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Observation and inverse problems in coupled
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Romain Joly
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Abstract

A coupled cell network is a model for many situations such as food webs in ecosys-
tems, cellular metabolism, economical networks... It consists in a directed graph G,
each node (or cell) representing an agent of the network and each directed arrow rep-
resenting which agent acts on which one. It yields a system of differential equations
ẋ(t) = f(x(t)), where the component i of f depends only on the cells xj(t) for which
the arrow j → i exists in G. In this paper, we investigate the observation problems
in coupled cell networks: can one deduce the behaviour of the whole network (os-
cillations, stabilisation etc.) by observing only one of the cells? We show that the
natural observation properties holds for almost all the interactions f .

Key words: coupled cell networks, observability, inverse problems, genericity, tran-
versality theorems.
AMS subject classification: 93B07, 34C25, 34H15, 92B25.

1 Introduction

The coupled cell networks.
In the recent years, the mathematical study of coupled cell networks has been quickly
developing. It combines several interests: it is strongly related with applications and real
phenomena, the setting is very simple and it leads to a rich class of mathematically inter-
esting problems. A coupled cell network models a group of agents, each one interacting
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with a given part of the others through differential equations. It is represented by an di-
rected graph, each node being one of the agents and each directed arrow representing which
agent acts on which one. This modelling appears in many concrete situations: networks
of neurons, cellular metabolic networks, food webs in ecosystems, economic networks etc.
Many good arguments for studying coupled cell networks are given in [17]. Many examples
of coupled cell networks can also be found in [7] and [18] and the references therein.

The mathematical setting is the following. Let G be a directed graph with N cells
linked with arrows. To the cell i, we associate a phase space Xi of finite dimension di,
which is assumed in this paper to be the torus (R/Z)di = T

di (this assumption is made for
sake of simplicity in our proofs, but our results also hold if Xi is a more general manifold,
including Xi = R

di , see Section 6). We set X = X1 × . . .×XN and d = d1 + . . .+ dN . For
any x ∈ X and any set of indices I = {i1, . . . , ik}, xI denotes the image of the canonical
projection of x onto XI = Xi1 × . . .×Xik (if I = {i}, we simply write xi). We also denote
by dI = di1 + . . . + dik the dimension of XI . For each cell i, the direct inputs of i is the
set of cells j such that the arrow j → i belongs to G. A node j is an indirect input of i if
there exists a sequence of arrows j → k1 → k2 → . . . → i belonging to G.

Let X1(X) be the space of the C1−vector fields on X endowed with the usual Banach
topology (see for example [12] or [1]). To simplify the notations, for any x ∈ X , we identify
TxX with R

d and X
1(X) with C1(X,Rd). We introduce the subspace of all the admissible

vector fields

CG = {f ∈ X
1(X) , fi depends only on the direct inputs of the cell i}

With each f ∈ CG, we associate the dynamical system S(t)x0 ≡ x(t), called coupled cell
network, generated by the differential equation

{

ẋ(t) = f(x(t)) , t ∈ R

x(0) = x0 ∈ X
(1.1)

Notice that, since X is compact and f is of class C1, the solutions of (1.1) exist for all
times.

The properties of S(t) may strongly depend on the structure of the directed graph G.
We introduce here some definitions.

Definitions 1.1.
We say that a cell i is an observation cell if any cell j of G with i 6= j is an indirect

input of i.
We say that a set of cells I is an independent sub-network if I contains all its indirect

inputs, i.e. if the system (1.1) restricted to the set of cells I is still an autonomous ODE.
We say that the graph G is strongly connected if any cell is an observation cell or

equivalently if any cell is an indirect input of any other one.
We say that the graph G is self-dependent if any cell is a direct input of itself.
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ẋ1(t) = f1(x2(t), x4(t))
ẋ2(t) = f2(x1(t))
ẋ3(t) = f3(x1(t), x3(t))
ẋ4(t) = f4(x2(t), x3(t), x4(t))
ẋ5(t) = f5(x3(t))
x(0) = x0 ∈ X

Figure 1: An example of directed graph G and the associated ordinary differential equation
generating the coupled cell network dynamical system. The cell 5 is the only observation
cell of the graph G. The set of cells {1, 2, 3, 4} is an independent strongly connected sub-
network.

We say that the graph G is dimensionally decreasing (resp. dimensionally non-increa-
sing) if the following property holds. Let I be any non-trivial set of cells i.e. I 6= ∅ and
I 6= {1, . . . , N}. Let J be its set of direct inputs. Then, the dimension dJ is larger than dI
(resp. larger or equal to dI).

We would like to emphasise several important remarks concerning the above setting:
1) We recall that we have assumed that the phase space of each cell is a torus, when it is
usually R

di or a more general manifold, because the compactness of Xi and the triviality
of its tangent bundle simplify the statement and the proof of several of our results. In
this way, we avoid technicalities, which are not the subject of this paper. However, we
underline that the results of this article are also valid for Xi = R

di or other manifolds, see
Section 6.
2) Another difference between our notations and the usual ones is that we do not introduce
a relation of equivalence between cells and arrows. This kind of relation is introduced to
model symmetries as in [18]. For example, it is natural to assume that several neurons of
the same type interact in the same way, that is that the functions fi corresponding to these
interactions are equal. Our purpose being to prove generic results with respect to these fi,
adding constraints of symmetry increases the difficulty of the problem. Since this paper
is a first step in this subject, we have chosen to avoid this difficulty. However, adapting
the results of this article to the presence of symmetries could be an interesting subject of
future research.
3) A strongly connected graph is sometimes called a transitive graph or a path-connected
graph. But, in graph theory, a transitive graph is a graph such that if the arrows i → j → k
exist then i → k also exists. Thus, we decided to use the term “strongly connected”, which
seems to be the usual one in graph theory.

A series of observation problems.
At first sight, a coupled cell network is a simple ODE and one may wonder why it brings new
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Figure 2: Two examples of observation problems. Left, one measures the state of one cell
and observes oscillation. Do the states of the other cells also oscillate? Right, assume that
one has found a feedback mechanism that stabilises the observation cell. Do the other cells
also stop oscillating?

topics of research. The important characteristics of the coupled cell networks is the splitting
in several cells and the constraints due to the structure of the interactions described by the
graph G. This yields several classes of problems. For example, one can study the creation
and the stability of patterns according to the symmetries of the network. This seems to
be one of the main classes of questions, which have been studied until now (see [5], [7] and
[18] as well as the many related works). Another class is the observability problems, which
are the subject of this paper and has been previously tackled in [6]. Basically, one wonders
if one can deduce the behaviour of the whole network only by observing one of the cells.
We investigate here three problems.
Problem 1: inverse problem.
Can one distinguish two trajectories by only looking at one cell?
Problem 2: observation of oscillations.
One of the cells is oscillating with a period T , are the other cells also oscillating?
Problem 3: observation of stabilisation.
One of the cells is stabilising and converging to an equilibrium state, have the other cells
the same behaviour?

These kinds of questions are natural in the context of coupled cell network modelling.
For example, if one considers an economical network, it is impossible to measure the
behaviour of all the economical agents. One would like to know if the measures of a
small number of indices is sufficient to know if the economy is chaotic, oscillating or stable.
Inverse problem are also motivated by the desire of controlling a whole network that can be
observed only through a small number of parameters (as it is the case for a whole organism
or an ecosystem). If one cannot distinguish two trajectories by observing a small part of
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the network, then one cannot know in which state the whole network is and therefore what
control one should impose.

