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LANDAU LINEARIZED OPERATOR AND HYPOELLIPTICITY

R. ALEXANDRE

Asstract. We consider the linearized Landau operator for which weigesimple proofs of hypoel-
lipticity, and in particular we recover the recent resuftglérau and Pravda-StaroH [6]. Our arguments
are elementary and in particular avoids any use of pseutiereintial calculus.

1. INTRODUCTION

We consider hypoelliptic feects associated with the time version of a kinetic equatiated to
the linearized Landau equation and studied recently byuHana Pravda-Staro{][6]

(1.1) Of + V.V — Vy AWV f = (VA Vo) u(W)(V A Vy F) + FW) V) = h

wheret € R, x € R® andv € R3. f andh will be supposed to be ih?, where here and below?
denotes the usual space w.r.t. full variables,(). In fact, as it will be clear from the proofs, it is
also possible to work in weighteld? spaces and even in weighted Sobolev spaces. The not in
will be denoted by.|| and its associated scalar product by.). We shall work with real function$
andh though there is absolutely nofficulties in considering complex cases, up to the additiomef t
real parts when necessary.

As regards the cdicients appearing i (1.1), we assume that the positive ifumefl, 4 and F
satisfy the following coercive type lower bounds

(1.2) A(V) 2< VY, u(v) < v>Y andF(v) 2< v >7+2

where-3<y <1, and

(1.3) IDM| << v>Y"M DMyl << v>Y"™ and|DIF(v)| < v >7+m
for anym of order at most two.
We set
(1.4) L(f) = =Vy. AV f = (VA V).u(V)(v A V) + F(V) F(V) = La(F) + Lo(F) + Ls(F)
so that [1]1) writes also
(1.5) of +v.Vyf + L(f) =h.

As explained in[[B],[(1]1) or its versiof (1.5) is relatedhe tinearized Landau operator, which plays a
crucial role in Plasma Physics, see for examfi¢ [lL, 11] aedeferences therein. Moreover the above
assumptiond (1.2) anfl (IL.3) are natural in view of Guo’s Wiil§fkHowever, note that the modgl (L.1)
does not take into account the kernel which is naturally @ased with the true Landau linearized
equation. In particular, for applications to the true noedr Landau model near equilibrium, the
present results need to be adapted, though the main isselatisdrto the macroscopic part.

Our main concern is to give a shorter proof of the followinguié about optimal hypoelliptic
results which was first proven ifi [6] (in the time independestsion)
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2 R. ALEXANDRE

Theorem 1.1 (Herau and Pravda-Stardy [6JAssume f and h belong t&LThen, under the hypoth-
esis(L.2) and (L.3), we have

| <v>"2 |2+ <v>Y IDJ2EIR+ | <v>Y VA V2 f|]2
Y 2 Y 2
+| < V>3 D3 fI2+ || < v>3 VA Vi3 12 < [IfI% + [|h|2.

The proof in [B] uses pseudoftérential calculus, together with Wick calculus. In the @oumation
of a previous work of Morimoto and X{][8], a similar study wasaaperformed in[[7] in order to
deduce hypoelliptic results for a fractional order kinetgpuation, and again the proof therein was
using such tools.

Recently, we have provided if] [2] a very simple proof of theults of [J] by using arguments
originally introduced by Bouchuf][3] and Pertharf [9].

Again herein, we shall give afilerent proof of this main Theorem by using simple and standard
arguments. Moreover, we keep the regularity of theffacients as low as possible, this point be-
ing connected with the second order commutators estingtidrich are needed in the proofs. As
a byproduct, other estimations will emerge from our comipata. Note also that, as usual, time
derivatives estimates are also available, but we do notl deis point. All in all, together with our
previous work[[R], we provide extremely simple arguments@duce hypoelliptic results for kinetic
eqguations with a diusive part. It is to be expected that the underlying argumarsd sticiently sim-
ple to enable the study of fiierent questions related tofidlisive models arising from scaled kinetic
equations. We hope to get back on this issue soon. Furthera®oit will be clear from the proofs,
the Cauchy problem can be also analyzed with the same methotts some minor changes. It is
expected that such simple methods will provide other mettiodthe analysis of the Cauchy prob-
lem associated with fully nonlinear kinetic equations saslBoltzmann or Landau equations, see the
qguoted works in the bibliography.

