.
The reference configuration of the adherents are Ω± := Ω ∩ [±x3 > 0] while
the one of the material surface is S. The adherents are hyperelastic with bulk
energy density f and the material surface is pseudo-plastic with surface density
g0. Due to the linear growth of g0, the displacement field solution of (P) may
present discontinuities in S which may be interpreted in terms of cracks. It is
worthwhile to note that this situation with strong adhesive layer is completely
different from the one considered in [15] with a soft adhesive: in the asymptotic
model, the soft adhesive layer is replaced by a mechanical constraint between
the adherents, whereas the strong adhesive layer is replaced by a material sur-
face perfectly stuck to adherents. Another strategy proposed in [7] leads to a
similar model.

4 The case when f is not quasiconvex and g is

not convex

In this section, we drop the quasiconvex and convex assumptions on the density
functions f and g respectively. This is the case when the materials undergo
reversible solid/solid phase transformations, for which the density functions
present a multi-well structure (for f in the large deformation setting see [10],
for g in the setting of small perturbations see [13]). However we assume that
f and g satisfy the locally Lipschitz conditions (3), (4) and that g is positively
1-homogeneous. In this more general situation, we would like to show that the
limit energy functional is given by

F0 : L1(Ω,R3) → R ∪ {+∞}

F0(u) :=





∫

Ω

Qf(∇u) dx+

∫

S

SQg0(e(γs(û)) if u ∈ A0,

+∞ otherwise

12



where Qf is the quasiconvex envelope of f and SQg0 : M2×2
s → R is the

symmetric quasiconvex envelope of g0 defined by

SQg0(ζ) := inf
{ 1

|D̂|

∫

D̂

g0(ζ + e(ϕ)) dx̂ : ϕ ∈ C∞
0 (D̂,R2)

}
.

Let denote the operator ζ 7→ ζs from M2×2 into M2×2
s by S2. Thus, for every

ζ ∈ M2×2
s , SQg0(ζ) = Q(g0◦S2)(ζ) where Q(g0◦S2) is the quasiconvex envelope

of g0 ◦ S2. Note that the right hand side term does not depend on the choice
of the cube D̂ of R2 and that SQg0 is 1-homogeneous. With the notation of
Section 2, the integral over S of the measure SQg0(e(v)) is given by

∫

S

SQg0(e(v)) =

∫

S

SQg0(ea(v)) dx̂+

∫

S

SQg0
( (es(v)

|es(v)|

)
|es(v)|.

Like in Section 2, we prove Proposition 3 and Proposition 5 below, corre-
sponding to the lower and the upper bound in the definition of the Γ-convergence.
Unfortunately, we establish the lower bound when u belongs to the subset Ã0

of A0 defined by

Ã0 :=
{
u ∈W 1,p

Γ0
(Ω,R3) : γS(û) ∈ SBD(S,R2)

}

where SBD(S,R2) denotes the set of the elements u of BD(S,R2) whose the
Cantor part of the strain tensor e(u) is zero. Then, the main result of this
section is

Theorem 2. The restriction of the Γ-limit of Fε to the set Ã0 is given by

F0(u) =

∫

Ω

Qf(∇u) dx+

∫

S

SQg0(ea(γS(û))) dx̂+

∫

S

SQg0([γs(û)]⊗sνγS(û))dH
1.

Remark 1. If we assume that an approximate minimizer of (Pε) strongly con-
verges to some ū in L1(Ω,R3) whose distributional gradient has no Cantor part,
according to the variational nature of the Γ-convergence, we deduce that ū is a
solution of the limit problem

(P) min
{
F0(u) − L(u) : u ∈ L1(Ω,R3)

}

and

inf
{
Fε(u) − L(u) : u ∈ L1(Ω,R3)

}
→ min

{
F0(u) − L(u) : u ∈ Ã0

}
.

Therefore, under the asumption that some approximate minimizer is regular in
the sense above, problem (P) is a good model in the sense of Section 3, where
the density functions are now Qf and SQg0.

Remark 2. In the case when the deformations in the adhesive may be large,
they are modeled as hyperelastic together with the deformations in the adherents.
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In this particular case, we obtain a complete description of the Γ-limit F0 in the
set

Ã′
0 :=

{
u ∈W 1,p

Γ0
(Ω,R3) : γS(u) ∈ BV(S,R3)

}
.

