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We consider the linearized Landau operator for which we provide simple proofs of hypoellipticity, and in particular we recover the recent results of Hérau and . Our arguments are elementary and in particular avoids any use of pseudo-differential calculus.

Introduction

We consider hypoelliptic effects associated with the time version of a kinetic equation related to the linearized Landau equation and studied recently by Herau and Pravda-Starov [START_REF] Herau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF] (1.1)

∂ t f + v.∇ x f -∇ v .λ(v)∇ v f -(v ∧ ∇ v ).µ(v)(v ∧ ∇ v f ) + F(v) f (v) = h
where t ∈ R, x ∈ R 3 and v ∈ R 3 . f and h will be supposed to be in L 2 , where here and below L 2 denotes the usual space w.r.t. full variables (t, x, v). In fact, as it will be clear from the proofs, it is also possible to work in weighted L 2 spaces and even in weighted Sobolev spaces. The norm in L 2 will be denoted by . and its associated scalar product by (. , .). We shall work with real functions f and h though there is absolutely no difficulties in considering complex cases, up to the addition of the real parts when necessary.

As regards the coefficients appearing in (1.1), we assume that the positive functions λ, µ and F satisfy the following coercive type lower bounds

(1.2) λ(v) < v > γ , µ(v) < v > γ and F(v) < v > γ+2
where -3 ≤ γ ≤ 1, and

(1.3) |D m v λ| < v > γ-m , |D m v µ| < v > γ-m and |D m v F(v)| < v > γ+1
-m for any m of order at most two.

We set (1.4)

L( f ) = -∇ v .λ(v)∇ v f -(v ∧ ∇ v ).µ(v)(v ∧ ∇ v f ) + F(v) f (v) = L 1 ( f ) + L 2 ( f ) + L 3 ( f )
so that (1.1) writes also (1.5)

∂ t f + v.∇ x f + L( f ) = h.
As explained in [START_REF] Herau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF], (1.1) or its version (1.5) is related to the linearized Landau operator, which plays a crucial role in Plasma Physics, see for example [START_REF] Alexandre | A review on Boltzmann equation with singular kernels[END_REF][START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] and the references therein. Moreover the above assumptions (1.2) and (1.3) are natural in view of Guo's work [START_REF] Guo | The Landau equation in a periodic box[END_REF]. However, note that the model (1.1) does not take into account the kernel which is naturally associated with the true Landau linearized equation. In particular, for applications to the true nonlinear Landau model near equilibrium, the present results need to be adapted, though the main issue is related to the macroscopic part.

Our main concern is to give a shorter proof of the following result about optimal hypoelliptic results which was first proven in [START_REF] Herau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF] (in the time independent version) Theorem 1.1 ). Assume f and h belong to L 2 . Then, under the hypothesis (1.2) and (1.3), we have

< v > γ+2 f 2 + < v > γ |D v | 2 f 2 + < v > γ |v ∧ ∇ v | 2 f 2 + < v > γ 3 |D x | 2 3 f 2 + < v > γ 3 |v ∧ ∇ x | 2 3 f 2 f 2 + h 2 .
The proof in [START_REF] Herau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF] uses pseudo-differential calculus, together with Wick calculus. In the continuation of a previous work of Morimoto and Xu [START_REF] Morimoto | Hypoelliticity for a class of kinetic equations[END_REF], a similar study was also performed in [START_REF] Lerner | Hypoelliptic Estimates for a Linear Model of the Boltzmann Equation without Angular Cutoff[END_REF] in order to deduce hypoelliptic results for a fractional order kinetic equation, and again the proof therein was using such tools.

Recently, we have provided in [START_REF]Fractional order kinetic equations and hypoellipticity[END_REF] a very simple proof of the results of [START_REF] Lerner | Hypoelliptic Estimates for a Linear Model of the Boltzmann Equation without Angular Cutoff[END_REF] by using arguments originally introduced by Bouchut [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF] and Perthame [START_REF] Perthame | Higher moments for kinetic equations: the Vlasov-Poisson and Fokker-Planck cases[END_REF].

Again herein, we shall give a different proof of this main Theorem by using simple and standard arguments. Moreover, we keep the regularity of the coefficients as low as possible, this point being connected with the second order commutators estimations which are needed in the proofs. As a byproduct, other estimations will emerge from our computations. Note also that, as usual, time derivatives estimates are also available, but we do not detail this point. All in all, together with our previous work [START_REF]Fractional order kinetic equations and hypoellipticity[END_REF], we provide extremely simple arguments to deduce hypoelliptic results for kinetic equations with a diffusive part. It is to be expected that the underlying arguments are sufficiently simple to enable the study of different questions related to diffusive models arising from scaled kinetic equations. We hope to get back on this issue soon. Furthermore as it will be clear from the proofs, the Cauchy problem can be also analyzed with the same methods up to some minor changes. It is expected that such simple methods will provide other methods for the analysis of the Cauchy problem associated with fully nonlinear kinetic equations such as Boltzmann or Landau equations, see the quoted works in the bibliography.

We shall always assume that all functions f and h are smooth.The paper is organized as follows. We first deduce in Section 2 some estimates from a transport equation. These are used in Section 3, in particular to control cross products terms.

