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Abstract. Two linearized problems of shallow water flows are solved
by a technique of Semigroups of operators on Hilbert spaces.

1. Introduction

There are many papers devoted to the study of shallow water flows espe-
cially by numerical methods. In this note, we give a mathematical analysis,
based on the theory of semigroups of operators on Hilbert space, of two
linearized problems involving the Saint-Venant equations governing shallow
water flows. The first one concerns the classical linearized Saint-Venant
problem, while the second one deals with the water quality problem: the
evolution of a concentration of products in a flow solution of the first prob-
lem.

2. Formulation of the linearized Saint-Venant problem

The linearized Saint-Venant equations which model the flow of a viscous
fluid in shallow water ([1],[2]) read as follows:⎧⎪⎨
⎪⎩

∂η
∂t = −h div V − Rη
∂V
∂t = −g∇η + μΔV − PV + f in Ω × (0, T )

η(x, 0)=η0(x), V (x, 0) = V 0(x), ∀x ∈ Ω, η0, V 0 are given in Ω.

(2.1)
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Here, Ω is a bounded domain of R
2 with a Lipschitz-continuous boundary Γ,

T is a positive real number, t denotes the time and η, V stand for the free
surface elevation and the velocity field, respectively. The positive constants
g, μ and h are the gravity acceleration, viscosity and average height of the
fluid, respectively, R is a positive relaxation parameter and P is a non-
negative definite matrix accounting for the Coriolis effect and numerical
relaxation. Let σ denote the “stress tensor,”i.e.,

σ = −gηI + μ∇V,

where I is the 2 × 2 identity matrix.
We assume that Γ is the union of disjoint parts Γi, i = 1, .., 5, n is the

unit normal along Γ and outward to Ω, and consider the following boundary
conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = V̄ , V̄ is given on Γ1×[0, T ] (i)
σn = γ, γ is given on Γ2×[0, T ] (ii)
VN = V̄N , σT = γT , V̄N and γT are given on Γ3×[0, T ] with
VN := V · n, σT := σn − σNn, σN := σn · n, (iii)
VT := V − VNn = V̄T , σN = p, V̄T and p are given on
Γ4 × [0, T ] (iv)

σn + KV = δ, δ is given on Γ5 × [0, T ],
K is a given 2 × 2 non-negative matrix. (v)

(2.2)

The condition on Γ1 is an adhesion condition whereas the condition on Γ2

expresses that the stress vector is given. On Γ3 and Γ4 the normal and
the tangential component of the velocity and the stress vector are imposed,
respectively. Finally, a friction condition is involved on Γ5 .

3. A result on existence and uniqueness

We will formulate this transient problem in terms of a linear evolution
equation in a Hilbert space of possible states with finite energy. First we
assume that:

H1) There exists a suitable extension of V̄ into Ω, still denoted V̄ , of
class C1,1[(0, T );H1(Ω)2] such that the trace of V̄ on Γ1 equals V̄

and the same for the normal and tangential components on Γ3, Γ4

respectively.
H2)

(γ, γT , γN , δ) ∈ C1,1([0, T ];L2(Γ2)
2 × L2(Γ3)

2 × L2(Γ4)
2) × L2(Γ5)

2.



Then, the Stampacchia theorem implies that there exists a unique V̄e of class
C1,1[(0, T );H1(Ω)2] such that

Ve ∈ V̄ + J,∫
Ω

gh(1 + R)−1div Vediv ϕdx +

∫
Ω

μ∇Ve · ∇ϕdx

+

∫
Ω

PVe · ϕdx +

∫
Γ5

KVe · ϕds

=

∫
Γ2

γ · ϕds +

∫
Γ3

γT · ϕT ds +

∫
Γ4

γN · ϕNds +

∫
Γ5

δ · ϕds ∀ϕ ∈ J,

where J = {V ∈ H1(Ω)2 : V |Γ1 = 0, VN |Γ3 = 0, VT |Γ4 = 0}. Let ηe =
−(1 + R)−1hdiv Ve ∈ C1,1([0, T ];L2(Ω)) and ue = (ηe, Ve). Let H := {u =
(η, V ) ∈ L2(Ω) × L2(Ω)2} be equipped with the following Hilbertian norm
and inner product:

‖u‖2
H = (u, u)H = g

∫
Ω

η2dx + h

∫
Ω
|V |2dx, ∀u = (η, V ) ∈ H

(u, u′)H = g

∫
Ω

ηη′dx + h

∫
Ω

V V ′dx, ∀u = (η, V ) ∈ H, ∀u′ = (η′, V ′) ∈ H,

and let A be the linear operator in H with domain D(A), defined by

D(A) =

⎧⎨
⎩

u = (η, V ) ∈ H; V ∈ J and ∃!w ∈ L2(Ω) such that :∫
Ω

(gηdivϕ − μ∇V · ∇ϕ)dx=

∫
Ω

w · ϕdx +

∫
Γ5

KV · ϕds, ∀ϕ ∈ J

Au = (−h div V − Rη,w − PV ). (3.1)