We shall always assume that all functioh&ndh are smooth.The paper is organized as follows.
We first deduce in Section 2 some estimates from a transpodtieq. These are used in Section 3,
in particular to control cross products terms.

2. PRELIMINARY RESULTS

First of all, by multiplying the equation by, integration over all variables and using the assump-

tions (1.R), we get
Lemma2.1. One has
I <v>2 P+l <v>2 (VA VI + ] <v>2+ £2 < |||l

The next two Lemmas are the adaptions of some of the stepiapjeear in Bouchut's papd] [3].
They are related to transport type equations, with a givgnt hand side, and assuming that we know
already some kind of regularity w.r.t. velocity variableey give some informations about regularity
of some spatial derivatives.

Lemma2.2. Assume fe L2 ge L?, <v>? |Dyf € L?2and
of +v.Vyf =g
Then

Y 2 1 1 2
I <v>3 Dy3fll < {II <V 4] < v>? IDv|2f||§} llall=.

Observe that the first term in the r.h.s. of this estimate igrotled by thel.? norm of f, since
y< 1
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Proof. Following [B], we start from the formula
Then we write , )
I <v>3 D3 fI? = || < v>% D7y 2
y o2 = y 2. =
= (< V>3 DyfT 8 f,0x 1) = (<V>T Dyl T dy f, 0,9 — (@ + V.V,)dy, )
Y 2y =2 2y =2 — 2y -2 —
= _4§(< V>F1 V.V (IDy3 f,g) — (< v>7 [Dy|3 dx 0y, . Q) + (< V>3 |Dy 3050, 0y ).
Thus
(2.6) | <v>3 [Dy3f|2 = —4g(< V2LV V(IDLF f,)-2Re(< V>3 [Dx| Ty dy, T, 0) = 1+11.
Starting from
12 <l <v >3 DT dxdy, FIZ llgI?
it follows that
2y =2 2 4y 2
Il <v>3 |Dy3 axjavj flf<s(<v>= ||Dx|3(9vj f,avj f)
4y 2 2 A q 2
= +(<v>7 ||Dy31,|Dy°f) + 8y/3(< v>="" vjIDyI3 1,0y, f) = A+ B.
Now, one has
Asll<v>5 DyE |1 < v>7 D]l
while for B, we have
4y

B= 8%(< v>3 LD f vV, f) = 8%(< v >3 [|Dyf3 ], V.V [IDy3 £])

which is of the form
(9,8(v)-Vvg) = (9,9 diw[5])

4 . 4 4
whereB(v) =< v >3 1 v. Thereforediv ~< v>3 1 + < v>33<v>2 Thus
4y

4 q 4 1 1 1
Bs(<v>37"0,0) = (<v>3""[Dy3f],[IDx3f])

Y 2 Y 2
= (<v>3 D3, <v>" ) gl <v>3 IDE ||| < vt A
and
Y 2
A+B < <v>3 |Dylsfl {|| <v>Y |DV|2f|| +] < v>rt f||}.

Therefore
Y 2 1 _ 1 1
Il <l <v> |Dx|3f||2{|| <vsT L g <vs? |Dv|2f||z} lall.

Forl, (using Fourier transform w.r.t. variabi¢
2r_1 1
| <[l <v>372 |Dyl3 fl| gl
and by the same computations, we get
| sll<v>3 D52 || <v>""t )12 |ig]l.