Preliminary results

First of all, by multiplying the equation by f , integration over all variables and using the assumptions (1.2), we get Lemma 2.1. One has

< v > γ 2 ∇ v f 2 + < v > γ 2 (v ∧ ∇ v f ) 2 + < v > γ 2 +1 f 2 f h .
The next two Lemmas are the adaptions of some of the steps which appear in Bouchut's paper [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF]. They are related to transport type equations, with a given right hand side, and assuming that we know already some kind of regularity w.r.t. velocity variable, they give some informations about regularity of some spatial derivatives.

Lemma 2.2. Assume f ∈ L 2 , g ∈ L 2 , < v > γ |D v | 2 f ∈ L 2 and ∂ t f + v.∇ x f = g. Then < v > γ 3 |D x | 2 3 f < v > γ-1 f 1 3 + < v > γ |D v | 2 f 1 3 g 2 3 .
Observe that the first term in the r.h.s. of this estimate is controlled by the L 2 norm of f , since γ ≤ 1.

Proof. Following [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF], we start from the formula

∂ x j f = ∂ v j g -(∂ t + v.∇ x )∂ v j f. Then we write < v > γ 3 |D x | 2 3 f 2 = < v > γ 3 |D x | -1 3 ∂ x j f 2 = (< v > 2γ 3 |D x | -2 3 ∂ x j f , ∂ x j f ) = (< v > 2γ 3 |D x | -2 3 ∂ x j f , ∂ v j g -(∂ t + v.∇ x )∂ v j f ) = -4 γ 3 (< v > 2γ 3-1 v.∇ x (|D x | -2 3 f, g) -(< v > 2γ 3 |D x | -2 3 ∂ x j ∂ v j f , g) + (< v > 2γ 3 |D x | -2 3 ∂ x j ḡ, ∂ v j f ). Thus (2.6) < v > γ 3 |D x | 2 3 f 2 = -4 γ 3 (< v > 2 γ 3 -1 v.∇ x (|D x | -2 3 f, g)-2Re(< v > 2γ 3 |D x | -2 3 ∂ x j ∂ v j f , g) = I+II.
Starting from

II 2 < v > 2γ 3 |D x | -2 3 ∂ x j ∂ v j f 2 g 2 , it follows that < v > 2γ 3 |D x | -2 3 ∂ x j ∂ v j f 2 (< v > 4γ 3 D x | 2 3 ∂ v j f, ∂ v j f ) = +(< v > 4γ 3 D x | 2 3 f, |D v | 2 f ) + 8γ/3(< v > 4γ 3 -1 v j |D x | 2 3 f, ∂ v j f ) = A + B. Now, one has A < v > γ 3 |D x | 2 3 f < v > γ |D v | 2 f while for B, we have B = 8 γ 3 (< v > 4γ 3 -1 |D x | 2 3 f, v.∇ v f ) = 8 γ 3 (< v > 4γ 3 -1 [|D x | 1 3 f ], v.∇ v [|D x | 1 3 f ]) which is of the form (g, β(v).∇ v g) ≃ (g, g div v [β])
where

β(v) =< v > 4γ 3 -1 v. Therefore div β ≃< v > 4γ 3 -1 + < v > 4γ 3 -3 < v > 2 . Thus B (< v > 4γ 3 -1 g, g) = (< v > 4γ 3 -1 [|D x | 1 3 f ], [|D x | 1 3 f ]) = (< v > γ 3 |D x | 2 3 f, < v > γ-1 f ) < v > γ 3 |D x | 2 3 f < v > γ-1 f and A + B < v > γ 3 |D x | 2 3 f < v > γ |D v | 2 f + < v > γ-1 f . Therefore II < v > γ 3 |D x | 2 3 f 1 2 < v > γ-1 f 1 2 + < v > γ |D v | 2 f 1 2
g .

For I, (using Fourier transform w.r.t. variable x)

I < v > 2 γ 3 -1 2 |D x | 1 3 f g
and by the same computations, we get

I < v > γ 3 |D x | 2 3 f 1 2 < v > γ-1 f 1 2 g . Thus I + II < v > γ 3 |D x | 2 3 f 1 2 < v > γ-1 f 1 2 + < v > γ |D v | 2 f 1 2
g and finally in view of (2.6)

< v > γ 3 |D x | 2 3 f < v > γ-1 f 1 3 + < v > γ |D v | 2 f 1 3 g 2 3 .
This ends the proof of the Lemma.

Lemma 2.3. Assume f ∈ L 2 , < v > γ+2 f ∈ L 2 , g ∈ L 2 , < v > γ |v ∧ D v | 2 f ∈ L 2 and ∂ t f + v.∇ x f = g. Then < v > γ 3 < v ∧ D x > 2 3 f < v > γ 3 f + + g 2 3 < v > γ+2 f 1 3 + < v > γ |D v | 2 f 1 3 + < v > γ |v ∧ D v | 2 f 1 3 .
Proof. We want to estimate

< v > γ 3 < v ∧ D x > 2 3 f 2 = < v > γ 3 < v ∧ k > 2 3 f 2 and, in view of Lemma 2.2, it is enough to work for < v ∧ k >≥< k >, ie < v ∧ k >< k > -1 ≥ 1 (using Parseval relation w.r.t. variable x).
Let φ be a positive function which is 0 for small values and 1 for large values. To simplify notations, write φ