The necessity and the meaning of generic results.
The first answer to problems 1-3 is simply “no”. Of course, there is firstly a problem with
the geometry of the graph G: two cells have totally independent behaviours if they are not
interacting, even indirectly. But, even with a nice strongly connected network, it is not
difficult to construct particular interactions fi such that the observation properties fail.

So, at a second time, one could be tempted to obtain a criterion on f , for which
observability is possible. However, what is the usefulness of a criterion such as “these two
biological parameters must have irrational ratio”? In physics, interactions have a well-
known structure. But, in biology or economy, one may have no precise idea of the form of
the interactions fi. In these cases, a concrete criterion has no meaning.

In this situation, one must use the concept of generic properties. The idea is to show
that for almost all the possible interactions, problems 1-3 have positive answers. Then, one
believes that, when one deals with a concrete network, the observations properties surely
hold for this network. In this paper, we fix a given directed graph G and by “almost all
the possible interactions”, we mean a generic subset of the admissible vector fields CG. We
recall that a generic subset is a subset that contains a countable intersection of dense open
subsets. Since CG is a Banach space, generic subsets are dense and the use of the notion
of generic subsets to characterise large subsets is well admitted.

Generic results are meaningful in network’s problems, where the functions of inter-
actions fi are not completely a priori determined (typically in food webs in ecosystems,
in metabolic networks...), so that one can hope that the considered network is a generic
one. If f is precisely determined (typically in networks following simple physical laws),
a generic result is meaningless. If the interactions follow some symmetries (typically in
neuronal networks), then one should prove a generic result in the class CG restricted to
interactions having these symmetries.

Main results
The inverse problem, Problem 1, depends on the geometry of the network G (it is note-
worthy that it is our only theorem which does not hold for any strongly connected graph).
The inverse problem may fail if there are some cells on which the trajectories are constant
(see the counter-example of Section 3.3). In Sections 3 and 4, we state different properties
related to this inverse problem, which give a sharp idea of the cases where it may not hold.
They may be summarised in the following simple statement.

Theorem 1.2. Observation of trajectories
Let G be a given directed graph. There exists a generic subset Gtraj of CG such that for
any f ∈ G

traj the following property holds. Let x(t) and y(t) be two solutions of (1.1) and
let i be an observation cell. Assume that there is a time interval (a, b), a < b, such that
xi(t) = yi(t) for all t ∈ (a, b). Then, the whole trajectories x(t) and y(t) coincide, except
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maybe in the cells where the trajectories x(t) and y(t) are both constant. Moreover, if the
graph G is either a self-dependent directed graph, or a dimensionally decreasing graph, then
x(t) and y(t) coincide everywhere, even in the cells where the trajectories x(t) and y(t) are
both constant.

The observation of oscillations stated in problem 2 is a natural problem, which has
already been studied in [6]. It is proved there that, in self-dependent and strongly connected
graph, hyperbolic periodic orbits have generically no constant cells. We obtain here a
stronger result in several directions: no hyperbolicity of periodic orbit is needed, no self-
dependence is assumed, all the cells are not only oscillating but also oscillate with the same
period and the constant cells are observable only in constant solutions.

In Theorem 1.3 below, we use the following notations. We say that a function p(t) is
T−periodic on (a, b) if p(t) = p(t + T ) for any t ∈ (a, b− T ). We say that a function p(t)
is exactly T−periodic on (a, b) if T > 0 is the smallest number such that p is T−periodic
on (a, b).

Theorem 1.3. Observation of oscillations
Let G be a given directed graph. There exists a generic subset Gosc of CG such that for any
f ∈ G

osc the following properties hold. Let x(t) be a solution of (1.1), then

(a) if there is a cell i such that xi(t) is constant on some time interval (a, b), then xi(t),
as well as any xj(t) with j being an indirect input of the cell i, is constant on R. In
particular, if i is an observation cell, then x(t) is an equilibrium point of (1.1).

(b) if there is a cell i, a positive time τ and a positive period T such that xi(t) is
T−periodic on some time interval (a, a + T + τ), then xi(t), as well as any xj(t)
with j being an indirect input of the cell i, are T−periodic in R.

(c) if G is strongly connected and if there is a cell i where xi(t) is exactly T−periodic on
some time interval (a, a+ T + τ), then the whole orbit x(t) and any of the xj(t) are
exactly T−periodic.

Notice that Theorem 1.3 is not in contradiction with the examples of [5], even the ones
which are stable with respect to perturbations of f . Indeed, we assume here no a priori
symmetry for the interactions fi.

Our last result concerns Problem 3, that is the observation of stabilisation. It is a natu-
ral problem since the stabilisation of a network is an important issue in many applications:
economy, ecosystems, metabolism...

Theorem 1.4. Observation of stabilisation
Let G be a given directed graph. There exists a generic subset Gstab of CG such that for
any f ∈ G

stab, the following property holds. Let x(t) be a solution of (1.1) and let i be an
observation cell. If xi(t) converges to a constant x∗

i when t goes to +∞, then the whole
trajectory x(t) converges to a single equilibrium point x∗ ∈ X when t goes to +∞.
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We underline that, due to Theorem 1.2, the equilibrium x∗ can be moreover uniquely
determined by observing x∗

i if G is either a self-dependent directed graph or a dimensionally
decreasing graph.

Organisation of the paper. The main tools for proving Theorems 1.2, 1.3 and 1.4 are
transversality theorems. We recall the ones that we need in Section 2. In Section 3, we
investigate the observation problem for equilibrium states of the network. We also prove
the generic simplicity of equilibrium points, which is an interesting property by itself. The
inverse problem stated in Theorem 1.2 is proved in Section 4 and, in Section 5, Theorem
1.3 and 1.4 are deduced from the previous results. Finally, we present further results in
Section 6, in particular the non-compact case of Xi = R

di and the case of discrete networks.

Acknowledgements: The author would like to thank Martin Golubitsky and Geneviève
Raugel for pointing to him the interest of coupled cell networks. Several discussions have
also been useful for the writing of this paper: Matthieu Léautaud and Vincent Perrollaz
have enhanced to the author the interest of studying Problem 1 and 3 and Benôıt Kloeckner
has patiently answered many questions about differential geometry.

2 Geometric preliminaries

2.1 Transversality theorems

In a space X , which admits a natural measure, the notion of “almost everywhere” as sets
of full measure is natural and well admitted. As soon as the space X is infinite-dimensional
and has no natural measure, the meaning of “almost everywhere” is less clear. If X is a
Baire space (typically a complete space), then the most used notion of “almost everywhere”
is the notion of generic subsets, that are subsets of X containing a countable intersection
of dense open subsets of X . A property is said to be generic in X (or with respect to
x ∈ X) if it holds for all x in a generic subset of X . It is noteworthy that there are
other convenient notions of “almost everywhere” in Banach spaces such as the notion of
prevalence, see Section 6.

In problems involving finite-dimensional manifolds, the proofs of the genericity of a
property mainly use Sard’s Theorem or theorems of transversality similar to the ones of
Thom (see [14], [19] and [20]). We recall here the classical Sard-Smale Theorem (see for
example [1] for a proof).