Thus
Y 2.1 1 el 2.1
I+ 11 <I<v>3 IDy3 |2 {l <v>Y"" fll2 + ]| <v>Y Dy f]12 } lgll

and finally in view of [2.)
I <v>3 D5 fll < {n <V L 4] <v>? |Dv|2f||%} [T

This ends the proof of the Lemma.
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Lemma2.3. Assume e L?, <v>"*2 fel? gelL? <v>Y |vA DyJ*f € L?and
of +v.Vyf =g

Then
Y 2 Y
[ <v>3<VADy>3 f]| < <v>3 f||+

2 1 1 1
+||g||§{|| <V A3 4| <v>Y IDPFIE + | <v>Y VA Dv|2f||§}.

Proof. We want to estimate
Y 2 b 2 A
| <Vv>3<VADy>5 f|?=||<v>3<vAak>3 f||?

and, in view of Lemm4 2}2, it is enough to work fev Ak >>< k >, ie< v A k >< k>"1> 1 (using
Parseval relation w.r.t. variabkg. Let ¢ t~)e a positive function which is 0 for small values and 1 for
large values. To simplify notations, writv, k) = ¢(< v A k >< k >~1). Then we need to estimate

| <v>3 (v, Dy) <VADy >3 |2
We write

N

| <v>% #(v, Dy) < VADy >3 fII° = (< V>3 #(v, Dy) < VADy >3 f,<v>3 #(v, Dy) < VADy >3 f)
(<V>3 G2V, Dy) <VADy >3 f,f) = (<v>3 §2v,Dy) < VA Dy >3 < VADy>2 f, f)
= (< V>3 GV, Dy) <VADy>F f,f)+(<v>3 §2(v,Dy) < VA Dy >7 v A Dy2f, f).
Note that the first term is (for example) bounded|by v >3 f||2. So we concentrate on the second
o Imp=(<v>% §2v,Dy) <VADy >3 |vA DT, f)
= _((< V>3 33V, Dy) < VA Dy > VA Dyf,v A Dxf).

Now we use the fact thatx f = V,g-Vv.V,V,f, and therefore A Vi f = (VA VyQ) — V.V (VA V, f).
Thus

IMp = —(< V>3 G2V, DY)IVADY Z VAV, VAT F)+(< V>3 F2(V, Dy)VADXI T V.V (VAV, ), VAV, f)
= (< V>3 F,DYNADYFVA VGV A Vyf) — (< V> G2V, DIV A DTV A Vof, VA Vi),
SetS =< v>% §(v, DY)V A Dy Z.Then
Imp = —(SVA VG,V A Vi f) — (SVA Vy f,V A V,0).

We introduce some notations (though there is also anotheroli proof which avoids such nota-
tions. However, the arguments are simple enough) el be the canonical basis &f. Then we can
write

VA VyF = (VA ViF).gjg) = —[(V A €).VxF]e.

SettingXj = Xj(v, 0x)F = (v A €)).V4F, we getv A ViF = —X;(F)e;. Similarly, we can write
VAVG = (VA V\,G).ejej = —(V A g).V\,Ge,.

Letting Vj = Vj(v,0,)G = (v A €).V\G, thenv A V,G = -V[(G)ej. Note thatX}‘ = -Xj and

Vi =-V;. Now we can write (with summation of indices)

Imp= ~(SV@-X(F) - (SVi(N-Xi(@) = ~(SVI(@-Xi(F) + (S Vi(1).9
27) = @ViSX(D) + SXV(1)9) = 2Re(@ SXV,(1) + @ [V1: S X](1)
=Impy + Impy.

Let us look tolmp,. We use Fourier transform w.rx.variables. Then (summation over j)
[Vj,ﬁ]( f) = iVj[S(k, v)(v A ej).kf(k)] —iS(k,v)(v A ej).k(Vj(fA))
= iVj[S(k V)(v A €)).K f(K)
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where
Zy 9 -1 =2
S(k,v) =<v>3 ¢7(< VAK><k>T)VAKT.

Set belowy = ¢? also. Note that(A gj).k = (ej AK).v. ThenV,[(vAg)).K] = V\[(gj AK).V] = g Ak
andVj[v A g)) K] = (VA gj).(ej A K).. Note thatV((ej A k).V) = (VA g)).(j AK) = —(VA (e AK)).€
andv A (e AK) = (v.k).ej — (v.j)k. Thus-Vj((ej A K).v) = (v.K) — (v.gj)(k.gj) = 0.