(v, k) = φ(< v ∧ k >< k > -1
). Then we need to estimate

< v > γ 3 φ(v, D x ) < v ∧ D x > 2 3 f 2 . We write < v > γ 3 φ(v, D x ) < v∧D x > 2 3 f 2 = (< v > γ 3 φ(v, D x ) < v∧D x > 2 3 f , < v > γ 3 φ(v, D x ) < v∧D x > 2 3 f ) (< v > 2γ 3 φ2 (v, D x ) < v ∧ D x > 2 3 f , f ) = (< v > 2γ 3 φ2 (v, D x ) < v ∧ D x > -2 3 < v ∧ D x > 2 f , f ) = (< v > 2γ 3 φ2 (v, D x ) < v ∧ D x > -2 3 f , f ) + (< v > 2γ 3 φ2 (v, D x ) < v ∧ D x > -2 3 |v ∧ D x | 2 f , f ). Note that the first term is (for example) bounded by < v > γ 3 f 2 . So we concentrate on the second one Imp = (< v > 2γ 3 φ2 (v, D x ) < v ∧ D x > -2 3 |v ∧ D x | 2 f , f ) = -((< v > 2γ 3 φ2 (v, D x ) < v ∧ D x > -2 3 v ∧ D x f , v ∧ D x f ). Now we use the fact that ∇ x f = ∇ v g -v.∇ x ∇ v f , and therefore v ∧ ∇ x f = (v ∧ ∇ v g) -v.∇ x (v ∧ ∇ v f ). Thus Imp = -(< v > 2γ 3 φ2 (v, D x )|v∧D x | -2 3 v∧∇ v ḡ, v∧∇ x f )+(< v > 2γ 3 φ2 (v, D x )|v∧D x | -2 3 v.∇ x (v∧∇ v f ), v∧∇ x f ) = -(< v > 2γ 3 φ2 (v, D x )|v ∧ D x | -2 3 v ∧ ∇ v ḡ, v ∧ ∇ x f ) -(< v > 2γ 3 φ2 (v, D x )|v ∧ D x | -2 3 v ∧ ∇ v f , v ∧ ∇ x g). Set S =< v > 2γ 3 φ2 (v, D x )|v ∧ D x | -2 3 .Then Imp = -(S v ∧ ∇ v ḡ, v ∧ ∇ x f ) -(S v ∧ ∇ v f , v ∧ ∇ x g).
We introduce some notations (though there is also another line of proof which avoids such notations. However, the arguments are simple enough). Let e j be the canonical basis of R 3 . Then we can write

v ∧ ∇ x F = (v ∧ ∇ x F).e j e j = -[(v ∧ e j ).∇ x F]e j . Setting X j = X j (v, ∂ x )F = (v ∧ e j ).∇ x F, we get v ∧ ∇ x F = -X j (F)e j . Similarly, we can write v ∧ ∇ v G = (v ∧ ∇ v G).e j e j = -(v ∧ e j ).∇ v Ge j . Letting V j = V j (v, ∂ v )G = (v ∧ e j ).∇ v G, then v ∧ ∇ v G = -V j (G)e j . Note that X * j = -X j and V * j = -V j . Now we can write (with summation of indices) (2.7)          Imp = -(S V j (ḡ).X j ( f )) -(S V j ( f ).X j (g)) = -(S V j (ḡ).X j ( f )) + (X j S V j ( f ).g) = (ḡ.V j S X j ( f )) + (S X j V j ( f ).g) = 2Re(ḡ, S X j V j ( f )) + (ḡ, [V j , S X j ]( f )) = Imp 1 + Imp 2 .
Let us look to Imp 2 . We use Fourier transform w.r.t. x variables. Then (summation over j)

[V j , S X j ]( f ) = iV j [S (k, v)(v ∧ e j ).k f (k)] -iS (k, v)(v ∧ e j ).k(V j ( f )) = iV j [S (k, v)(v ∧ e j ).k] f (k) where S (k, v) =< v > 2γ 3 φ 2 (< v ∧ k >< k > -1 )|v ∧ k| -2 3 . Set below ψ = φ 2 also. Note that (v ∧ e j ).k = (e j ∧ k).v. Then ∇ v [(v ∧ e j ).k] = ∇ v [(e j ∧ k).v] = e j ∧ k and V j [v ∧ e j ).k] = (v ∧ e j ).(e j ∧ k).. Note that V j ((e j ∧ k).v) = (v ∧ e j ).(e j ∧ k) = -(v ∧ (e j ∧ k)).e j and v ∧ (e j ∧ k) = (v.k).e j -(v.e j )k. Thus -V j ((e j ∧ k).v) = (v.k) -(v.e j )(k.e j ) = 0. Next ∇ v < v > 2γ 3 ∼< v > 2γ 3 -2 v, and therefore V j ∇ v < v > 2γ 3 = 0. On the whole V j [S (k, v)(v ∧ e j ).k] =< v > 2γ 3 (v ∧ e j ).kV j [ψ(< v ∧ k >< k > -1 ))|v ∧ k| -2 3 ]. Now note that |v ∧ k| -2 3 = (|v| 2 |k| 2 -(v.k) 2 ) - 1 
3 , and thus