If ur := (ηr, Vr), ηr := η − ηe, Vr := V − Ve and the following condition

H3 : f ∈ C0,1([0, T ]);L2(Ω)2),

holds, then it is straightforward to check that the linearized Saint-Venant
problem is formally equivalent to the following Cauchy problem:

∂ur

∂t
= Aur + F, ur(0) = u0 − ue(0) (3.2)

with u0 := (η0, V 0), F := (ηe −
dηe

dt , f − dVe
dt ).

From the classical results (see, e.g., [3]) of the theory of operator semi-
groups we know that to prove the existence and uniqueness of a solution of
(3.2), it suffices to prove that A is an m-dissipative operator.

Lemma 3.1. (Au, u)H ≤ 0 for all u ∈ D(A).



Proof. The definition of A implies

(Au, u)H = g

∫
Ω
(−hdiv V − Rη)ηdx + h

∫
Ω
(w − PV ) · V dx

= g

∫
Ω
(−hdiv V − Rη)ηdx

+ h
[ ∫

Ω
(gηdiv V − μ∇V · ∇V − PV · V )dx −

∫
Γ5

KV · V ds
]

= −
[ ∫

Ω
(gRηη + hμ∇V · ∇V + hPV · V )dx + h

∫
Γ5

KV · V ds
]
≤ 0.

Lemma 3.2. For all Φ = (Φ1, Φ2) ∈ H, there exists u ∈ D(A) such that

u − Au = Φ .

Proof. We have u = (η, V ), where η and V satisfy

η + hdivV + Rη = Φ1, V − w + PV = Φ2,

and w satisfies (3.1). This yields

V ∈ J ;∫
Ω
(μ∇V · ∇ϕ + gh(1 + R)−1div V div ϕ + (I + P )V · ϕ)dx +

∫
Γ5

KV · ϕds

=

∫
Ω
(g(1 + R)−1Φ1divϕ + Φ2 · ϕ)dx, ∀ϕ ∈ J.

The Lax-Milgram lemma implies the existence and uniqueness of V . Then,
if η is the element of L2(Ω) defined by η = (1 + R)−1(Φ1 − hdivV ), we can
deduce that∫

Ω
(gηdiv ϕ−μ∇V ·∇ϕ)dx =

∫
Ω
((I +P )V −Φ2)dx+

∫
Γ5

KV ·ϕds, ∀ϕ ∈ J,

which proves that u = (η, V ) ∈ D(A) and u−Au = Φ, since (I +P )V −Φ2 =
w is associated with u in the definition of Au (see (3.1)). Therefore, we obtain
the following result.

Theorem 3.3. Under the assumptions H1- H3 and if u0 ∈ D(A), there

exists a unique solution of (3.2) of class C1([0, T ], H) ∩ C0([0, T ], D(A)).

Remark 1. When Γ = Γ1 (i.e., the purely Dirichlet conditions), a solution
is given in [1] by the method of linear variation evolution equations.
Remark 2. The following additional property of A could be useful to treat
the nonlinear case by a fixed-point method ([4]).



Proposition 3.4. The operator A has the following property: there exists

θ > 0 such that

|(Au, u′)H | ≤ θ(−(Au, u)H)1/2(−(Au′, u′)H)1/2 ∀u, u′ ∈ D(A).

Thus, the semigroup generated by A is analytic, so that in assumptions
H1-H2, C1,1-regularity can be relaxed to C1,α-regularity, with 0 < α < 1,
and f can be from C0,α, which implies the existence of a classical solution
of (3.2).

Proof. The computation in the proof of Lemma 3 shows that

∃c1 > 0 such that (−Au, u)H ≥ c1|u|
2
H ∀u ∈ D(A). (3.3)

The definition of A yields

(Au, u′)H

=

∫
Ω
(−ghdiv V η − gRηη′ + hgηdiv V ′ − hμ∇V · ∇V ′ − hPV · V ′)dx

− h

∫
Γ5

KV · V ′ds.

The Cauchy-Schwarz inequality and the definition of |u|H imply that

∃c2 > 0 such that |(Au, u′)H | ≤ c2|u|H |u′|H . (3.4)

Thus, the proposition is a consequence of (3.3), (3.4) and classical results on
analytic semigroups.

4. The inclusion of a dissipative radiation condition

on a part of the boundary.