More precisely F0 is defined in Ã′
0 by

F0(u) =

∫

Ω

Qf(∇u) dx +

∫

S

Qg0(∇(γS(u))) dx̂

+

∫

S

(Qg0)
∞
( DsγS(u)

|DsγS(u)|

)
|DsγS(u)|dH1,

where Du = ∇u dx̂ + Dsu is the Lebesgue decomposition of the distributional
derivative Du, g0(ζ) = min{g(ξ) : ξ ∈ M3×3, ξ̂ = ζ} for every ζ ∈ R3, and
ζ 7→ (Qg0)

∞(ζ) := limt→+∞Qg0(tζ)/t is the recession function of Qg0. The
proof uses the relaxation theorem, Theorem 11.3.1 in [6], instead of Proposition
4 below and follows point by point the claims of Propositions 3, 5 below.

Proposition 3 (Lower bound). For all u in Ã0 and all sequence (uε)ε>0 in
L1(Ω,R3) such that uε → u, the following inequality holds:

F0(u) ≤ lim inf
ε→0

Fε(uε). (15)

Proof. One has

lim inf
ε→0

Fε(uε) = lim inf
ε→0

(∫

Ωε

f(∇uε)dx+
1

ε

∫

Bε

g(e(uε))dx
)

≥ lim inf
ε→0

∫

Ωε

f(∇uε)dx+ lim inf
ε→0

1

ε

∫

Bε

g(e(uε))dx

≥ lim inf
ε→0

∫

Ωε

f(∇uε)dx+ lim inf
ε→0

1

ε

∫

Bε

g0(ê(uε))dx. (16)

For a.e. x in B, set v̂ε(x) := v̂ε(x̂, εx3) and v3
ε(x) = εv3

ε(x̂, x3). Set B :=
S × (− 1

2 ,
1
2 ). We have

lim inf
ε→0

1

ε

∫

Bε

g0(ê(uε))dx ≥ lim inf
ε→0

∫

B

SQg0((ê(vε))dx. (17)

Consider the function h : M3×3
s → R defined for every ξ ∈ M3×3

s by h(ξ) :=

SQg0(ξ̂). It is easily seen that h is symmetric quasiconvex, i.e. satisfies the
inequality:

h(ξ) ≤
1

|D|

∫

D

h(ξ + e(ϕ)) dx.

for every ϕ ∈ C∞
c (D,R3) where D is any cube of R3 (see [9] for the definition).

Moreover (17) can be written

lim inf
ε→0

1

ε

∫

Bε

g0(ê(uε))dx ≥ lim inf
ε→0

∫

B

h(e(vε))dx. (18)
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Let denote by BD(B,R3) the space of bounded deformation on B and by RH

the set of rigid motions on B. According to coercivity condition (2) we have

sup
ε>0

∫

B

∣∣∣
(
eαβ(v̂ε)

1
εeα3(vε)

1
εe3α(vε)

1
ε2

∂vε
3

∂v3

)∣∣∣ dx ≤
1

α
sup
ε>0

1

ε

∫

Bε

g(e(uε))dx < +∞. (19)

Thus, by using the arguments of the proof of Lemma 2, one can easily estab-
lish the existence of v ∈ BD(B,R3) and rε ∈ RH such that vε + rε ⇀ v in
BD(B,R3), v̂ = γS(û), v3 = 0 and ∂v

∂x3

= 0. Combining (16), (18), a classical
results in relaxation theory (Theorem 11.2.1 in [6]) and a relaxation result in
BD(S,R2) (see [9]), we infer

lim inf
ε→0

Fε(uε) ≥

∫

Ω

Qf(∇u) dx+

∫

S

SQg0(ea(γS(û)) dx̂

+

∫

S

SQg0([γs(û)] ⊗s νγS(u)(x̂))dH
1(x̂)

which ends the proof.

For proving the upper bound, we need to establish the following relaxation
result.

Proposition 4 (Relaxation). The functional F0 is the l.s.c. regularization for
strong topology of the functional defined on L1(Ω,R3) by

F̃0(u) :=





∫

Ω

f(∇u) dx+

∫

S

g0(e(γS(û)) dx̂ if u ∈ A1
0,

+∞ otherwise.

In the proof of Proposition 4 we will use the following lemma.

Lemma 4. Let η > 0, then for every ζ ∈ M2×2
s ,

lim
η→0

SQ(η| . |p + g0)(ζ) = SQg0(ζ).