NextV, < v . \ >3-2 v, and therefore&/;V, < v 3= 0. On the whole

Vi[S(k,v)(vAg).K =<V >3 (VA eg)kVjly(<vak><k >"v A k|%2].
Now note thatv A kI3 = (vi2ki2 — (v.K)2) 3, and thus
Vv AKT] = —%(|v|2|k|2 — (vK?) T[22y - 2(v.k)k] and Vj[lv A KIF] = §|v AKIT (VK)(V A g)) k.
Finally
V(< VAKk><k>)] =o'/ (< vAk><k>1) <k > VL1 +|vak??
=y (<VAk><k>)) <k>1[L+|vA K Z[K22v - 2(v.K)K].
Thus
Vily(< vAKk><k>)] = 20/ (< vAk><k>h) <k>TT<vak > (vK)(v A ).k
and at last
2.8) Vi[S(k, V)(V A €).k] =<V >3 U(<vak><k >‘1))§|v A k|%8(v.k)|v NE

' 2<vsF P(<vaks<k>1)) <k>T<vak>T (VKN A KV AKZE.

By definition ofy’, the second term iff (2.8) is bounded by (becdusek| ~ |K)) < v >25*1< k >3,
and therefore going back we have a contributiohnig, as|| < v S5+l k >3 ]l llgll. Since

| <v>2i*lo k>3 f)2 = (< v>¥r2< k>3 £, f)
= (< vsick>s f<v>r+2 f) << V>3 |DX|%f|| | <v>r*2 f]
the second term iff (3.8) gives a contribution nop, as
I <v>3 DAFfIE | <v>"*2 )7 gL

For the first term in8), it is also bounded by the same fakihin all, we have shown that
(2.9) Impz < || < v>3 IDEFII2 || < v>"*2 £)]2 |[g].

Now we can turn tdmp; from (2.7) to get first of all

Impy < 11gllHIS X5V (F)II.
Then, it follows that

(2.10) { IS XVi(H)IF = (SXVi(f), SXV(f)) = ~(SPXEV;(), V(f))
| = ~([SPX.V;](D). V(1)) + (SDXE(F). VA(f) = Ay + By,

B; is estimated as follows
By < Il <v>" SN <v>" VDI S [l <v >3 VADLS Il <v > WA Dyl

For A1, this is again a commutator estimation: by Fourier tramsfor.r.t. X, we have, using the
previous computations

[S2X2.VjI(1) = -iS (k. V)(v A €).K)V,[S(k. (v A €).K f(K)

—_i<v>?¥ PA(<VvAk><k>TvA k|_?2(V/\ K).€;V;i[S(k, V)(v A €)).K] f(K)
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with , ,
Vi[S(k,V)(vAg).K =<V >3 (vAe)kVjlu(<vAak><k >H)IvAKF]
—<v>F y(<vak><k >‘1))§|v AKIZ (VKN A k2

2<vs>3 Y (<vaks<k>Y)) <k>tcvaks>t (vRIVA KAV AKE.
Thus we have two contributions, the first one being given by

. 5 1 =2 2y 1 2 -8 2
A1 = —i <V >T ¢°(< VAK >< k>77)IVvAK| 3 (VAK).€j <V >3 (< VAK >< K> ))§|V/\k| 3 (V.K)[VAK]

~i<v>T < vak><k>HVAKT(vAK.gVK)
which is bounded from above byv >4+1 |k|3. Thus we may write

. Y_
Alp=i<v>3 1

$H (< VAK>< k>VAKT (vAK).eVK)x < v >+
and the contribution given b, is estimated by
1< v >3 DyE [l < v>"*L (vA DY,
Then
| <v>" (VADYFIP = (< v>Y VA DYPE, < v>"*2 ) < || < v>Y VA D2l || < v >Y*2 1|
and therefore the contribution 4 is estimated by
I<v>3 D3Il < v>" WA D EIE || <v>7*2 £,
Now we turn to the other contribution ;. We have
App~2i<v >3 PA(<VAk><k>TvA kl_?z(V/\ K).ej <V >4 W (< VA k><k>1)
x <k>T<vak>"1WKVAKIVAKT
~2i <v>F g VAk><k> (< vaks<k>Y)) <vaksla k>t VKV A K).jIv A K3