In this section, we assume that Γ = ∪6
i=1Γi, where on Γi (i = 1, ..5) we still

have all the previously stated boundary conditions, and on Γ6 we consider
the following condition:

∂V

∂t
= −Mσn, (4.1)

where M is a given symmetric positive definite matrix. Such a condition may
be used in numerical approximations by truncated domains when Ω is un-
bounded. For the sake of simplicity of exposition, we consider homogeneous
boundary conditions. The trick in the formulation of the Saint-Venant prob-
lem in terms of an evolution equation consists in introducing a new variable,
which is the trace on Γ6 of the velocity. Let

℘ = H × L2(Γ6), U = (η, V, γ)



(U,U ′)℘ = g

∫
Ω

ηη′dx + h

∫
Ω

V · V ′dx +

∫
Γ6

M−1γ · γ′ds

(U, U)℘ = |U |2℘

and

D(£) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U = (η, V, γ) ∈ ℘; V ∈ J, γ ∈ V |Γ6
and

∃(w, θ) ∈ L2(Ω) × L2(Γ6)
2 such that∫

Ω
(gηdiv ϕ − μ∇V · ∇ϕ)dx

=

∫
Ω

w · ϕdx +

∫
Γ5

KV · ϕds −

∫
Γ6

θ · ϕds, ∀ϕ ∈ J,

(4.2)

£U = (−hdiv V − Rη,w − PV,−Mθ)

(clearly w = div σ, θ = σn |Γ6). The problem can be written in the following
form:

dU

dt
= £U, U(0) = U0 = (η0, V 0, V 0 |Γ6). (4.3)

Lemma 4.1. (£U, U)℘ ≤ 0 ∀U ∈ D(£).

Proof. We have

(£U, U)℘ = −g

∫
Ω
(hdiv V + Rη)ηdx + h

∫
Ω
(w − PV ) · V dx −

∫
Γ6

θ · γds

= −g

∫
Ω
(hdiv V + Rη)ηdx + gh

∫
Ω

ηdiv V dx

− hμ

∫
Ω
∇V · ∇V dx − h

∫
Ω

PV · V dx − h

∫
Γ5

KV · V ds −

∫
Γ6

(V − γ) · θds

≤

∫
Γ6

θ(V − γ)ds = 0, (because γ = V |Γ6 if U ∈ D(£)).

Lemma 4.2. For all Φ = (Φ1, Φ2, Φ3) ∈ ℘, there exists U ∈ D(£), such

that U − £U = Φ.

Proof. We have

η + hdiv V + Rη = Φ1, V − w + PV = Φ2, γ + Mθ = Φ3.

Here (w, θ) ∈ L2(Ω) × L2(Γ6)
2 satisfies (4.2) and γ = V |Γ6 . This implies

that V ∈ J and∫
Ω
(μ∇V · ∇ϕ + gh(1 + R)−1div V div ϕ + (I + P )V · ϕ)dx



+

∫
Γ5

KV · ϕds +

∫
Γ6

M−1V · ϕds

= g(1 + R)−1

∫
Ω

Φ1div ϕdx +

∫
Ω

Φ2 · ϕdx +

∫
Γ6

M−1Φ3 · ϕds, ∀ϕ ∈ J.

It follows from the Lax-Milgram lemma that such a V exists and is unique.
We note that if η := (I + R)−1(Φ1 − hdiv V ), then∫

Ω
(gηdiv ϕ − μ∇V · ∇ϕ) =

∫
Ω
((I + P )V − Φ2) · ϕdx

+

∫
Γ5

KV · ϕds +

∫
Γ6

M−1(V − Φ3) · ϕds, ∀ϕ ∈ J,

which proves that U = (η, V, V |Γ6) ∈ D(£) and U − £U = Φ, because
w = (I + P )V −Φ2 and θ = M−1(Φ3 − V |Γ6), as in the definition of £U by
(4.2). Therefore, we have the following theorem.

Theorem 4.3. Under the assumptions H1 − H3, if u0 ∈ D(£), then there

exists a unique solution of (4.3)of class C1([0, T ], H) ∩ C0([0, T ], D(£).

5. A water quality problem

Many problems dealing with water quality (salinity intrusion, transport
of sediments or pollution, etc.) lead to the question of finding a field C of
concentration, which satisfies{

∂C
∂t = Kc�C − V · ∇C + fc in Ω × (0, T )
C |∂Ω= C̄ and C(x, 0) = C0(x) in Ω,

(5.1)

where Kc is a positive diffusion coefficient and V is, as before, the velocity
field solution of Saint-Venant equations in Ω. In addition, we assume, from
now on, that Ω has a C2 boundary. We are going to reformulate this transient
boundary-value problem as a linear evolution equation in L2(Ω). For this,
we make the assumptions:

H4 : The data C̄ is such that there exist σ ∈ (1, 2) and a suitable extension
into Ω of C̄, still denoted by C̄, of class C1([0, T ], Hσ(Ω)) such that
its trace on Γ is C̄.