∇ v [|v ∧ k| -2 3 ] = - 1 3 (|v| 2 |k| 2 -(v.k) 2 ) -4 3 [|k| 2 2v -2(v.k)k] and V j [|v ∧ k| -2 3 ] = 2 3 |v ∧ k| -8 3 (v.k)(v ∧ e j ).k. Finally ∇ v [ψ(< v ∧ k >< k > -1 ))] = ψ ′ (< v ∧ k >< k > -1 )) < k > -1 ∇ v [1 + |v ∧ k| 2 ] 1 2 = ψ ′ (< v ∧ k >< k > -1 )) < k > -1 [1 + |v ∧ k| 2 ] -1 2 [|k| 2 2v -2(v.k)k]. Thus V j [ψ(< v ∧ k >< k > -1 ))] = -2ψ ′ (< v ∧ k >< k > -1 )) < k > -1 < v ∧ k > -1 (v.k)(v ∧ e j ).k and at last (2.8)        V j [S (k, v)(v ∧ e j ).k] =< v > 2γ 3 ψ(< v ∧ k >< k > -1 )) 2 3 |v ∧ k| -8 3 (v.k)|v ∧ k| 2 -2 < v > 2γ 3 ψ ′ (< v ∧ k >< k > -1 )) < k > -1 < v ∧ k > -1 (v.k)|v ∧ k| 2 |v ∧ k| -2 3 . By definition of ψ ′ , the second term in (2.8) is bounded by (because |v ∧ k| ∼ |k|) < v > 2 γ 3 +1 < k > 1 3
, and therefore going back we have a contribution to Imp 2 as

< v > 2 γ 3 +1 < k > 1 3 f g . Since < v > 2 γ 3 +1 < k > 1 3 f 2 = (< v > 4 γ 3 +2 < k > 2 3 f , f ) = (< v > γ 3 < k > 2 3 f , < v > γ+2 f ) < v > γ 3 |D x | 2 3 f < v > γ+2 f the second term in (2.8) gives a contribution to Imp 2 as < v > γ 3 |D x | 2 3 f 1 2 < v > γ+2 f 1 2 g .
For the first term in (2.8), it is also bounded by the same form. All in all, we have shown that (2.9)

Imp 2 < v > γ 3 |D x | 2 3 f 1 2 < v > γ+2 f 1 2
g . Now we can turn to Imp 1 from (2.7) to get first of all

Imp 1 g S X j V j ( f ) .
Then, it follows that

(2.10) S X j V j ( f ) 2 = (S X j V j ( f ), S X j V j ( f )) = -(S 2 X 2 j V j ( f ), V j ( f )) = -([S 2 X 2 j , V j ]( f ), V j ( f )) + (S 2 X 2 j ( f ), V 2 j ( f ) = A 1 + B 1 . B 1 is estimated as follows B 1 < v > -γ S 2 X 2 j ( f ) < v > γ V 2 j ( f ) < v > γ 3 |v ∧ D x | 2 3 f < v > γ |v ∧ D v | 2 f .
For A 1 , this is again a commutator estimation: by Fourier transform w.r.t. x, we have, using the previous computations

[S 2 X 2 j , V j ]( f ) = -iS (k, v)(v ∧ e j ).k)V j [S (k, v)(v ∧ e j ).k] f (k) = -i < v > 2γ 3 φ 2 (< v ∧ k >< k > -1 )|v ∧ k| with V j [S (k, v)(v ∧ e j ).k] =< v > 2γ 3 (v ∧ e j ).kV j [ψ(< v ∧ k >< k > -1 ))|v ∧ k| -2 3 ] =< v > 2γ 3 ψ(< v ∧ k >< k > -1 )) 2 3 |v ∧ k| -8 3 (v.k)|v ∧ k| 2 -2 < v > 2γ 3 ψ ′ (< v ∧ k >< k > -1 )) < k > -1 < v ∧ k > -1 (v.k)|v ∧ k| 2 |v ∧ k| - 2 
3 . Thus we have two contributions, the first one being given by

A 11 = -i < v > 2γ 3 φ 2 (< v∧k >< k > -1 )|v∧k| -2 3 (v∧k).e j < v > 2γ 3 ψ(< v∧k >< k > -1 )) 2 3 |v∧k| - 8 
3 (v.k)|v∧k| 2 ≃ i < v > 4γ 3 φ 4 (< v ∧ k >< k > -1 )|v ∧ k| - 4 
3 (v ∧ k).e j (v.k)
which is bounded from above by < v > 4 γ 3 +1 |k| 2 3 . Thus we may write

A 11 ≃ i < v > γ 3 -1 φ 4 (< v ∧ k >< k > -1 )|v ∧ k| - 4 
3 (v ∧ k).e j (v.k)× < v > γ+1
and the contribution given by A 11 is estimated by

< v > γ 3 |D x | 2 3 f < v > γ+1 (v ∧ D v ) f . Then < v > γ+1 (v ∧ D v ) f 2 = (< v > γ |v ∧ D v | 2 f, < v > γ+2 f ) < v > γ |v ∧ D v | 2 f < v > γ+2 f
and therefore the contribution by A 11 is estimated by

< v > γ 3 |D x | 2 3 f < v > γ |v ∧ D v | 2 f 1 2 < v > γ+2 f 1 2 .
Now we turn to the other contribution in A 1 . We have

A 12 ≃ 2i < v > 2γ 3 φ 2 (< v ∧ k >< k > -1 )|v ∧ k| -2 3 (v ∧ k).e j < v > 2γ 3 ψ ′ (< v ∧ k >< k > -1 )) × < k > -1 < v ∧ k > -1 (v.k)|v ∧ k| 2 |v ∧ k| -2 3 ≃ 2i < v > 4γ 3 φ 2 (< v ∧ k >< k > -1 )ψ ′ (< v ∧ k >< k > -1 )) < v ∧ k > -1 < k > -1 (v.k)(v ∧ k).e j |v ∧ k| 2 3 ≃ 2i < v > γ 3 -1 φ 2 (< v∧k >< k > -1 )ψ ′ (< v∧k >< k > -1 )) < v∧k > -1 < k > -1 (v.k)(v∧k).e j |v∧k| 2 
3 . < v > γ+1 Then, the contribution by this term is estimated by (or by

|D x | instead of v ∧ D x ) < v > γ 3 |v ∧ D x | 2 3 f < v > γ+1 v ∧ D v f
and therefore the total contribution by A 11 + A 12 gives