Definition 2.1. Let M and N be two C1− manifolds and let f : M → N be a C1−map.
A point x ∈ M is regular point of f if Df(x) is surjective, otherwise x is a critical point
of f . A point y ∈ N is a regular value of f if any x ∈ f−1(y) is a regular point of f ,
otherwise y is a critical value of f .
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Theorem 2.2. A transversality Theorem
Let r ≥ 1. Let M and N be two finite-dimensional Cr−manifolds and let Λ be a Cr Banach
manifold. Let y ∈ N and let Φ ∈ Cr(M× Λ,N ). Assume that:
(i) r > dim(M)− dim(N ),
(ii) for any (x, λ) ∈ Φ−1({y}), DΦ(x, λ) : TxM× TλΛ → TyN is surjective,
(iii) M is separable.
Then, the set G = {λ ∈ Λ, y is a regular value of the map x 7→ Φ(x, λ)} is a generic
subset of Λ.
Moreover, if dim(M) < dim(N ), then the set G is equal to the set {λ ∈ Λ, y is not in the
image of the map x 7→ Φ(x, λ)}.

Smale in [16] showed that Sard’s Theorem can be extended to Banach spaces by using
the notion of Fredholm operators. Later, Quinn in [13] noticed that the notion of left-
Fredholm operators is often sufficient.

Definition 2.3. Let X and Y be two Banach spaces. A bounded linear operator L : X → Y
is a left-Fredholm operator if:
(i) its kernel Ker(L) splits in X, i.e. there exists a space X1 such that X = X1 ⊕Ker(L)
and X1 and Ker(L) are closed subspaces,
(ii) its image R(L) splits in Y , i.e. there exists a space Y2 such that Y = R(L) ⊕ Y2 and
both subspaces are closed,
(iii) its kernel Ker(L) is finite-dimensional.
If moreover the supplementary space Y2 is also finite-dimensional, then L is called a Fred-
holm operator.
The index of L is defined by Ind(L) = dim(Ker(L))− dim(R(L)) (which is equal to −∞
if L is not a Fredholm operator).

Following Smale arguments, one can extend the classical transversality theorems, as
Theorem 2.2, to Banach manifolds. There exist many different versions of this kind of
theorems in Banach manifolds (often called Sard-Smale theorems), see for example [1], [8]
or [15]. We will use here a version proved by Henry in [8] (see also [10], where its extension
to the notion of prevalence is proved).

Theorem 2.4. Henry’s Theorem
Let M, Λ and N be three Banach manifolds. Let Φ : M× Λ −→ N be a map of class C1

and y be a point of N .
We assume that :

(i) ∀(x, λ) ∈ Φ−1(y), DxΦ(x, λ) : TxM → Ty(N ) is a left-Fredholm operator with negative
index,

(ii) ∀(x, λ) ∈ Φ−1(y), the image of the total derivative DΦ(x, λ) : TxN × TλΛ → TyN
contains a finite-dimensional subspace Z such that Z ∩R(DxΦ(x, λ)) = {0} and the
dimension of Z is strictly larger than the one of Ker(DxΦ(x, λ)),
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(iii) M× Λ is separable.

Then there exists a generic subset G of Λ such that, for any λ0 ∈ G, y is not in the image
of the map x 7→ Φ(x, λ0). If moreover M is compact, then G is an open set.

In our applications of Theorem 2.4, the operator DxΦ can be split as DxΦ = L + K,
where K a compact operator and L is a simple operator, for which Hypotheses (i) and (ii)
are easily checked. Therefore, the following propositions will be useful.

Proposition 2.5. Let X and Y be two Banach spaces. Let L : X → Y be a left-Fredholm
operator and let K ∈ L(X, Y ) be a compact operator. Then, L+K is a left-Fredholm map
with the same index as the one of L.

The proof of Proposition 2.5 is classical, see for example [2]. To check Hypothesis (ii)
of Theorem 2.4, we will use the following criterion.

Proposition 2.6. Let L : X → Y be a left-Fredholm map and X1 and Y2 be as in Definition
2.3. Assume that (zn)n∈N is an infinite free family of Y2. Then, for any compact operator
K : X → Y , there exists a finite dimensional subspace Z = span(zn1

, . . . , znp
) such that

Z ∩R(L+K) = {0} and the dimension of Z is strictly larger than the one of Ker(L+K).

Proof: Let P be the continuous projection on R(L) canonically defined by the closed
splitting Y = R(L) + Y2. Let K be a given compact operator. Then, PK is a compact
operator and thus Proposition 2.5 shows that L + PK is a left-Fredholm operator. In
particular, L+ PK has a finite-dimensional kernel. On the other hand, (L+ PK)x = 0 if
and only if P (L+K)x = 0 that is that (L+K)x belongs to Y2. Thus, dim(R(L+K)∩Y2) =
dim(Ker(L+PK)) < ∞ and an at most finite dimensional subspace of span(zn) is included
in R(L+K). Hence, we can still extract a subspace Z from span(zn), with dimension as
large as needed, and such that Z ∩R(L+K) = {0}. �

Let us notice that the assumptions that the sequence (zn) belongs to a closed com-
plementary space of R(L) and that L is left-Fredholm are important, as shown by the
following examples. We set X = Y = ℓ∞(R) and we define ei ∈ Y by ei(n) = δi=n, i.e.
(ei)i∈N is the canonical “basis”. Proposition 2.6 does not hold for







L(x1, x2, x3, . . .) = (x1, 0, x2, 0, x3, . . .)
K(x1, x2, x3, . . .) = (0, x1, 0,

x2

2
, 0, x3

3
, . . .)

zn = e2n−1 +
e2n
n

or







L(x1, x2, x3, . . .) = (x1, 0, x3, 0, x5, . . .)
K(x1, x2, x3, . . .) = (0, x2

2
, 0, x4

4
, 0, x6

6
, . . .)

zn = e2n

In the first example, span(zn) is not in a closed complementary subset of R(L). In the
second one, L is not left-Fredholm.
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2.2 The Banach manifold of C1−paths

In this section, we would like to discuss the different topologies of the spaces used in this
paper. First, we embed R

d with the supremum norm ‖.‖∞ and we identify the torus
X = T

d to (R/Z)d with its quotient topology. In particular, the distance d(x, y) between
two points x and y of Td is bounded by 1/2. We also recall that we have identified all the
tangent spaces of X to R

d.
In this paper, the space of parameters Λ of Theorems 2.2 and 2.4 will always be the

space of admissible vector fields CG, which is identified to a closed subspace of C1(X,Rd)
with its natural Banach structure.

In some of our proofs, the Banach manifold M of Theorem 2.4 will be the space
C1([0, τ ], X) of C1−paths on X , with τ > 0 a given time. Its structure of Banach manifold
is as follows. Let γ be a given C1−path. We consider a neighbourhood of γ given by

O = {β ∈ C1([0, τ ], X) , ∀ t ∈ [0, τ ] , d(β(t), γ(t)) < 1/4 } .

We now use a canonical lifting ϕ along the path γ, mapping O to an open subset U of
C1(Rd,Rd). Notice that, by definition of O, lifting the whole neighbourhood O is possible
and moreover

|ϕ(γi(t))− ϕ(βi(t))| = d(γi(t), βi(t)) (2.1)

for any β ∈ O, any t ∈ [0, τ ] and any cell i. Therefore, we can identify O to U , which is
an open subset of a Banach space. Notice that the tangent space to C1([0, τ ], X) at a path
γ is simply C1([0, τ ],Rd).

3 Generic properties of equilibrium points

In this section, we prove several generic properties of equilibria of the ODE, i.e. singularities
of the vector field f , that are points x ∈ X such that f(x) = 0. These properties are
interesting by themselves, but they are also important steps in proving Theorem 1.2 and
1.3.