H5 : f ∈ C0([0, T ], L2(Ω)2).

Then, there exists a unique Ce in C1([0, T ], Hσ(Ω)), such that

Ce ∈ C̄ + H1
0 (Ω);

∫
Ω

Kc∇Ce · ∇ϕdx = 0, ∀ϕ ∈ H1
0 (Ω).



Thus, Cr := C − Ce satisfies the following evolution equation in L2(Ω):

dCr

dt
= −BCr + Φ(t)Cr + Fc(t), Cr(0) = C0 − Ce(0), (5.2)

where the operator B on L2(Ω) is defined by D(B) = {ϕ ∈ H1
0 (Ω) : ∃w ∈

L2(Ω) such that
∫
Ω ∇ϕ ·∇Ψdx = −

∫
Ω

w
Kc

Ψdx, ∀Ψ ∈ H1
0 (Ω)}, Bϕ = w. It is

a classical result that, since B is self-adjoint and positive, Bs is well defined
for all s ≥ 0 and −B generates an analytic semigroup of strongly continuous
operators S−B(t) on L2(Ω) (t ≥ 0).

Note that the first two terms of

Fc := −
dCe

dt
+ fc + V · ∇Ce

belong to C0([0, T ];L2(Ω)). By the Sobolev embedding theorems we have

∇Ce ∈ C1([0, T ];Lq(σ)(Ω)), with q(σ) = 2
2−σ , and since

V ∈ C0([0, T ];H1(Ω)2),

we have V ∈ C0([0, T ];Lp(σ)(Ω)) with 1
p(σ) = 1

2 − 1
q(σ) , so that

Fc ∈ C0([0, T ];L2(Ω)).

Finally, the operator Φ(t) is defined in D(Bs/2), for every s ∈ (1, 2), by

ϕ ∈ D(Bs/2) �→ Φ(t)ϕ := −V.∇ϕ ∈ L2(Ω).

In fact, from the classical result D(Bs/2) ⊂ Hs(Ω) and the Sobolev embed-
ding we have

| V · ∇ϕ|L2(Ω) ≤| V |Lp(s) | ∇ϕ|Lq(s) ≤| V |H1(Ω) | ϕ|Hs(Ω)

≤| V |H1(Ω) | Bs/2ϕ|L2(Ω),

with 1
q(s) = 1− s

2 , 1
p(s) = s−1

2 , so that Φ(t) ∈ C0([0, T ], Lin(D(Bs/2), L2(Ω))),

with Lin(D(Bs/2), L2(Ω)) being the space of bounded linear operators from

D(Bs/2) to L2(Ω). Finally, S−B(t) being a strongly continuous analytic
semigroup on L2(Ω) generated by the self adjoint negative operator −B,

S−B(t) is a strongly continuous semigroup on D(Bs/2) for t ≥ 0 and

| S−B(t)|Lin(L2(Ω),D(Bs/2)) ≤ ct−s/2 for t ∈ (0, 1].

Hence, a classical fixed-point method ([4]) and the Gronwall lemma imply
the following.



Theorem 5.1. Under the assumptions H1−H5 and if C0−Ce(0) ∈ D(Bs/2),
the equation

Cr(t) = SB(t)(C0 − Ce(0)) +

∫ t

0
SB(t − τ)(Fc(τ) + Φ(τ)Cr(τ))dτ

has a unique solution in C0([0, T ];Hs(Ω)), which is a mild solution of (5.2).

Remark 3. The regularity assumption on Γ may be dropped and various
other mixed boundary conditions may be considered in the situation where
the induced operator B satisfies D(Bs/2) ⊂ Hs(Ω).
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et applications en coordonnèes gènèralisèes, Ph. D. thesis, University of Caen, France,
1996.

[2] G. Darblade, R. Baraille, A.Y. Le Roux, X. Carton, and D. Pinchon, Non reflecting

boundary conditions for a two-dimensional linear barotropic shallow water model, C.R.
Acad. Sci. Paris, T. 324 (1997), 485–490.

[3] Songmu Zheng, “Nonlinear Evolution Equations, Monographs and Surveys,” Pure
and Applied Mathematics 133, Chapman and Hall, 2004.

[4] M. Taylor, “Partial Differential Equations III,” Applied Mathematical Sciences 117,
Springer, 1997.