A 1 < v > γ 3 |D x | 2 3 f < v > γ |v ∧ D v | 2 f 1 2 < v > γ+2 f 1 2 .
Thus

A 1 + B 1 < v > γ 3 |D x | 2 3 f < v > γ |v ∧ D v | 2 f 1 2 < v > γ+2 f 1 2 + < v > γ |v ∧ D v | 2 f which gives Imp 1 g < v > γ 3 |D x | 2 3 f < v > γ |v ∧ D v | 2 f 1 2 < v > γ+2 f 1 2 + < v > γ |v ∧ D v | 2 f 1 2 that is Imp 1 g < v > γ 3 |D x | 2 3 f 1 2 < v > γ |v ∧ D v | 2 f 1 4 < v > γ+2 f 1 4 + < v > γ |v ∧ D v | 2 f 1 2
and therefore

Imp g . < v > γ 3 |D x | 2 3 f 1 2 < v > γ |v∧D v | 2 f 1 4 < v > γ+2 f 1 4 + < v > γ |v∧D v | 2 f 1 2 + < v > γ+2 f 1 2 . Thus < v > γ 3 φ(v, D v ) < v ∧ D x > 2 3 f < v > γ 3 f + + g 1 2 < v > γ 3 |D x | 2 3 f 1 4 < v > γ |v∧D v | 2 f 1 8 < v > γ+2 f 1 8 + < v > γ |v∧D v | 2 f 1 4 + < v > γ+2 f 1 4
and all in all

< v > γ 3 < v ∧ D x > 2 3 f < v > γ 3 f + < v > γ 3 |D x | 2 3 f + g 1 2 < v > γ 3 |D x | 2 3 f 1 4 < v > γ |v∧D v | 2 f 1 8 < v > γ+2 f 1 8 + < v > γ |v∧D v | 2 f 1 4 + < v > γ+2 f 1 4
that is also

< v > γ 3 < v ∧ D x > 2 3 f < v > γ 3 f + < v > γ 3 |D x | 2 3 f + g 1 2 < v > γ 3 |D x | 2 3 f 1 4 < v > γ |v ∧ D v | 2 f 1 4 + < v > γ+2 f 1 4 .
Using Lemma 2.2, it follows that

< v > γ 3 < v ∧ D x > 2 3 f < v > γ 3 f + < v > γ-1 f 1 3 + < v > γ |D v | 2 f 1 3 g 2 3 + g 2 3 < v > γ-1 f 1 12 + < v > γ |D v | 2 f 1 12 < v > γ |v ∧ D v | 2 f 1 4 + < v > γ+2 f 1 4
and thus

< v > γ 3 < v ∧ D x > 2 3 f < v > γ 3 f + + g 2 3 < v > γ+2 f 1 3 + < v > γ |D v | 2 f 1 3 + < v > γ |v ∧ D v | 2 f 1 3 ,
which concludes the proof.

Scalar Products between elements of L and the transport part

The main idea is to get an estimate on the square of the norms of each L i , and then conclude with the Lemma from the previous sections.

First Step

We shall first of all start first by getting an estimate on L 3 f , that is on < v > γ+2 f , which is the easiest to obtain. It will be also helpful in order to control other scalar products. Lemma 3.1. We have

< v > γ+2 f h + f .
Proof. We take the equation, multiply by < v > γ+2 f (or by L 3 f ) and integrate to get

(3.11) (λ(v)∇ v f, ∇ v (< v > γ+2 f ))+(µ(v)(v∧∇ v f ), (v∧∇ v (< v > γ+2 f )))+ < v > γ+2 f 2 h < v > γ+2 f .
and we consider the first and second terms on the l.h.s. of this inequality, denoted by J and K respectively, that we need to bound from above (and removing any positive contribution).

The first term on the l.h.s. of (3.11) is

J = (λ(v)∇ v f, ∇ v (< v > γ+2 f )) = -(< v > γ+2 ∇ v .(λ(v)∇ v f ), f ) = -(∇ v .(< v > γ+2 λ(v)∇ v f ), f ) + (λ(v)∇ v < v > γ+2 ∇ v f, f
). We can forget the first term because it is positive, i.e. let

J ≃ (λ(v)∇ v < v > γ+2 , ∇ v f ) ≃ ( λv.∇ v f, f ) with λ = λ < v > γ . Now ( λv.∇ v f, f ) = -( f, ∇ v .(v λ f )) = -( f, ∇ v .(v λ) f ) -( λv.∇ v f, f ). and thus J ≃ ( f, ∇ v .(v λ) f ) (< v > 2γ f, f ) = (< v > γ+2 f, < v > γ-2 f ) ε < v > γ+2 f 2 + C ε f 2 .
Similarly, the second term on the l.h.s. of (3.11) is

K = (µ(v)(v ∧ ∇ v f ), (v ∧ ∇ v (< v > γ+2 f )))
that we can write as

K = (µ(v)V j f, V j (< v > γ+2 f )) = (µ(v)V j f, V j [< v > γ+2 ] f ) + (µ(v)V j f, < v > γ+2 V j [ f ])
and again we can forget the second term since it is positive, to write

K ≃ (µ(v)V j f, V j [< v > γ+2 ] f ). Since β j = µV j [< v > γ+2 ] = 0, it follows that K ≃ (β j V j f, f ) = -( f, V j [β j f )) = -( f, β j V j f )) -( f, V j [β j ] f ) and therefore K ≃ ( f, V j [β j ] f ) = 0.
In view of the estimates on J and K just obtained, we can go back to (3.11), ending the proof.