~ 21 < v>51 (< vak >< k> (< vak >< k >7h) < vak >T< k> (VK)(VAK).g; vAk(S. < v >l
Then, the contribution by this term is estimated by (ofDy| instead ofv A Dy)

Y 2
l<v>3 VA D] || <Vv>"" v A D
and therefore the total contribution By, + A1 gives
Y 2 1 1
AL sl <v>3 D5l Il < v>Y VA DYPFIZ || < v >7*2 f||2.
Thus
Y 2 24 +2 £3 2
AL+ B <l <v>3 IDyEFIIl <v>Y VADYFIZ || <v>"" flI2 + || < v>Y VA Dy f]]

which gives

2
Imp; < ||g||{|| <v>5 Dy {|| <V IVADZ < v f|Z 4| <v>Y VA Dv|2f||}}
that is
Impy < lgll | < v >3 [Dyf5 f12 {|| <VST VADE [ < v 2 fli | <v>T VA Dv|2f||%}
and therefore

Y 2 1 1 1 1 1
Imp < ligllll < v >3 |Dyl5 |2 {|| < V> VADYR T2 || < v>T*2 fll3+] < v > VADP T2+ < v >7+2 f||2}.
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Thus
1~ 2 i
| <v>3¢(v,Dy) <VADyx>3 fl|g||<v>3 f|+

1 Y 2 1 1 1 1 1
+HIgllZ || < v >3 Dy |3 {|| <V>Y VADPF[IE || < v >Y2 |84 < v>Y [VAD P fl|a+] < v >*2 sz}
and all in all , ,

Y 2 Y Y 2
| <v>3<VADy>3 fl| S| <v>3 f||+] <v>3|Dy3f]

1 Y 2 1 1 1 1 1
+|glIZ || < v >3 |Dyl5 |2 {|| <V>7 VADYRTIE || < v>T*2 f|IB4]| < v >Y VADP T2+ < v >7+2 f||4}
that is also

Y 2 Y Y 2
[[<Vv>3<VADy>3 fl|<||<v>3 f||+] <v>3 |Dy3f
1 Y 2 1 1 1
Higl? 1l < v>5 pyd {|| VY VA DL 4] < v 72 f||ﬁ}.

Using Lemmd 2]2, it follows that

Y 2 Y 1 1 2
I<vsi<vaDy>3 fl<ll<v>} fll+ {n <vsr L g <vs |DV|2f||§}||g||§

2 1 1 1 1
Tgi? {|| <vsT L fE g <y |Dv|2f||1—2} {|| <Vs? VA DI 4 < v 72 sz}
and thus ,
Y 2 Y
[ <v>3<VADy>3 fl|g|<v>3 f|+
2 1 1 1
g3 {n <2 fd 1 <vs>? DLFI [ < v VA Dv|2f||§},

which concludes the proof.

3. SALAR PrRODUCTS BETWEEN ELEMENTS OF L AND THE TRANSPORT PART

The main idea is to get an estimate on the square of the noreecbi/;, and then conclude with
the Lemma from the previous sections.

First Step
We shall first of all start first by getting an estimate|pfs f||, that is on|| < v >**2 f||, which is
the easiest to obtain. It will be also helpful in order to eohother scalar products.

Lemma 3.1. We have
| < v>Y"2 f|| < [lhll + [[f]l.