Proof. From the integral representations

SQ(η| . |p + g0)(ζ) = inf
φ∈C∞

c (D,R2)

1

|D|

∫

D

(η| . |p + g0)(ζ + e(φ))dx̂,

and

SQg0(ζ) = inf
φ∈C∞

c (D,R2)

1

|D|

∫

D

g0(ζ + e(φ))dx̂,
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where D is an arbitrary cube of R2, we can write

lim
η→0

(
inf

φ∈C∞
c (D,R2)

1

|D|

∫

D

(η| . |p + g0)(ζ + e(φ))dx̂
)

= inf
η>0

(
inf

φ∈C∞
c (D,R2)

1

|D|

∫

D

(η| . |p + g0)(ζ + e(φ))dx̂
)

= inf
φ∈C∞

c (D,R2)

(
inf
η>0

1

|D|

∫

D

(η| . |p + g0)(ζ + e(φ))dx̂
)

= inf
φ∈C∞

c (D,R2)

(
lim
η→0

1

|D|

∫

D

(η| . |p + g0)(ζ + e(φ))dx̂
)
.

We complete the proof by using the dominated convergence theorem.

Proof of Proposition 4. Denote by ¯̃F0 the l.s.c. regularization of F̃0. By using
standard l.s.c. results on integral functionals defined on Sobolev or BV -spaces,

one can easily prove F0 ≤ ¯̃F0 (see for instance [6], chapter 10). We only establish

the converse inequality ¯̃F0 ≤ F0. Its proof is not easy because of the condition
u ∈ A0 and the fact that f and g do not fulfill the same growth conditions.

Let u ∈ L1(Ω,R3) such that F0(u) < +∞. Then u ∈ A0. We have to exhibit
un in A1

0 strongly converging to u in L1(Ω,R3) such that limn→+∞ F̃0(un) =
F0(u). We proceed into two steps.

Step 1. We prove the thesis when u ∈ A1
0. For shorten notation we write

v := γS(û).
Let η > 0 intended to go to 0 and denote the constant involved in Korn’s

inequality by K:

∫

S

|∇w|p dx̂ ≤ K
(∫

S

|e(w)|p + |w|p
)
dx̂

for all function w in W 1,p(S,R2). From relaxation theory in Sobolev spaces,
there exists a sequence of smooth functions (un, vn)n∈N inW 1,p

Γ0
(Ω,R3)×W 1,p(S,R2)

such that (see for instance [6], Theorem 11.2.1 and Theorem 11.4.2)





un ⇀ u in W 1,p
Γ0

(Ω,R3), (|∇un|
p)n∈N uniformly integrable;

vn ⇀ v in W 1,p(S,R3);

lim
n→+∞

∫

Ω

f(∇un)dx =

∫

Ω

Qf(∇u)dx;

lim
n→+∞

∫

S

(3Kβη| . |p + g0)(e(vn))dx̂ =

∫

S

SQ(3Kβη| . |p + g0)(e(v))dx̂.

The additional condition that (|∇un|
p)n∈N may be assumed to be uniformly in-

tegrable comes from the following consideration. Consider the sequence (ũn)n∈N

whose gradients generate the same Young measure µ and such that (|∇ũn|
p)n∈N

is unifomly integrable (Lemma 11.4.1 in [6]). By using lower semicontinuity and
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continuity properties of Young measures (Proposition 4.3.3 and Theorem 4.3.3
in [6]), and standard lower semicontinuity results in Sobolev spaces, we have

∫

Ω

Qf(∇u) dx = lim
n→+∞

∫

Ω

f(∇un) dx

≥

∫

Ω×M3×3

f(λ) dµ

= lim
n→+∞

∫

Ω

f(∇ũn) dx

≥

∫

Ω

Qf(∇u) dx,

so that

lim
n→+∞

∫

Ω

f(∇ũn) dx = lim
n→+∞

∫

Ω

f(∇un) dx =

∫

Ω

Qf(∇u) dx

which proves the thesis. In what follows, we still denote by (un)n∈N the sequence
(ũn)n∈N.