As a corollary of the proof, note that we have also (though we do not use it)

(3.12) < v > γ+1 (v ∧ ∇ v f ) + < v > γ+1 ∇ v f h + f .
Step 2: A preliminary inequality Below, we set g = h -L( f ). We start from

L( f ) = -∂ t f -v.∇ x f + h. Then L( f ) 2 = -(v.∇ x f, L( f )) + (h, L( f )) (v.∇ x f, L( f )) + h L( f )
By expanding the square, and using Holder inequality with a parameter ε, we obtain (recall that we have already obtained a control for L 3 f 2 from Lemma 3.1)

(3.13) 2(L 1 ( f ), L 2 ( f ) + L 1 f 2 + L 2 f 2 (v.∇ x f, L 1 ( f ) + L 2 ( f )) + h 2 + f 2 .
Step 3: Scalar product with the transport operator Now we compute the scalar product of v.∇ x f with L 1 ( f ) + L 2 ( f ) which appears in (3.13), for which we have Lemma 3.2. With the above notations, we have

(3.14)          (v.∇ x f, L 1 ( f ) + L 2 ( f )) f 2 + h 2 + g f 1 2 + < v > γ+2 f 1 2 + < v > γ |D v | 2 f 1 2 + < v > γ |v ∧ D v | 2 f 1 2
where again recall that g = h -L( f ).

Proof. We have

(v.∇ x f, L 1 ( f ) + L 2 ( f )) = -(v.∇ x f, ∇ v .λ(v)∇ v f (v)) -(v.∇ x f, (v ∧ ∇ v ).µ(v)(v ∧ ∇ v )( f )) = (∂ v j (v.∇ x f ), λ(v)∂ v j f ) + ((v ∧ ∇ v )(v.∇ x f ), µ(v)(v ∧ ∇ v f )) = (∇ x f, λ(v)∇ v f )) + (V j (v.∇ x f ), µ(v)V j ( f )). Now note that V j (v i ) = (v ∧ e j ).∇ v (v i ) = (v ∧ e j ).e i . Thus (v.∇ x f, Q( f )) = (∇ x f, λ(v)∇ v f )) + ((v ∧ e j ).∇ x f, µ(v)V j ( f )) = (∇ x f, λ(v)∇ v f )) -(v ∧ ∇ x f, µ(v)v ∧ ∇ v f ) = J 1 + J 2 .
The term J 1 is estimated as

J 1 = (< v > γ 3 ∇ x |D x | -1 3 f, λ(v) < v > -γ 3 ∇ v |D x | 1 3 f ). Noticing that λ(v) = λ(v). < v > -γ 3 < v > 2γ 3 , we get J 1 < v > γ 3 |D x | 2 3 f λ(v) < v > -γ 3 ∇ v |D x | 1 3
f , and we are reduced to study

λ(v) < v > -γ 3 ∇ v |D x | 1 3 f . We take |D x | 1 3 of the equation, multiply by λ < v > -2γ 3 = λ 1 , multiply by |D x | 1 3 f and integrate to get -(λ 1 ∇ v .λ∇ v |D x | 1 3 f, |D x | 1 3 f )-(λ 1 (v∧∇ v )µ(v)(v∧∇ v )|D x | 1 3 f, |D x | 1 3 f )+(λ 1 F|D x | 2 3 f, f ) = (λ 1 |D x | 1 3 h, |D x | 1 3 f ).
We can forget the third term on the left hand side also. The first term on the right hand side is

-(λ 1 ∇ v .λ∇ v |D x | 1 3 f, |D x | 1 3 f ) = +(λ∇ v |D x | 1 3 f, ∇ v λ 1 |D x | 1 3 f ) + (λ 1 λ∇ v |D x | 1 3 f, ∇ v |D x | 1 3 f ).
The second term is what we want to estimate. So we need to upper bound the first one. Set β = λ∇ v λ 1 as a vector field. Then this is of the form (and by symmetry)

(β.∇ v g, g) ≃ (g, g div v β). Now div β ∼ λ∆ v λ 1 + ∇ v λ.∇ v λ 1 Since in fact λ ∼< v > γ and λ 1 ∼< v > γ 3 , then β ∼< v > 4(γ/3
)-1 and thus div β ∼< v > 4(γ/3)-2 , we have something similar to

(< v > 4(γ/3)-2 |D x | 1 3 f, |D x | 1 3 f ) < v > γ 3 |D x | 2 3 f < v > γ-2 f
. This computation also adapts to the other term, and we get

λ(v) < v > -γ 3 ∇ v |D x | 1 3 f 2 < v > γ 3 |D x | 2 3 f < v > γ-2 f + h that is λ(v) < v > -γ 3 ∇ v |D x | 1 3 f < v > γ 3 |D x | 2 3 f 1 2 < v > γ-2 f 1 2 + h 1 2
and thus