3.1 Generic simplicity of equilibria

We say that an equilibrium point x ∈ X is simple if the differential Df(x) is surjective,
which is equivalent to the injectivity of this differential. A simple equilibrium point x ∈ X
is isolated from the other equilibria, and hence there is at most a finite number of simple
equilibria. Moreover, by the implicit functions theorem, simple equilibria, which are non-
degenerate singularities of the vector fields, depend smoothly of small perturbations of the
vector field. That is why, the simplicity of equilibria of an ODE is an important property
to consider.
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Proposition 3.1. There exists an open dense set Gsimpl of CG such that for any f ∈ G
simpl,

all the equilibrium points of (1.1) are simple.

Proof: The arguments of this proof are very classical and do not differ from the ones
used for general ODEs, i.e. without the constraint that f ∈ CG. First, let us notice that
f ∈ G

simpl is equivalent to 0 being a regular value of f .
The set G

simpl is open. Indeed, let (fn) be a sequence of vector fields converging to
f and such that there exists xn ∈ X with fn(xn) = 0 and Dfn(xn) is not surjective (i.e.
fn 6∈ G

simpl). Since X is compact, up to extracting a subsequence, one can assume that
(xn) converges to x ∈ X . By continuity, we get that x is both an equilibrium point and a
critical point of f , which shows that f 6∈ G

simpl.
Let us show that Gsimpl is dense. We set M = X , N = R

d and Λ = CG. We consider
the point y = 0 ∈ R

d and the function

Φ : (x, f) ∈ M× Λ 7−→ f(x) ∈ R
d .

The function Φ is of class C1 and

DΦ(x, f).(ξ, g) = DxΦ(x, f).ξ +DfΦ(x, f).g = Df(x).ξ + g(x) .

SinceDxΦ(x, f) = Df(x), y = 0 is a regular value of x 7→ Φ(x, f) if and only if 0 is a regular
value of f , i.e. f ∈ G

simpl. Thus, it is sufficient to check the hypotheses of Theorem 2.2 to
get the genericity of Gsimpl. We have dim(M)− dim(N ) = 0, thus Hypothesis (i) holds.
Hypothesis (iii) is satisfied since X is compact. To check Hypothesis (ii), it is sufficient to
notice that, for any x ∈ X , the map g ∈ CG 7→ DfΦ(x, f).g = g(x) is surjective onto R

d

since any constant vector field g ∈ R
d is an admissible vector field. �

Nota Bene: the hyperbolicity of the equilibrium points is a stronger property than sim-
plicity. Hyperbolicity is an important concept for studying the behaviour of dynamical
systems. Even, if we do not need it to prove our main results, we discuss the generic
hyperbolicity of the equilibrium points of (1.1) in Section 6.

For some geometries of the network G, the differential equation (1.1) cannot admit
simple equilibrium points. Thus, in these cases, Proposition 3.1 implies that (1.1) has in
fact no equilibrium point.

Corollary 3.2. Assume that there exists a set I of cells, with a set J of direct inputs, such
that dJ < dI (this holds in particular if the graph G is not dimensionally non-increasing).
Then, for any f belonging to G

simpl, the open subset of CG introduced in Proposition 3.1,
the differential equation (1.1) has no equilibrium point.

Proof: Assume that G is not dimensionally non-increasing and let I and J be such that
dJ < dI and J is the set of the direct inputs of the cells of I. If x is a simple equilibrium
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point of (1.1), the differential Df(x) should be surjective, thus this should be a fortiori
the case for the restricted map ξ ∈ R

d 7→ DfI(x).ξ ∈ R
dI , or more precisely, omitting

the unnecessary cells, the map ξJ ∈ R
dJ 7→ DfI(x).ξJ ∈ R

dI . Obviously, this could not
happen since dJ < dI . Therefore, (1.1) cannot admit simple equilibrium points and thus if
f ∈ G

simpl, then (1.1) does not have any equilibrium. �

Corollary 3.2 applies in particular when a cell i has no input (take I = {i}) or when a
cell i is the input of no other cell (take I being the whole set of cells).

3.2 Generic observability of equilibrium points

In this section, we prove property (a) of Theorem 1.3, which is a direct consequence of the
following property.

Proposition 3.3. Let i and j be two cells such that j is a direct input of i. Let τ > 0 be
given and let Geq

i,j,τ be the set of all the admissible vector fields f ∈ CG such that, if x(t) is
a solution of (1.1) such that xi(t) is constant on the time interval [0, τ ], then xj(t) is also
constant on [0, τ ]. Then, Geq

i,j,τ is a generic subset of CG.

Proof: Let τ > 0, let i be a cell and let j 6= i be a direct input of i. We apply Theorem
2.4 to the following setting. The set of parameters is Λ = CG, the space of the admissible
vector fields. We set N = C0([0, τ ],Rd), y = 0 and

M = {γ ∈ C1([0, τ ], X), γi(t) is constant and γj(t) is not constant } .

We define the function Φ ∈ C1(M× Λ,N ) by

Φ(γ, f) =
d

dt
γ(t)− f(γ(t)) .

The tangent space TγM is given by the functions ω ∈ C1([0, τ ],Rd) such that ωi(t) is
constant. We have

DΦ(γ, f).(ω, g) =
d

dt
ω(t)−Df(γ(t)).ω(t)− g(γ(t)) .

Step 1: DγΦ is a left-Fredholm map.
The map ω ∈ TγM 7→ d

dt
ω ∈ C0([0, τ ],Rd) is a left-Fredholm function. Indeed, its kernel

is the set of the constant functions and therefore is of dimension d and admits a closed
complementary set consisting in the functions of null integral. Moreover, its image is
the set of functions y(t) ∈ C0([0, τ ],Rd) such that yi(t) ≡ 0, and therefore is closed, and
it admits an infinite-dimensional closed complementary space Y2, which is the space of
functions y ∈ C0([0, τ ],Rd) such that yk(t) = 0 if k 6= i. Using Ascoli’s theorem, we
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show that the injection C1([0, τ ],Rd) in C0([0, τ ],Rd) is compact. Since Df(γ(t)) belongs
to C0([0, τ ],L(Rd)), we get that the map ω ∈ C1([0, τ ],Rd) 7→ Df(γ(t)).ω ∈ C0([0, τ ],Rd)
is compact. Therefore, using Proposition 2.5, we obtain that DγΦ is a left-Fredholm map.
Step 2: checking Hypothesis (ii) of Theorem 2.4
We have seen that DγΦ can be written L + K as in Proposition 2.6, Y2 being the space
of functions y ∈ C0([0, τ ],Rd) such that yk(t) = 0 if k 6= i. Using Proposition 2.6, we
notice that it is sufficient to exhibit a sequence of functions (gn) ∈ CG such that DfΦ.g

n =
−gn(γ(t)) compose a free family of Y2. By assumption, the curve γj is not reduced to
a point of Xj . One can choose an infinite number of disjoint open sets On

j ⊂ Xj such
that the curve t 7→ γj(t) belongs to On

j at some time tn ∈ [0, τ ]. Let χn ∈ C1(Xj ,R) be
bump functions with compact support in On

j and let ζ ∈ R
d be such that ζk = 0 if k 6= i

and ζi 6= 0. Then, the vector fields gn(x) = ζχn(xj) belong to CG and are such that the
functions t 7→ gn(γ(t)) belong to Y2 and have disjoints supports. This yields the required
free family of Y2 and shows that Hypothesis (ii) holds.
Step 3: M and Λ are obviously separable
Step 4: conclusion
We can apply Theorem 2.4, which shows that there exists a generic subset of admissible
vector fields f ∈ CG such that 0 is not in the image of Φ(., f). This means that there is no
solution γ ∈ C1([0, τ ], X) of

d

dt
γ(t)− f(γ(t)) = 0

such that γi is constant and γj not constant, which is exactly the statement of Proposition
3.3. �

Proof of Property (a) of Theorem 1.3: We set Geq = ∩i,j,nG
eq
i,j,1/n, which is a generic

subset of CG, as a countable intersection of generic subsets. Then, assume that f ∈ G
eq.