Proof. We take the equation, multiply by v >**2 f (or by £3f) and integrate to get
(3.11)
AWV, Vu(< V> D)+ WAV, (VAT (< v >7*2 D))+ < v ST £ < lhllI] < v >7*2 fl.

and we consider the first and second terms on the L.h.s. ofirtbguality, denoted byl and K
respectively, that we need to bound from above (and remaairygoositive contribution).
The first term on the I.h.s. of (3]11) is

J = AWV f, V(< v >7*2 1)) = —(< v >7"2 V. (A(V)V, ), T)
= —(Vu.(< V"2 AWV, ), ) + (A(V)Vy < v >7*2 Y f, ).
We can forget the first term because it is positive, i.e. let
J = (AVVy < Vv>"*2 Y f) = (AV.V, f, f)
with 1 = 1 < v>”. Now
(AV.Vf, ) = —(f, Vy.(VAT)) = —(f, Vy.(VA) ) — (AV.V, £, T).
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and thus
J= (f,Vo.(W)f) S (< v>2 £, f) = (< v>"2 f,<v>"2 ) < gl < v>""2 £ + Col 12
Similarly, the second term on the L.h.s. pf (3.11) is
K = (u(V)(v A Vyf), (VA Vy(< v >7*2 1))
that we can write as
K = (uMW)V;f,Vj(< v>"*2 ) = W)V, T, Vi[< v>" 2 ) + W)V, f, < v >"*2 V[ f])
and again we can forget the second term since it is positiverite
K =~ (u()V;f,Vj[< v>"*?]f).
Sinceg; = uVj[< v >r*2] = 0, it follows that
K = 8V, ) = (£, Vj[8; 1)) = =(£.5V; 1)) = (£, V,[8]])
and therefore&K ~ (f,V;[3;]f) = 0. In view of the estimates ohandK just obtained, we can go

back to [3.11), ending the proof.
O

As a corollary of the proof, note that we have also (though weat use it)
(3.12) | <v>" (VA VI + I < v O fl < bl + (L
Step 2: A preliminary inequality
Below, we seg = h— £(f). We start from
L(f) = =0¢f —v.Vif +h.
Then
IL(FIP = =(v.Vxf, L()) + (h, L(f))
< (V. f, L(F)) + IhiILLCE)I

By expanding the square, and using Holder inequality witi@metere, we obtain (recall that we
have already obtained a control a3 f|?> from Lemma[3]1)

(3.13) 20La(F), Lo(F) + 1LLFIP + 1 L2517 s (Vi F, Lo(F) + Lo(F)) + I + || 1%

Step 3: Scalar product with thetransport operator
Now we compute the scalar product wWyf with £1(f) + L2(f) which appears in[(3:113), for
which we have

Lemma 3.2. With the above notations, we have
{ V.V f, L(F) + Lo()) < 117 + 102+
gl {

(3.14) 1112 + 1| < VY2 12 +]] < V> D22 + | <V>Y VA Dv|2f||%}

where again recall that g h — £(f).

Proof. We have
(v.Vxf, La(F) + Lo(F))
= —(V.V T, Vy. AWV (V) = (V.V T, (VA V).u(V)(V A VY)(T))
= (Oy; (V.Vx ), A(V)ay, f) + ((v A V)(V.Vx ), u(V)(V A Vi T))
= (Vuf AWy 1)) + (VT ). 1)V ().
Now note thatvj(vi) = (v A €)).Vy(Vvi) = (VA €)).6. Thus
V.V F, QD) = (VxF. AWV 1)) + (v A €)Y F u()V; (1))
= (Vxf, AWV 1)) = (VA Vi, u(WV AV ) = 1 + Jo.
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The termJ; is estimated as
Ji= (< V>3 Vi Dy f,A(V) < V>3 VyDyl3 ).
Noticing thatd(v) = A(v). < v >3 <<V >2_37, we get
Y 2 -y 1
J1 Il <v>3 Dy3 I IA(V) <V >T V|Dy3 fl],
and we are reduced to study
I14) < v>T VD3 ).
We takelel% of the equation, multiply byl < v >3- A1, multiply blexl% f and integrate to get
—~(A1V AV Dyl £, Dyl )~ (A1 (VAV (V) (VAVY)IDyl f, Dy £)+(11FIDKI3 £, £) = (12IDyl3h, IDyI3 1)
We can forget the third term on the left hand side also. Thetéran on the right hand side is
1 1 1 1 1 1
_(/llvv~/lVV|Dx|3 f, |Dx|3 f) = +(/1VV|DX|3 f, Vv/11|Dx|3 f) + (/11/1VV|DX|3 f, Vv|Dx|3 f)-

The second term is what we want to estimate. So we need to lggperd the first one. Set
B = AVy4; as a vector field. Then this is of the form (and by symmetry)

(8.V\v9,9) = (9,9 diwg).