J 1 < v > γ 3 |D x | 2 3 f 3 2 < v > γ-2 f 1 2 + h 1 2 .
Using Lemma 2.2 (with g = h -L( f )), one has

< v > γ 3 |D x | 2 3 f 3 2 < v > γ-1 f 1 2 + < v > γ |D v | 2 f 1 2
g and we get

J 1 < v > γ-1 f 1 2 + < v > γ |D v | 2 f 1 2 g < v > γ-2 f 1 2 + h 1 2 .
We now turn to J 2 , recalling that

J 2 = -(v ∧ ∇ x f, µ(v)v ∧ ∇ v f
), and we proceed as for J 1 . We write

J 2 = -(< v > γ 3 v ∧ ∇ x |v ∧ ∇ x | -1 3 f, µ(v) < v > -γ 3 v ∧ ∇ v |v ∧ ∇ x | 1 3 f ) < v > γ 3 |v ∧ D x | 2 3 f µ < v > -γ 3 v ∧ ∇ v |v ∧ ∇ x | 1 
3 f and therefore we need to study 

µ < v > -γ 3 v ∧ ∇ v |v ∧ ∇ x | 1 3 f . We take |v ∧ ∇ x |
-(µ 1 ∇ v .λ∇ v |v∧D x | 1 3 f, |v∧D x | 1 3 f )-(µ 1 (v∧∇ v )µ(v)(v∧∇ v )|v∧D x | 1 3 f, |v∧D x | 1 3 f ) = (µ 1 |v∧D x | 1 3 h, |v∧D x | 1 3 f ).
where again recall that g = h -L( f ).

Note the exponents on the r.h.s. of this inequality which are less than 2.

Step 4: The remaining scalar product We consider the last scalar product which appears in (3.13) (recall that it is on the l.h.s of the inequality we want to control and therefore we can forget any positive term)

(L 1 ( f ), L 2 ( f ) = (∇ v .λ(v)∇ v f, (v ∧ ∇ v )µ(v)(v ∧ ∇ v ) f ).
If we introduce B k = √ λ∂ v k , and W j = √ µV j , then this term is also

(B * k B k f, W * j W j f ) = (B k f, B k W * j W j f ) = (B k f, [B k , W * j ]W j f ) + (B k f, W * j B k W j f ) = (B k f, [B k , W * j ]W j f ) + (W j B k f, B k W j f ) = (B k f, [B k , W * j ]W j f ) + (W j B k f, [B k , W j ] f ) + (W j B k f, W j B k f
). If we exchange the role of B k and W j we find

= (W j f, [W j , B * k ]B k f ) + (B k W j f, [W j , B k ] f ) + (B k W j f, B k W j f ) = ([W j , B * k ] * W j f, B k f ) + (B k W j f, [W j , B k ] f ) + (B k W j f, B k W j f ) = ([B k , W * j ]W j f, B k f ) + (B k W j f, [W j , B k ] f ) + (B k W j f, B k W j f ). Thus adding two lines we find 2(B * k B k f, W * j W j f ) = 2([B k , W * j ]W j f, B k f ) + (W j B k f, [B k , W j ] f ) -(B k W j f, [B k , W j ] f ) +(W j B k f, W j B k f ) + (B k W j f, B k W j f ) so we have (3.16) 2(L 1 ( f ), L 2 ( f )) = 2(B * k B k f, W * j W j f ) = 2([B k , W * j ]W j f, B k f ) -([B k , W j ] f, [B k , W j ] f ) + (W j B k f, W j B k f ) + (B k W j f, B k W j f
). Note that the last two terms are positive (so we can forget them). We compute

[B k , W j ]( f ) = [ √ λ∂ v k , √ µV j ]( f ) = √ λ∂ v k [ √ µV j ( f )] - √ µV j [ √ λ∂ v k ( f )] = - √ λ∂ v k [ √ µ(∇ v f ∧ e j ).v] - √ µ(v ∧ e j ).∇ v [ √ λ∂ v k ( f )] √ λ∂ v k [ √ µ]V j ( f ) + √ λ √ µV j (∂ v k f ) + √ λ √ µ(e k ∧ e j ).∇ v f - √ µ(v ∧ e j ).∇ v [ √ λ]∂ v k ( f ) - √ λ √ µ(v ∧ e j ).∇ v ∂ v k f = √ λ∂ v k [ √ µ]V j ( f ) + √ λ √ µ(e k ∧ e j ).∇ v f - √ µ(v ∧ e j ).∇ v [ √ λ]∂ v k ( f ) = √ λ∂ v k [ √ µ]V j ( f ) + √ λ √ µ(e k ∧ e j ).∇ v f - √ µV j [ √ λ]∂ v k ( f ) Therefore [B k , W j ]( f ) 2 √ λ∂ v k [ √ µ]V j ( f ) 2 + √ λ √ µ(e k ∧ e j ).∇ v f 2 + √ µV j [ √ λ]∂ v k ( f ) 2 .
We note that the weight for the first term is similar to < v > γ-1 , for the second one to < v > γ and for the last to < v > γ also. Thus

[B k , W j ]( f ) 2 < v > γ ∇ v f 2 = (< v > 2γ ∇ v f, ∇ v f ) = -(< v > 2γ ∆ v f, f ) -(∇ v < v > 2γ .∇ v f, f ) and by symmetry (< v > 2γ ∆ v f, f ) + (∆ v < v > 2γ f, f ). Thus [B k , W j ]( f ) 2 ε < v > γ |D v | 2 f 2 + C ε < v > γ 2 +1 f 2 .
For the term in (3.16