If i is such that xi(t) is constant on some interval (a, b), then, up to translating the time
and up to reducing the time interval, one can assume that there exists n such that xi(t)
is constant for t ∈ [0, 1/n]. By applying the first part of Proposition 3.3, xj(t) must be
constant on [0, 1/n] for any j direct input of i. Then, by recursion, we get that, on the
interval [0, 1/n], any indirect input of i is constant. The set I of cells containing i and all its
indirect inputs is an independent sub-network and thus follows an evolution which depends
only on the values of the cells of I. Therefore, the differential equation (1.1) restricted to
XI is an ODE for which the solution xI(t) is constant on [0, 1/n] and hence is constant for
all times t ∈ R. �

3.3 Generic inverse problem for equilibrium points

One may hope that, at least generically and for strongly connected graphs, if two equilibria
coincide in one cell, then they must be equal everywhere. In fact, a surprisingly simple
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counter-example exists. We look to the circular two-cell network

ẋ1(t) = f1(x2(t)) ẋ2(t) = f2(x1(t)) . (3.1)

Equilibria consist in couples (x1, x2) with x1 and x2 being singularities of the respective
vector fields f2 and f1. Therefore, as soon as f2 has two singularities x1 6= x̃1 and f1
has one singularity x2, then (x1, x2) and (x̃1, x2) are both equilibria, which cannot be
distinguished by observing the cell 2. In addition, if the phase spaces of both cells have
the same dimension, then these singularities may be simple and thus stable with respect
to small perturbations of f1 and f2. Therefore, this type of counter-example exists in an
open set of non-linearities.

However, the generic inverse problem holds in some situations, as shown in the next
proposition.

Proposition 3.4. Let G be either
(a) a self-dependent directed graph,
(b) or a dimensionally decreasing graph,
(c) or a not dimensionally non-increasing graph.
Let i0 be an observation cell for the graph G. Then, there exists a generic set Ginv,eq ⊂ CG
such that, for any f ∈ G

inv,eq, if x and x̃ are two equilibrium points of the ODE (1.1)
satisfying xi0 = x̃i0, then x = x̃.

Proof: First, notice that the case (c) is clearly implied by Corollary 3.2 since there is
generically no equilibrium point in this case.

We use similar techniques as the ones in the proof of Proposition 3.1. Let i0 be an
observation cell and let I be a set of cells, which includes i0 but not all the cells. We
denote by G

inv,eq
I the set of functions f such that if x and x̃ are two equilibrium points of

the ODE (1.1) satisfying xI = x̃I , then xi = x̃i for at least one cell i 6∈ I. We claim that
G

inv,eq = ∩IG
inv,eq
I and thus that it is sufficient to show that each G

inv,eq
I is a generic set.

Indeed, assume that f ∈ ∩IG
inv,eq
I and that x and x̃ are two equilibrium points such that

xi0 = x̃i0 . Let I be the set of cells i such that xi = x̃i. Notice that i0 ∈ I and assume
that I is not the whole set of cells. Since f ∈ G

inv,eq
I , we should have that xi = x̃i for

at least one cell i 6∈ I, which is obviously in contradiction with the definition of I. Thus,
I = {1, . . . , N} and x = x̃.

We set J to be the set of cells such that all their direct inputs belong to I. We denote
by Ic and Jc the complementary sets of cells. We use Theorem 2.2 with the following
setting:

M = {(x, x̃) ∈ X2 , xI = x̃I and ∀j ∈ Ic, xj 6= x̃j} ,

N = R
d × R

dJc , y = 0 ∈ N and Λ = CG

We consider the function

Φ : (x, x̃, f) ∈ M× Λ 7−→ ( f(x) , fJc(x̃) ) ∈ R
d × R

dJc .
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Let (x, x̃, f) ∈ Φ−1(0). We have f(x) = 0 and fj(x̃) = 0 for any j 6∈ J . If j ∈ J , any
direct input of j belongs to I and therefore fj(x̃) = fj(x) = 0. Hence, x and x̃ are two
equilibrium points, which coincide on the cells I but differ in any cell in Ic. We claim that
Hypothesis (ii) of Theorem 2.2 holds. Indeed, the map

g ∈ CG 7−→ DfΦ(x, x̃, f).g = (g(x), gJc(x̃))

is onto R
d+dJc because, for any j ∈ Jc, x̃ differs from x in at least one direct input of j

and thus the value of gj(x) and gj(x̃) can be chosen independently. Assume for a moment
that dim(M) < dim(N ), then Theorem 2.2 implies that, generically with respect to f ,
there are no equilibrium points x and x̃ which coincide on I but differ on Ic, i.e. if x and
x̃ coincide on I, they must also coincide in at least one other cell. This proves that Ginv,eq

I

is a generic set.
It remains to show that, if the graph G satisfies either (a) or (b), then we have

dim(M) < dim(N ), that is that the dimension dI is larger than the dimension dJ . In
the case of property (b), this trivially follows from the definition of dimensionally decreas-
ing graph since I contains all the direct input of J . Assume that G is self-dependent.
Then, any cell is a direct input of itself and thus J ⊂ I. Therefore, dI = dJ if and only if
J = I. But, this would mean that any direct input of J belongs to J and thus any indirect
input of I = J belongs to I. Since we assumed that I is not the whole set of cells, that I
contains i0 and that i0 is an observation cell, this is not possible and dI > dJ . �

We believe that Proposition 3.4 is optimal that is that if G satisfies neither (a), (b) or
(c), then one can find a circular sub-network in which a counter-example similar to (3.1)
can be constructed.

4 Generic inverse problem

The purpose of this section is to prove the inverse problem stated in Theorem 1.2. Its
proof is split into two propositions.

Proposition 4.1. Let i be a cell, let τ be a positive number. There exists a generic subset
G

traj,1
i,τ of CG such that the following property holds for any f ∈ G

traj,1
i,τ . Let x(t) and x̃(t) be

two solutions of (1.1). Assume that xi(t) = x̃i(t) on the time interval [0, τ ] and assume that
at least one cell j being a direct input of i is such that xj(t) is not constant on [0, τ ]. Then,
for any cell k which is a direct input of i, the curves {xk(t), t ∈ [0, τ ]} and {x̃k(t), t ∈ [0, τ ]}
must cross.

Proof: The proof of Proposition 4.1 uses Theorem 2.4 in the same way as the proof of
Proposition 3.3. The set of parameters is Λ = CG. We set N = (C0([0, τ ],Rd))2 and
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y = (0, 0). Let j and k be two (possibly equal) direct input cells of the cell i. We set

M = {(γ, γ̃) ∈ C1([0, τ ], X)2 , ∀t ∈ [0, τ ], γi(t) = γ̃i(t),

∀(s, t) ∈ [0, τ ]2, γk(t) 6= γ̃k(s) and t 7→ γj(t) is not constant } ,

We define the function Φ ∈ C1(M× Λ,N ) by

Φ(γ, γ̃, f) =

(

d
dt
γ(t)− f(γ(t))

d
dt
γ̃(t)− f(γ̃(t))

)

.