We start by modifying the function un near S so that γS(un
α) = vn

α. Set
Ση := S× (−η, η), Σ2η := S× (−2η, 2η), consider a cut-off function ϕη in C1(R)
satisfying

ϕη = 1 on Ω \ Σ2η, ϕη = 0 on Ση, 0 ≤ ϕη ≤ 1, |
dϕη

dx3
| ≤

1

η
,

and define the function un,η by

un,η
α := ϕη(un

α − vn
α) + vn

α;
un,η

3 := un
3 .

Clearly un,η ∈ W 1,p
Γ0

(Ω,R3) and γS(un,i
α ) = vn

α. From the growth condition
satisfied by f , we have

∫

Ω

f(∇un,η) dx =

∫

Ση

f(∇un,η) dx+

∫

Σ2η\Ση

f(∇un,η) dx+

∫

Ω\Σ2η

f(∇un) dx

≤ β

∫

Ση

(1 + |∇vn|
p) dx+ β

∫

Σ2η\Ση

(1 + |∇vn|
p) dx+ C

[ ∫

Σ2η

|∇un|
p dx

+
1

ηp

∫

Σ2η

|ûn − vn|
p dx

]
+

∫

Ω

f(∇un)dx

= 3βη

∫

S

|∇vn|
p dx̂+ C

[
η +

∫

Σ2η

|∇un|
p dx+

1

ηp

∫

Σ2η

|ûn − vn|
p dx

]

+

∫

Ω

f(∇un)dx.
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Thus, according to Korn’s inequality (note that supn∈N

∫
S
|vn|

p dx̂ < +∞),

∫

Ω

f(∇un,η) dx ≤ 3βKη

∫

S

|(e(vn)|p dx̂

+ C
[
η +

∫

Σ2η

|∇un|
p dx+

1

ηp

∫

Σ2η

|ûn − vn|
p dx

]
+

∫

Ω

f(∇un)dx.

which yields

∫

Ω

f(∇un,η))dx+

∫

S

g0(e(vn))dx̂ ≤

∫

Ω

f(∇un)dx+

∫

S

(3βKη| |p + g0)(e(vn))dx̂

+C
[
η +

∫

Σ2η

|∇un|
p dx+

1

ηp

∫

Σ2η

|ûn − vn|
p dx

]

and, from (4),

lim sup
n→+∞

F̃0(un,η) ≤

∫

Ω

Qf(∇u)dx+

∫

S

SQ(3βKη| |p + g0)(e(vn))dx̂

+C
[
η + sup

n∈N

∫

Σ2η

|∇un|
p dx+

1

ηp

∫

Σ2η

|û− v|p dx
]

But since γS(û) = v, clearly one has

∫

Σ2η

|û− v|pdx ≤ ηp

∫

Σ2η

|
∂u

∂x3
|pdx

so that

lim sup
n→+∞

F̃0(un,η) ≤

∫

Ω

Qf(∇u)dx+

∫

S

SQ(3βKη| |p + g0)e(v)) dx̂

+C
[
η + sup

n∈N

∫

Σ2η

|∇un|
p dx+

∫

Σ2η

|
∂u

∂x3
|pdx

]

By letting η → 0, from the uniform integrability of (|∇un|
p)n∈N, Lemma 4 and

Lebesgue’s dominated convergence theorem, we obtain

lim sup
η→0

lim sup
n→+∞

F̃0(un,η) ≤

∫

Ω

Qf(∇u)dx+

∫

S

SQg0(e(v)) dx̂.

By using a standard diagonalization argument, there exists a map n 7→ η(n)
such that, setting ũn := un,η(n),

lim sup
n→+∞

F̃0(ũn) ≤ F0(u).

It is easily seen that ũn → u in L1(Ω,R3). Since classically lim infn→+∞ F̃0(ũn) ≥
F0(u), the proof of step 1 is complete.
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Step 2. We end the proof as the step 2 of the proof of Lemma 3. We only have
to substitute

∣∣∣
∫

R2

SQg0(ρη(δ) ∗ (φe(ṽ)) dx̂−

∫

R2

SQg0(φe(v)
∣∣∣ < δ (20)

for (10). Estimate (20) is a straightforward consequence of the weak conver-
gence of the measure ρη(δ) ∗ (φe(v))) to the measure φe(v)) in M(R2) together
with limn→+∞

∫
R2 |ρη(δ) ∗ (φe(v)))| =

∫
R2 |φe(v))|, and Reshetnyak’s continuity

theorem (see Theorem 2.39 in [4]).