) involving 2([B k , W * j ]W j f, B k f ), we can substract W * j to write 2([B k , W * j ]W j f, B k f ) = 2([B k , W * j -W j ]W j f, B k f ) + 2([B k , W j ]W j f, B k f ) = 2([B k , V j ( √ µ)]W j f, B k f ) + 2([B k , W j ]W j f, B k f ) Now [B k , V j ( √ µ)]( f ) = √ λ∂ v k [V j ( √ µ 
)] f and we note that the weight is < v > γ-1 . Thus the first term is estimated by something similar to

(< v > γ-1 W j f, B k f ) < v > γ 2 -1/2 W j f 2 + < v > γ 2 -1/2 B k f 2 f h
For the other remaining term 2([B k , W j ]W j f, B k f ), we have in view of the commutators that it looks as something similar to

(< v > γ-1 V j √ µV j f, √ λ∂ v k f ) + (< v > γ (e k ∧ e j ).∇ v √ µV j f, √ λ∂ v k f ) + (< v > γ ∂ v k √ µV j f, √ λ∂ v k f )
and thus it looks as

< v > 2γ-1 V 2 j f, ∂ v k f ) + (< v > 2γ V j , ∆ v f ) < v > γ V 2 j f . < v > γ-1 ∇ v f + < v > γ |D v | 2 f < v > γ V j f < v > γ V 2 j f . < v > γ 2 ∇ v f + < v > γ |D v | 2 f < v > γ V j f ε < v > γ V 2 j f 2 + C ε < v > γ 2 ∇ v f 2 + ε < v > γ |D v | 2 f 2 + C ε < v > γ V j f 2 . But we can also write that < v > γ V j f 2 = (< v > 2γ V j f, V j f ) = (< v > γ V 2 j f, < v > γ f ) < v > γ |v ∧ D v | 2 f < v > γ f thus < v > γ |D v | 2 f < v > γ V j f < v > γ |D v | 2 f 3 2 < v > γ f 1 2
and by using Holder with exponent and a small exponent ε again, we find that it is less than

ε < v > γ |D v | 2 f 2 + C ε < v > γ f 2 .
All in all, we have shown that all terms from the scalar product (but for the positive) in (3.16) can be absorbed with previous ones. That is the scalar product on the l.h.s. of (3.13) can be absorbed with all the other terms, taking into account also (3.15). This is enough to conclude the proof of the main Theorem, in view of the exponents appearing on the r.h.s. Remark 3.3. We make some comments about the case of the Cauchy problem, when working say on a time interval (0, T ) (possibly with T = +∞), with an initial value at time t = 0 given by f 0 .

Let φ 1 = φ 1 (t) be a smooth and compactly supported positive function being one for small positive values of time. Let φ 2 = φ 2 (t) be again a smooth and positive function, but being one for larger values of t and such that φ 1 + φ 2 ∼ 1. Let f 1 = φ 1 f and f 2 = φ 2 f . We shall also assume that eventually φ 2 has a compact support on the right of the real axis.

We first consider f 2 . Then (3.17)

∂ t f 2 + v.∇ x f 2 -∇ v .λ(v)∇ v f 2 -(v ∧ ∇ v ).µ(v)(v ∧ ∇ v f 2 ) + F(v) f 2 (v) = φ 2 h + φ ′ 2 f ≡ h 2 .
Now considering the fact that this equation for f 2 holds true all over R, the previous results apply. Of course, we need f to be in L 2 in all variables. This statement might be assumed, but note that it also follows from the equation if we assume that γ ≥ -2 by using the coercivity from the third term of the diffusive part.

We can now turn to f 1 which also satisfies:

(3.18) ∂ t f 1 +v.∇ x f 1 -∇ v .λ(v)∇ v f 1 -(v∧∇ v ).µ(v)(v∧∇ v f 2 )+ F(v) f 1 (v) = φ 1 h+φ ′ 1 f ≡ h 1 , f 1 | t=0 = f 0 .
A careful look at the previous proof shows that if we assume that L i f 0 belongs to L 2 , then we have again the same conclusion as in the main theorem.

Finally, a last (formal) comment can be made if we assume h = 0 from the beginning. In that case, as it is standard in semi group theory, we can get formally more regularity. As explained above, we assume γ ≥ -2 to ensure that we have automatically an L 2 bound. Then following formally the arguments from [START_REF] Cazenave | An Introduction to semilinear evolution equations[END_REF], we see that, using only norms w.r.t. (x, v) variables

(-v.∇ x f -L( f )) f (t) ≤ 1 t √ 2 f 0
By using the main Theorem (without time dependence), we see that we have hypoelliptic results on f (t) in terms of the initial data, and with a singular behavior as times tends to 0.

1 3

 1 of the equation, multiply by µ < v > -2γ 3 = µ 1 , multiply by f and integrate to get

(v ∧ k).e j V j [S (k, v)(v ∧ e j ).k] f (k)

Above the last term involving F was omitted. We look for the second term:

The first term of this equality is the one we are looking for. For the second one, set β j = V j [µ 1 ]µ, then this is of the form (and by anti symmetry):

and thus

From Lemma 2.3, it follows that

and thus

.

Using Lemma 3.1, we get (though of course it is not optimal), and taking into account that γ ≤ 1 and Lemma 2.1, using the fact that γ 3 ≤ γ 2 + 1

which simplifies to yield (3.15)