Now

Since in factl ~< v > and; ~< v >3, thenB ~< v >40/3-1 and thusdiv 8 ~< v >40/3)-2 we
have something similar to

(< v>40R2 D5 £ IDy3 ) < [ < v >3 D3 ][]l < v>"2 fl.
This computation also adapts to the other term, and we get
IA(VY) <v>F VDY IR < | < v >} Dy £ {n <vsT 2|4 ||h||}
that is
IA(Y) <v>F VDuHfl < [ < v >} Dy It {|| <vsr2 |y ||h||%}

and thus
Hsll<vsb Dyify {n <vsr 2y ||h||%}.

Using Lemmd 2]2 (witly = h — £(f)), one has
I <v>3 D3 1IE < (Il <v>r 2 11+l < v > DI gl
and we get
Ju s {l<vsr AR+l <vs DI gl (i< v > i+ i),
We now turn tad,, recalling thatl, = —(VA Vi f, u(V)vA V, f), and we proceed as fdg. We write
Jo=—(KV>EVAVIVA VLT L u(V) <V>3 VA VIV A Vyl3f)

Y 2 -y 1
SII<v>3[VAD3f||ju <Vv>3 VAV VA Vy3f|
and therefore we need to study

< V>3 VA VIVA Vi3 .
We takelv A Vxl% of the equation, multiply by < v >3 = 1, multiply by f and integrate to get
(19 AVVAD,® £, VADKI 3 )= (s (VAVL)u(V) (VAT )IVAD, £, VADKI £) = (ualvADyIEh, IWAD3 ).
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Above the last term involving- was omitted. We look for the second term:
~(ua(v A V)V A Vo)V A Dl F, v A D3 1)
~(u1VjuViV A DyE f, v A Dy )
= (Vv A Dyl £, VjIV A Dyl ) + (Vj[ua]uVjIv A Dyl3 £, v A D3 ).

The first term of this equality is the one we are looking forr #@ second one, sgf = Vj[u1]u,
then this is of the form (and by anti symmetry):

(BiVig,9) = (VjlBjla.9)

Now py ~< v >3, ThenVj[ui] ~<v >3, Thengj ~<v >% and so isvj[B;] (in general).
Thus
2
(BiVig.9) = (Vi[Bj1g,9) ~ (< v>5 WA D3 f,< v > f).
Therefore, we find

- 1 Y 2 1 1 1
It <V>3F VAVYVA VLR S| <V >3 [vA Dyf3 {2 {II <v>"fl2 + ||h||7}

and thus
B<ll<v>5 vAaDyif|2 {|| <v>? fl|7 + ||h||%}.

From Lemmd 2]3, it follows that

2 2 .3 Y o2
|<v>3<VvADy>3 fll2 5| <v>3 fl2+

1 1 1
gl {|| <SP AE 1 <v s DLRIE [ <V WA Dv|2f||i}.

Therefore
b < {|| <vs? flt+ ||h||%}><
{n <v>h i+ gl {|| <2 flE 1 <v>? DLFIE [ <V WA DV|2f||%}}
and thus
h+ds {n <vsTLf|E 4 <v>? |Dv|2f||%} gl [{n <vsT2 |34 ||h||%]}+

{Ir<vs7 I + it

Y 3 1 1 1
{n <v>3 fl|2 +|lg| {n <V |z 4| <v>? DT +] < v>T VA Dv|2f||?}}.