Then proceeding exactly like in the proof of Proposition 2 and using Lemma
4, one has

Proposition 5 (Upper bound). The following inequality holds in L1(Ω,R3)

(Γ − lim supFε) ≤ F0. (21)

5 A modeling of a welding assembly

An elementary situation in welding can be described as follows. Let Σ+, Σ−

and S three domains of R2 with Lipschitz-continuous boundaries such that
S = Σ+ ∩ Σ−. Let r and ε two positive numbers such that ε << r and Ω±

ε :=
Σ± × (±ε/2,±r), Ωε = Ω+

ε ∪Ω−
ε , Bε = S× (−ε/2, ε/2), and S±

ε = S± ± ε/2 e3.
Then Oε := Ωε ∪ S+

ε ∪ S−
ε ∪ Bε is the reference configuration of a structure

made of two adherents and an adhesive (the soldered joint) which respectively
occupies Ω±

ε and Bε (see Figure 1). The structure is clamped on a part Γ0 of the
boundary Γ of Ω with a positive H2-measure and we assume that there exists
ε0 > 0 such that dist(Γ̄0, B̄ε0

) > 0. The structure is subjected to body forces
of density Φ and to surface forces of density ϕ on the complementary part Γϕ

of Γ0. We assume that the supports of ϕ and Φ lay outside of B̄ε0
. Obviously

one can consider other type of boundary conditions (e.g. a combination of some
components of the stress vector and of the displacement). At last, adhesive and
adherents are assumed to be perfectly stuck together along S±.

The adherents and the adhesive are modeled as in section 2 so that deter-
mining the equilibrium configuration leads to the problem

(Pε) inf
{
Fε(u) − L(u) : u ∈ Aε

}

where Fε and L have the same expression as in Section 2 but with the new
definitions of Ωε and Bε, whereas Aε now reads as:

Aε :=
{
u ∈ LD(Oε,R

3) : u⌊Ωε
∈W 1,p

Γ0
(Ωε,R

3)
}
.

Again, to propose a simplified but accurate model we consider ε as a param-
eter and study the asymptotic behavior, when ε goes to zero, of (approximate)
solution of (Pε). The essential difference from the model problem of Section 2
is that here the structure occupies a domain Oε which varies with ε, which from
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Figure 1: the reference configuration Oε. The reference configuration involved
in Section 2 is Ω+

2ε ∪ Ω−
2ε ∪Bε ∪ S

+
ε ∪ S−

ε .

the mathematical point of view is only of technical nature by simply modify-
ing the kinds of convergences. That is why we have preferred to consider the
model problem in whole details and to confine to state the sole results about
this realistic problem of welding.

Let Ω := Σ+× (0, r)∪S∪Σ−× (−r, 0) the set to which Oε “converges”. Let
Iε := Fε − L and I0 := F0 − L with F0 : L1(Ω,R3) → R ∪ {+∞},

F0(u) :=





∫

Ω

f(∇u) dx+

∫

S

(
g0(e(γs(û)) if u ∈ A0

+∞ otherwise,

where we keep the same definition for γS and A0 but with the new definition of
Ω. Doing the same for the definition of the operator Tε, our asymptotic model
is supplied by:

Theorem 3. Let ūε be a solution of (Pε). Then there exist a subsequence of
(ūε)ε>0 and ū in W 1,p

Γ0
(Ω,R3) such that

Tεūε → ū weakly in W 1,p(Ω \ S,R3);
ūε⌊S×(−r,r) → ū weakly in BD(S × (−r, r),R3);
γS(ˆ̄u) ∈ BD(S,R2).

Moreover ū is solution of the minimization problem

(P) min
{
F0(u) − L(u) : u ∈ L1(Ω,R3)

}

and

min
{
Fε(u) − L(u) : u ∈ L1(Ω,R3)

}
→ min

{
F0(u) − L(u) : u ∈ L1(Ω,R3)

}
.
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Sketch of the proof. The proof follows the line of the proof of Section 2 by
considering simultaneously Tεūε and its restriction to the fixed domain S ×
(−r, r).

For the mechanical interpretation see the end of Section 3.

6 A variational regularization of the limit func-

tional

For the numerical solving of the optimization problem

inf
{
F0(u) − L(u)

}

obtained in Section 3, we approximate, in a variational way, the functional of
measure u 7→

∫
S
g0(e(γS(û)) by a suitable functional defined in the Sobolev

space W 1,q(S,R2), where q is close to 1 in the spirit of Norton-Hoff regularisa-
tion (cf [17]). The mathematical technics used here is an adaptation from that
of [7]. In order to simplify the proofs, we assume that S is a finite union of
cubes in R2.