The tangent space TγM is given by the (ω, ω̃) ∈ (C1([0, τ ],Rd))2 such that ωi ≡ ω̃i. We
have

DΦ(γ, f).(ω, g) =

(

d
dt
ω(t)−Df(γ(t)).ω(t)− g(γ(t))

d
dt
ω̃(t)−Df(γ̃(t)).ω̃(t)− g(γ̃(t))

)

.

Step 1: D(γ,γ̃)Φ is a left-Fredholm map.
The arguments are the same as in the proof of Proposition 3.3. We use a decomposition
D(γ,γ̃)Φ = L + K and apply Proposition 2.5. The map L is given by (ω, ω̃) ∈ TγM 7→
( d
dt
ω, d

dt
ω̃) ∈ (C0([0, τ ],Rd))2. Its kernel is the set of the constant functions such that

ωi = ω̃i. Its image R(L) consists in the functions (θ, θ̃) ∈ (C0([0, τ ],Rd))2 such that
θi ≡ θ̃i. A closed complementary space Y2 of R(L) is given by the space of the functions
(θ, 0) ∈ (C0([0, τ ],Rd))2 such that θk ≡ 0 except if k = i.
Step 2: checking Hypothesis (ii) of Theorem 2.4
Once again, the arguments are similar to the ones of the proof of Proposition 3.3. We
have seen that D(γ,γ̃)Φ can be written L + K as in Proposition 2.6. It is sufficient to
exhibit a sequence of functions (gn) ∈ CG such that (DfΦ.g

n) composes a free family of
Y2. By assumption, the curve Γ = {(γj(t), γk(t)), t ∈ [0, τ ]} ⊂ Xj ×Xk is not reduced to a
point and does not meet the curve Γ̃ = {(γ̃j(t), γ̃k(t)), t ∈ [0, τ ]} (if j = k simply consider
Γ = {γj(t)} and Γ̃ = {γ̃j(t)}). We construct the suitable vector fields gn exactly as in the
proof of Proposition 3.3, introducing disjoints open sets On

j,k ⊂ Xj × Xk which intersect

the curve Γ but not the curve Γ̃.
Step 3: M and Λ are obviously separable
Step 4: conclusion
We can apply Theorem 2.4, which shows that there exists a generic subset of admissible
vector fields f ∈ CG such that 0 is not in the image of Φ(., f). This means that there are no
solutions γ(t) and γ̃(t) of (1.1) on the time interval [0, τ ], being equal on the cell i, and such
that xj(t) is not constant on [0, τ ] and the curves {γk(t), t ∈ [0, τ ]} and {γ̃k(t), t ∈ [0, τ ]}
do not intersect. �

In Proposition 4.1, we had to exclude the case of constant direct inputs, because we
wanted to construct an infinite-dimensional complementary subspace in the second step of
the proof. The case of constant direct inputs follows from Section 3.
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Proposition 4.2. Let i be a given cell, let I be the set of all its indirect inputs and assume
that i does not belongs to I. Then, there exists a dense open set Gtraj,2

i of CG such that,
for any f ∈ G

traj,2
i , the following property holds. Let x(t) and x̃(t) be two trajectories of

(1.1) such that xI(t) and x̃I(t) are constant. If xi(0) = x̃i(0) and fi(x(0)) = fi(x̃(0)) then
xj(0) = x̃j(0) for any j being a direct input of i.

Proof: The set of cells I is an independent sub-network that is that the ODE (1.1)
restricted to this set is another coupled cell network

ẋI(t) = fI(xI(t)) . (4.1)

Applying Proposition 3.1 to this network, we get the existence of a dense open set Gsimpl
I ⊂

CG such that for any f ∈ G
simpl
I , there is only a finite number of equilibrium points for

(4.1). Moreover, these equilibrium points are simple and so depend smoothly on fI .
Now, since i 6∈ I, the fact that f ∈ G

simpl
I does not depend on fi. Therefore, we can

easily perturb fi so that fi(xI) 6= fi(x̃I) for any couple of equilibrium points (xI , x̃I) of
(4.1), which do not coincide on the direct inputs of i (otherwise of course fi(xI) = fi(x̃I)).
Moreover, this property holds also for small perturbations of f since fi and the equilibria
xI depend smoothly on f . Thus, we get a dense open set Gtraj,2

i of functions f such that
if x and x̃ are two trajectories, which are constant on I, then fi(x) = fi(x̃) if and only if
xj = x̃j for any j being a direct input of i. �

Proof of Theorem 1.2: let Gtraj be the intersection of all the previous generic subsets
G

simpl, Geq, Ginv,eq, Gtraj,1
i,1/n and G

traj,2
i , for all cell i and all n ∈ N

∗. Notice that Gtraj is a
generic subset of CG, since it is a countable intersection of generic subsets.

Assume that f ∈ G
traj and that i0 is an observation cell. Let x(t) and y(t) be two

trajectories of (1.1) such that xi0(t) = yi0(t) on some time interval (a, b). Assume that x and
y do not coincide in all the direct input cells of i0, we would like to obtain a contradiction.
First, notice that, up to translating and restricting the interval of times, we can replace
(a, b) by [0, 1/n] and assume that the curves {xk(t), t ∈ [0, 1/n]} and {yk(t), t ∈ [0, 1/n]}
do not cross for at least one of the direct inputs of i0.
First case: xj(t) or yj(t) is not constant in [0, 1/n] for at least one of the direct inputs j
of i0. Since f ∈ G

traj,1
i0,n

applying Proposition 4.1, we obtain a contradiction.
Second case: xj(t) and yj(t) are constant in [0, 1/n] for any direct input j of i0, and i0
is not an indirect input of itself. Since f ∈ G

eq, Property (a) of Theorem 1.3 shows that
x(t) and y(t) are constant for any indirect input of i0. Since f ∈ G

traj,2
i0

, Proposition 4.2
shows that x(t) and y(t) coincide in any direct input of i0, which is in contradiction with
our assumption.
Third case: xj(t) and yj(t) are constant in [0, 1/n] for any direct input j of i0, and i0 is an
indirect input of itself. Since f ∈ G

eq, Property (a) of Theorem 1.3 shows that x(t) and y(t)
are constant for any cell being in the set I of the indirect inputs of i0. Notice that i0 ∈ I and
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thus xI(t) and yI(t) are two equilibrium points of the independent sub-network I, which
coincide on the observation cell i0 ∈ I. Applying Proposition 3.4, we obtain that x(t) and
y(t) coincide in I except if the graph G restricted to the set of cells I is dimensionally non-
increasing and is neither a self-dependent directed graph nor a dimensionally decreasing
graph. Notice that the fact that G restricted to I is dimensionally non-increasing can be
omitted: if it is not the case, then Corollary 3.2 shows that there is no constant solution
to (4.1) and thus xI(t) and yI(t) cannot be two equilibrium points of the independent
sub-network I.

By applying the above arguments recursively, we get that x(t) and y(t) coincide in any
cell in some interval of times [0, 1/n], except maybe if in our recursion process, we meet the
exception of the above third case. This exception may happen only if the trajectories x(t)
and y(t) are both constant in a set of cells I and the graph G restricted to I is neither a
self-dependent directed graph nor a dimensionally decreasing graph. To finish the proof of
Theorem 1.2, notice that if x(t) and y(t) coincide in any cell in some time interval [0, 1/n],
then they must coincide for any time t since (1.1) is a classical ODE. �

5 Generic observability of oscillations and stabilisa-

tion

In this section, we show that Properties (b) and (c) of Theorem 1.3 and Theorem 1.4 are
straightforward consequences of the inverse problems studied in the previous sections.