We denote the limit density g0 by h that we assume to be positively 1-
homogeneous and fulfilling the growth conditions α|ξ| ≤ h(ξ) ≤ β|ξ|. We con-
sider a sequence (hq)q∈(1,p) satisfying the following three conditions:

iq) hq : M2×2
s → R+ is convex and positively homogeneous of degree q;

iiq) hq → h pointwise in M2×2
s ;

iiiq) there exists a > 0 such that for all q > 1 close enough to 1,

hq(ξ) ≥ h(ξ) for all ξ ∈ M2×2
s , |ξ| ≥ a. (22)

For instance, when h = |.|, hq = |.|q satisfies these conditions with a = 1.
Another natural example consists in choosing hq := hq. Condition iiiq) is then
satisfyed by taking a = 1

α . In these two examples, hq satisfies uniform growth
conditions with respect to q (for the second example, α

2 |ξ|
q ≤ hq(ξ) ≤ 2β|ξ|q

for q closed to 1). Note that, according to iii)q, hq fulfills the equi-coerciveness
condition:

hq(ξ) ≥ α|ξ| ∀ξ, |ξ| ≥ a. (23)

In what follows, the function hq is not assumed to satisfy a uniform upper
growth condition.

We consider the functional Fq : W 1,p
Γ0

(Ω,R3) → R+ ∪ {+∞} defined by:

Fq(u) =





∫

Ω

f(∇u) dx+

∫

S

hq(e(γS(û)))dx̂ if u ∈ Bq,

+∞ otherwise
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where
Bq :=

{
u ∈W 1,p

Γ0
(Ω,R3) : hq ◦ (e(γS(û))) ∈ L1(Ω)

}
.

We are going to establish the Γ-convergence of Fq when q → 1, when the space

W 1,p
Γ0

(Ω,R3) is equipped with its weak topology. The expected limit is the

functional F0 : W 1,p
Γ0

(Ω,R3) → R+ ∪ {+∞} defined in the previous section,

more precisely its restriction to W 1,p
Γ0

(Ω,R3) defined by

F0(u) =





∫

Ω

f(∇u) dx+

∫

S

h(e(γS(û))) if u ∈ B

+∞ otherwise,

where
B :=

{
u ∈W 1,p

Γ0
(Ω,R3) : γS(û) ∈ BD(S,R2)

}
.

Lemma 5 (Compactness lemma). Consider a sequence (uq)q∈]1,p] in W 1,p
Γ0

(Ω,R3)
such that supq∈(1,p) Fq(uq) < +∞. Then there exist a subsequence of (uq)q∈]1,p]

and u ∈ B such that (uq, γS(ûq)) ⇀ (u, γS(û)) in W 1,p
Γ0

(Ω,R3) × BD(S,R2)
when q goes to 1.

Proof. Since supq∈(1,p) Fq(uq) < +∞, one has uq ∈ Bq and

Fq(uq) =

∫

Ω

f(∇uq)) dx+

∫

S

hq(e(vq)dx̂, vq := γS(ûq).

Thus, from (23)

sup
q∈(1,p)

∫

S

|e(vq)| dx̂ ≤ sup
q∈(1,p)

(
a|S| +

∫

[|e(vq)|≥a]

|e(vq)| dx̂
)

≤ a|S| +
1

α
sup

q∈(1,p)

∫

S

hq(e(vq)) dx̂ < +∞. (24)

On the other hand from the coercivity condition fulfilled by f , there exists a sub-
sequence and u ∈W 1,p

Γ0
(Ω,R3) such that uq ⇀ u in W 1,p

Γ0
(Ω,R3). According to

the continuity of the trace operator γS , we deduce that vq → γS(û) in Lp(S,R3),
thus strongly in L1(S,R2) which, combined with (24), yields vq ⇀ v = γS(û)
in BD(S,R2) and u ∈ B.

Proposition 6 (lower bound). For every sequence ((uq)q∈]1,p] converging to u

in W 1,p
Γ0

(Ω,R3), we have

F0(u) ≤ lim inf
q→1

Fq(uq).

Lemma 6. Let Vq ∈ Lq(S,M2×2
s ) and assume that the measure µq = Vq dx̂

weakly converges to µ in M(S,M2×2
s ) and that |µq| = |Vq| dx̂ weakly converges

to ν in M+(S). Then for all open subset ω of S such that ν(∂ω) = 0, one has

lim inf
q→1

∫

ω

hq(Vq) dx̂ ≥ h
(∫

ω

dµ
)
.
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Proof. From Jensen’s inequality and since hq is positively q-homogeneous,
∫

ω

hq(Vq) dx̂ ≥ |ω|hq

( 1

|ω|

∫

ω

Vq dx̂
)

= |ω|1−qhq

(∫

ω

Vq dx̂
)
.

It remains to establish

lim inf
q→1

hq

(∫

ω

Vq dx̂
)
≥ h

(∫

ω

dµ
)
. (25)

One may assume
∣∣∣
∫

ω
dµ
∣∣∣ > 0, otherwise

∫
ω
dµ = 0 and (25) is trivially satisfied.

Since ν(∂ω) = 0, one has limq→1

∫
ω
Vq dx̂ =

∫
ω
dµ (cf Corollary 4.2.1 in [6]).

Then for 0 < σ <
∣∣ ∫

ω
dµ
∣∣∣, there exists q0, 1 < q0 ≤ p such that, for all q,

1 < q ≤ q0, |
∫

ω
Vq dx̂| ≥ σ. One has

hq

(∫

ω

Vq dx̂
)

=
(σ
a

)q
hq(
( a
σ

∫

ω

Vq dx̂
)

with
∣∣∣ aσ
∫

ω
Vq dx̂

∣∣∣ ≥ a, so that from assumption (22),

hq

(∫

ω

Vq dx̂
)

≥
(σ
a

)q
h(
( a
σ

∫

ω

Vq dx̂
)

=
(σ
a

)q−1
h(
(∫

ω

Vq dx̂
)
.

Letting q → 1, (25) follows from the lower semicontinuity of h and the fact that
limq→1

∫
ω
Vq dx̂ =

∫
ω
dµ.

Proof of Proposition 6. One may assume Fq(uq) < +∞ so that, from Lemma
5, one has u ∈ B. We write vq for γS(ûq) and v for γS(û). According to a
standard lower semicontinuity result in Sobolev spaces we have

lim inf
q→1

Fq(uq) ≥

∫

Ω

f(∇u)dx+ lim inf
q→1

∫

S

hq(e(vq)) dx̂

and it remains to establish

lim inf
q→1

∫

S

hq(e(vq)) dx̂ ≥

∫

S

h(e(v)). (26)

For δ > 0 intended to go to 0, consider a standard mollifier ρδ and θδ in C∞
c (S)

satisfying 0 ≤ θδ ≤ 1, θδ → 1 a.e. in S. For a subsequence not relabelled on q,
clearly ρδ ∗ θδ|e(vq)| dx̂ weakly converges to some measure νδ in M+(S). More-
over ρδ ∗θδe(vq) dx̂ weakly converges to the measure ρδ ∗θδe(v) in M(S,M2×2

s ).
For η > 0, consider a finite family (ωi)i∈Iη

of pairwise disjoint open subsets of
S, |ωi| < η, such that |S \ ∪i∈Iη

ωi| = 0 and a family (ω̃η)i∈Iη
satisfying

|S \
⋃

i∈Iη

ω̃i| ≤ η;

ω̃i ⊂ ωi;

νδ(∂ω̃i) = 0.

23



Such a family exists (use Lemma 4.2.1 of [6]). Note that this family depends on
δ. By using the q-homogeneity of hq, Jensen’s inequality and standard convex
duality principle, we have

∫

S

hq(e(vq)) dx̂ ≥

∫

S

θq
δhq(e(vq)) dx̂

=

∫

S

hq(θδ e(vq)) dx̂

≥

∫

S

hq(ρδ ∗ (θδe(vq)) dx̂

≥
∑

i∈Iη

∫

ω̃i

hq(ρδ ∗ (θδe(vq))) dx̂.