Proof of Properties (b) and (c) of Theorem 1.3: Let Gosc be the generic set Gtraj

introduced in the proof of Theorem 1.2 and assume that f ∈ G
osc. Let x(t) be a solution of

(1.1) and assume that there is a cell i such that xi(t) is T−periodic on (a, a+ T + τ). Let
I be the set of indirect input cells of i. We set y(t) = x(t + T ). We have xi(t) = yi(t) on
(a, a+ τ). Since f ∈ G

traj , using Theorem 1.2, we obtain that xI(t) = yI(t) except maybe
in the cells where x and y are constant. But, since y(t) = x(t+ T ), if both are constant in
time, they must be equal. To conclude, we get that xI(t) = yI(t) = xI(t+ T ) for all t ∈ R,
and thus any cell in I is T−periodic, which proves Property (b).

Let us show Property (c). Notice that, in Property (b), it is possible that an indirect
input cell j of i is T ′−periodic with T ′ < T . Therefore, if xi(t) is exactly T−periodic, it
is possible that xj(t) is not exactly T−periodic but exactly T ′−periodic with T ′ < T (or
even constant). However, if G is a strongly connected graph, then applying Property (b)
(or (a)) to the cell j, for which i is an indirect input cell, we get that xi(t) is also exactly
T ′−periodic (or constant), which is of course impossible since T 6= T ′. Therefore, if G is a
strongly connected graph, then xj(t) must be also exactly T−periodic. �

Proof of Theorem 1.4: Let Gstab be the generic subset G
traj of CG introduced in the

proof of Theorem 1.2 and assume that f ∈ G
stab. Let x(t) be a solution of (1.1) and let i
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be an observation cell. Assume that xi(t) converges to a constant x∗

i when t goes to +∞.
The main ingredient of this proof is the classical concept of ω−limit set. We recall that
the ω−limit set of x(0) is defined as

ω(x(0)) = ∩n∈N{x(t) , t ∈ [n,+∞)}

= {ξ ∈ X , there exists a sequence (tn) converging to +∞ such that

x(tn) converges to ξ when n goes to +∞} . (5.1)

Since X is a compact manifold, for all x(0) ∈ X , ω(x(0)) is a connected and compact non-
empty set. Moreover ω(x(0)) is invariant by the dynamical system generated by the ODE
(1.1), i.e. the ω−limit set is a union of complete trajectories of (1.1) (see for example [12]).
By continuity, we know that, in our particular case, any trajectory ξ(t) of ω(x(0)) satisfies
ξi(t) = x∗

i . By using Property (a) of Theorem 1.3, we get that ξ(t) is an equilibrium point
of (1.1). Since f ∈ G

simpl, any equilibrium is simple and hence isolated. Since ω(x(0)) is
connected, there is exactly one equilibrium point ξ = x∗ in ω(x(0)). Since X is compact,
this shows that x(t) converges to x∗. �

6 Discussion on further results

In this section, we state several adaptations or generalisations of our main results. They
are presented as claims and their proofs are only roughly sketched. By “claims”, we mean
that the results hold, but no complete proofs are given. The proofs are mutatis mutandis
the same as the ones of Theorem 1.2, 1.3 or 1.4, we only give short arguments, that are,
we hope, sufficiently convincing.

The non-compact case.
It is possible to adapt the main results of this paper to the non-compact case. Here, we
typically choose Xi = R

di to fix the notations. The first problem is to define a suitable
topology on the space CG of admissible vector fields, i.e. a topology on X

1(X). The classical
strong C1−topology is too restrictive since it applies only on bounded functions. Therefore,
one usually endow X

1(X) with the Whitney topology, that is the topology generated by
the neighbourhoods

Of,δ = {g ∈ X
1(X) / max(‖f(x)− g(x)‖, ‖Df(x)−Dg(x)‖) < δ(x), ∀x ∈ X} ,

where f is any function in X
1(X) and where δ is any continuous positive real function

on X . We refer to [4] for a complete discussion on this topology. The main issue is that
X

1(X) endowed with the Whitney topology is not a metrizable space and the close sets
are not the sequentially closed sets. In particular, we cannot directly use Theorems 2.2 or
2.4 with Λ = CG. However, it is noteworthy that CG endowed with the Whitney topology
is still a Baire space and thus generic subsets are dense subsets.
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A second issue is the global existence of solutions of the differential equation (1.1). In
order to ensure it, we restrict the class of vector fields to

C̃G = { f ∈ CG , ∃M > 0, ∀x ∈ X, ‖x‖ ≥ M ⇒ 〈f(x)|x〉 < 0 } .

If f ∈ C̃G, any solution x(t) of (1.1) exists for all t ≥ 0 and eventually belongs to the ball
BX(0,M). In particular, the ω−limit set defined by (5.1) is non-empty.

Claim 6.1. There exists a generic subset G̃ of C̃G such that, for any f ∈ G̃, all the
observation properties stated in Theorems 1.2, 1.3 and 1.4 hold.

Sketch of proof: Since we cannot apply Theorems 2.2 or 2.4 with Λ = C̃G, we use the
following strategy, which has now become classical:
- split the manifold X in compact subsets,
- consider the desired property in each of these compact subsets and show that it is open,
- prove the density by applying a transversality theorem in an open subset of X containing
the compact subset.
To give an example, let us explain how we adapt Proposition 3.1. We cover X by a
countable union of closed balls BX(0, n). We introduce the set G̃simpl

n consisting in functions
f ∈ C̃G such that any equilibrium point e of (1.1) satisfying e ∈ BX(0, n) is simple. Arguing
as in the proof of Proposition 3.1, we show that G̃

simpl
n is open in C̃G. To be able to use

Theorem 2.2, we introduce the space Λ of admissible vector fields g ∈ CG being compactly
supported in BX(0, n + 1). Notice that Λ is a Banach space endowed with the classical
strong C1−topology. Then, we set M = BX(0, n+ 1), N = R

d, y = 0 ∈ R
d and

Φ : (x, g) ∈ M× Λ 7−→ (f + g)(x) ∈ R
d .

Using the same arguments as in the proof of Proposition 3.1, we show that there exists a
generic set of CG such that any equilibrium e of (1.1) with ‖e‖ < n + 1 is simple. Then
notice that, if g is close to zero in Λ, then f + g is close to f in C̃G. As a consequence,
we can perturb f such that any equilibrium e of (1.1) with ‖e‖ < n + 1 is simple, and a
fortiori this shows that G̃

simpl
n is dense. Finally G̃

simpl = ∩nG̃
simpl
n is a generic subset of

C̃G. �

General manifolds.
Assume that for each cell i, Xi is a compact C2−manifold of dimension di.

The first problem occurs when one would like to define a network with a graph which
is not self-dependent. Indeed, it may be abusive to assume that a vector field fi(x) in a
cell i does not depend on xi since fi(x) ∈ Txi

Xi. In fact, to define a vector field fi which
is independent of i, one has to be able to introduce a notion of constant vector fields on
Xi. In the cases of Xi = T

di or of Xi = R
di as above, we have identified each Txi

Xi to R
di ,
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which enables us to define a notion of constant vector field (even if we have not explicitely
mentioned this, the concept is natural). If Xi is a 2n-dimensional sphere, then any concept
of constant vector field will be irrelevant since any continuous vector field must vanish.
A suitable notion of constant vector fields would be to assume that Xi is a parallelizable
manifold, i.e. that there exist di vector fields ξ1, . . ., ξdi such that for each xi ∈ Xi, (ξk(xi))
is a basis of Txi

Xi, and then to define constant vector fields as linear combinations of the
ξk. The spaces R

di , the tori, the sphere S3 and their products are parallelizable manifolds.
However, except these ones, there is no other natural examples. For this reason, if one
deals with general manifolds, it is natural to assume that the graph G is self-dependent.