Thus, from Lemma 6, 1-homogeneity and Lipschitz property of h,

lim inf
q→1

∫

S

hq(e(vq)) dx̂ ≥ lim inf
q→1

∑

i∈Iη

∫

ω̃i

hq(ρδ ∗ (θδe(vq))) dx̂

≥
∑

i∈Iη

h
(∫

ω̃i

ρδ ∗ (θδe(v))
)

≥
∑

i∈Iη

|ωi|h
( 1

|ωi|

∫

ωi

ρδ ∗ (θδe(v))
)

−L|ρδ ∗ (θδe(v))|(S \
⋃

i∈Iη

ω̃i).

The first term of the second member is a Riemann sum. Since moreover ρδ ∗
θδe(v) is a smooth function, by letting η → 0, we obtain

lim inf
q→1

∫

S

hq(e(vq)) dx̂ ≥

∫

S

h(ρδ ∗ θδe(v)).

Noticing that ρδ ∗ θδe(v) ⇀ e(v) in M(S,M2×2
s ), estimate (26) is obtained by

letting δ → 0.

Proposition 7 (Upper bound). For every u ∈ W 1,p
Γ0

(Ω,R3) there exists uq

weakly converging to u in W 1,p
Γ0

(Ω,R3) such that

lim sup
q→1

Fq(uq) ≤ F0(u),

or, equivalently, Γ − lim supFq ≤ F0.

Proof. Consider the following subset B1 of B:

B1 :=
{
u ∈W 1,p

Γ0
(Ω,R3) : γS(u) ∈ C1(S̄,R3)

}
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and the functional F̃0 : W 1,p
Γ0

(Ω,R3) → R+{+∞} defined by

F̃0(u) =





∫

Ω

f(∇u) dx+

∫

S

h(e(γS(u))) dx̂ if u ∈ B1

+∞ otherwise.

Take u ∈ B1 and set v := γs(u). Let (vn)n∈N∗ be a sequence of continuous
piecewise affine functions satisfying ‖vn − v‖W 1,1(S,R2) ≤ 1/n, and consider a

sequence (un)n∈N weakly converging to u in W 1,p
Γ0

(Ω,R3) satisfying

lim
n→+∞

∫

Ω

f(∇un) dx =

∫

Ω

f(∇u) dx;

γS(ûn) = vn.

Such a sequence exists from step 1 of the proof of Proposition 4 in previous
section and un belongs to Bq. Writting e(vn) =

∑
i∈In

ai,n1Si,n
where (Si,n)i∈In

is a finite partition of S, and ai,n ∈ M2×2
s , the following estimate holds:

lim
q→1

(∫

Ω

f(∇un) dx+

∫

S

hq(e(vn)) dx̂
)

=

∫

Ω

f(∇un) dx+ lim
q→1

∑

i∈In

hq(ai,n)|Si,n|

=

∫

Ω

f(∇un) dx+
∑

i∈In

h(ai,n)|Si,n|

=

∫

Ω

f(∇un) dx+

∫

S

h(e(vn)) dx̂. (27)

Letting n→ +∞, (27) yields

lim
n→+∞

lim
q→1

(∫

Ω

f(∇un) dx+

∫

S

hq(e(vn)) dx̂) =

∫

Ω

f(∇u) dx+

∫

S

h(e(v)) dx̂.

Then, by using a standard diagonalization argument, there exists a map q 7→
n(q) such that

limq→1 Fq(un(q)) = F̃0(u);
un(q) ⇀ u,

which implies

inf
{

lim sup
p→1

Fq(uq) : uq ⇀ u in W 1,p
Γ0

(Ω,R3)
}
≤ F̃0(u)

for all u ∈ W 1,p
Γ0

(Ω,R3). Thus Γ − lim supFq ≤ F̃0. The conclusion of Propo-
sition 7 follows by taking the lower semi-continuous envelop of each two func-
tionals for the weak topology of W 1,p

Γ0
(Ω,R3) and by using Lemma 3.

Corollary 2. Assume that hq satisfies the additional coerciveness condition:
there exists αq > 0 such that αq|ξ|

q ≤ hq(ξ) for all ξ ∈ M2×2
s . Then

i) The problem min
{
Fq(u) − L(u)

}
possesses at least a solution ūq;
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ii) There exists a subsequence of (ūq)q∈(1,p) and ū solution of the problem

min
{
F0(u) − 〈L, u〉

}
such that ūq ⇀ ū in W 1,p

Γ0
(Ω,R3).

Proof. The first assertion is obtained by using the direct method in the cal-
culus of variations. The second assertion is a straightforward consequence of
variational properties of the Γ-convergence.
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