Except for the problem of self-dependency, our results can be extended to general
compact manifolds.

Claim 6.2. Assume that each Xi is a compact C2−manifold and assume that G is a self-
dependent graph. Then, Theorems 1.2, 1.3 and 1.4 hold.

Sketch of proof: When trying to repeat the proofs of these theorems in the framework of
general manifolds, the main difficulty is to deal with global abstract setting for manifolds.
The following questions arise. How to define abstractly and properly the Banach manifold
of C1− paths on X? How to check the surjectivity of a functional DΦ, whose image is now
included in the space T (TX)? A simple way to overcome these difficulties is to work in local
coordinates. We consider the canonical product manifold structure for X = X1× . . .×XN .
In this way the charts are not mixing the coordinates of the different cells of the network.
Let us simply give an example of how we have to modify our propositions. The statement
of Proposition 3.3 becomes

Let i and j be two cells such that j is a direct input of i. Let τ > 0 be given and
let (U, α) be a chart of an atlas U . Let Geq

i,j,τ,U be the set of all the admissible
vector fields f ∈ CG such that, if x(t) is a solution of (1.1) such that xi(t)
belongs to U for all t ∈ [0, τ ] and is constant on this interval, then xj(t) is also
constant on [0, τ ]. Then, Geq

i,j,τ,U is an generic subset of CG.

The proof is the same as the one of Proposition 3.3, except that we now work in the local
chart U and consider the space

M = {γ ∈ C1([0, τ ], α(U)), γi(t) is constant and γj(t) is not constant }

and the function

Φ(γ, f) =
d

dt
γ(t)−Dα(α−1(γ(t))).f(α−1(γ(t))) .

Since the manifolds Xi are covered by a finite number of charts, we recover our global
results by intersecting the sets Geq

i,j,τ,U , which have been locally obtained. �
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Of course, we could even state our results in the framework of non-compact general
manifolds by mixing Claims 6.1 and 6.2.

Prevalent results.
In this paper, we used the genericity to give a meaning to the notion of “almost every-
where”. It is noteworthy that it is not the only notion of “almost everywhere” in Banach
spaces. Except the habits, there is no real reason to give more importance to genericity in
comparison to other natural notions of “almost everywhere”. In particular, the prevalence
has recently attracted much attention.

Let X be a Banach space. Christensen in [3] introduced the notion of Haar-nul set: a
Borel set B of X is said Haar-nul if there exists a finite non-negative measure µ 6≡ 0 with
compact support such that for all x ∈ X , µ(x + B) = 0. More generally, any set B ⊂ X
is said Haar-nul if it is contained in a Haar-nul Borel set. Let U be an open subset of
X . A set P ⊂ U is said prevalent in U if U \ P is a Haar-nul set of X . The notion of
prevalence first appeared in the work of Hunt, Sauer and Yorke [9], where it is proved that
prevalent sets are dense and that a countable intersection of prevalent sets is prevalent. It
is interesting to see that, in finite-dimensional spaces, prevalent sets are exactly the sets of
full Lebesgue measure (see [9]). We refer to [11] for a review on prevalence.

We proved in [10] that, if Λ is an open subset of a Banach space, then in the transver-
sality theorems, Theorems 2.2 and 2.4, the set G is not only generic but also prevalent.
Thus, we obtain the following generalisation of our main results.

Claim 6.3. Any generic subset appearing in Theorems 1.2, 1.3 and 1.4, as well as in the
other results of this paper, is not only a generic subset of CG but also a prevalent subset.

The discrete-time case: cellular automata.
Instead of considering the time-continuous dynamical system generated by the ODE (1.1),
we could also study the discrete-time model

x0 ∈ X , xn+1 = f(xn) f ∈ CG . (6.1)

The discrete-time model is also meaningful for applications. If the cells form a grid and if
the direct inputs are exactly the neighbouring cells of each cell, then we get a usual cellular
automaton. The observation problems stated in this paper are obviously transposed into
the discrete-time model.

Claim 6.4. Let G be a given graph. There exists a time K ∈ N depending on G and the
dimension d of the phase space X such that:
- Theorem 1.4 holds,
- Theorem 1.2 holds as soon as the time interval (a, b) satisfies b− a ≥ K,
- Theorem 1.3 holds as soon as b− a ≥ K and τ ≥ K.
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Sketch of proof: In the continuous-time model, as soon as we have considered a non-
constant trajectory in some interval of times, we get an infinite-dimensional space of free-
dom, as one can see in the proof of Proposition 3.3 for example. There, we may have
used Theorem 2.4 with Z infinite-dimensional in Hypothesis (ii). The difficulty with the
discrete-time model is that this is no longer possible. Exactly as in the proof of Proposition
3.4, we have to be careful in counting the dimension. By using techniques similar to the
ones of Proposition 3.4, we can however adapt the results of this paper into the frame of the
discrete-time model (6.1). The time K is basically equal to dD where d is the dimension
of X and D is the diameter of the graph, i.e. the larger distance between one cell and one
of its indirect inputs. �

Generic hyperbolicity of equilibrium points.
In Proposition 3.1, we proved the generic simplicity of equilibrium points. We could wish
to go further by proving the generic hyperbolicity of equilibrium points. We recall that
an equilibrium e is hyperbolic if Df(e) has no spectrum on the vertical line iR. The
hyperbolicity of an equilibrium point e implies that the flow near e is qualitatively the
same as the one of the linear equation ẋ(t) = Df(e).x(t), see [12]. In classical ODEs, the
hyperbolicity of equilibrium points is generic. However, it is not always the case in coupled
cell networks. Indeed, consider the simple counter-example (3.1) with X1 = X2 = R/Z.
It is not difficult to construct f such that there exists an equilibrium e = (e1, e2), which
is simple and satisfies f ′

1(e2)f
′

2(e1) < 0. Notice that the existence of such an equilibrium
holds in a small neighbourhood of f . Since

Df(e) =

(

0 f ′

1(e2)
f ′

2(e1) 0

)

has ±i
√

|f ′

1(e2)f
′

2(e1)| for eigenvalues, such an equilibrium is never hyperbolic.
Fortunately, we can at least show the generic hyperbolicity of equilibrium points in the

meaningful case of self-dependent graph.

Claim 6.5. Assume that G is a self-dependent graph. Then, there exists an open dense set
G

hyp of CG such that for any f ∈ G
hyp, all the equilibrium points of (1.1) are hyperbolic.

Sketch of proof: We recall that a simple (resp. hyperbolic) equilibrium depends smoothly
of f and remains simple (resp. hyperbolic) for small perturbations of f . Thus, the set Ghyp

is open and it remains to prove its density. Let f ∈ CG. Up to perturb it, we can assume
that f belongs to G

simpl, the open dense set of Proposition 3.1. Then, there is at most
a finite number of equilibrium points of (1.1). It is sufficient to understand how to make
a simple equilibrium point e hyperbolic by perturbing f , since then we can apply several
times the same type of perturbations to make, one by one, all the equilibria of f hyper-
bolic. Notice that, if e is a simple equilibrium, then e is an hyperbolic equilibrium of (1.1)
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for f̃ being close to f and satisfying f̃(e) = f(e) = 0 and Df̃ = Df + εId. The final
central argument is that such a perturbation of f , consisting in perturbing the differential
by a homothety, is possible in the class CG of admissible vector fields if and only if G is
self-dependent. �
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