Using Lemmd 3]1, we get (though of course it is not optimalyl &king into account that < 1
and Lemmd 2]1, using the fact thiat % + 1

htds {||f||% Fll<vs? |Dv|2f||%} gl {||f||% + ||h||%}+
{||f||% " ||h||%}><

{ang + 12 + gl {|| <VSTZ 4] <v>? DLFE ]| <v>T VA Dv|2f||%}}
which simplifies to yield

(VVf, La(F) + La(B)) S T2 + [P+
||g||{

(3.15) I 1 < v>72 £+ ) < v 7 IDHE +1<v>7 v A DA
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where again recall thaf = h— £(f). m|

Note the exponents on the r.h.s. of this inequality whichless than 2.

Step 4: Theremaining scalar product
We consider the last scalar product which appear$ in](3:/&8p{ that it is on the l.h.s of the
inequality we want to control and therefore we can forget positive term)

(£1(f), Lo(F) = (Vv-A() VW £, (v A V(W) (v A V) F).
If we introduceBy = VAd,,, andW; = V|, then this term is also

(ByBif, WW; ) = (By f, B W, ) = (B f, [By, WTW; ) + (Bicf, W BW; f)
= (ka, [Bk, WJ*]WJ f) + (Wj Bk f, Bij f)
= (ka, [Bk, WJ*]WJ f) + (Wj Bk f, [Bk, Wj] f) + (Wj ka,Wj ka).
If we exchange the role dd¢ andW; we find
= (Wj f, [Wj, B;] ka) + (Bij f, [Wj, Bk] f) + (Bij f, Bij f)
= ([Wj, B;]*Wj f, ka) + (Bij f, [Wj, Bk] f) + (Bij f, Bij f)
= ([Bk, WJ*]WJ f, ka) + (Bij f, [Wj, Bk] f) + (Bij f, Bij f).
Thus adding two lines we find
2(ByBif, WyW; f) = 2([By, WjTW; f, B f) + (Wi Bk T, [Bi, Wil f) — (BkW; f, [Bi, Wil )
+(Wj ka,Wj ka) + (Bij f, Bij f)
so we have

3.16 2(L1(F), La(F)) = 2(ByBif, Wi W; f)
(-18) 1 = 2B Wi, £, Bi) — (B Wil . (B WiT ) + (W Bich, Wi BicT) + (BaW; £, ByW; ).

Note that the last two terms are positive (so we can forgehth&/e compute
[Bi, WiI() = [ VAdy, VEVI(f) = VA8 [ VaVi(F)] = VEV[ VAdy ()]
= — Vadu [ V(T A €)M — VE(V A €).Vy[ VA, ()]
VA8 [ VAV () + VAVEV;(@y ) + VA V(e A €)).Vy f
— VE(V A ).V YAy (F) = VAVEWV A €)).V\dy, T
= VA0, [ VEIV{(F) + VA (e A €)).VyT = V(v A €).9,[ VA]ay ()
= Vady [ VEIV;(f) + VA (e A €).Vyf — vaVi[ Valoy(f)
Therefore
B WiI()IP < 1l VAdy [ VIV (F)IP + | VA (e A €). fI? + 11 ViV Valay (F)I.
We note that the weight for the first term is similar<tos >?~1, for the second one te v > and
for the last to< v >” also. Thus
B WI(DIP < Il < v>7 Wy f|?

= (< V> V£,V f) = —(< v>2 AT, f) = (Vy < v>2 V,f, )
and by symmetry
< (< VP A )+ (Ay < V> £ ).
Thus
Bk, Wi(F)IP < ell < v>7 D21 + Cpll < v>2*2 £
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For the term in[(3.16) involving 2, WiTW; f, B f), we can substradt/; to write
2([Bi WIIW; £, Bif) = 2([Bi, W — WiJW; f, By f) + 2([By, W;]W; f, By f)
= 2([Bx, Vj(VOIW; f, Bk f) + 2([Bx, WiW; f, Bk f)

Now [By, Vi(vR)I(f) = VA, [Vj(yE)]f and we note that the weight isv >?~1. Thus the first

term is estimated by something similar to
(< V> Wi Bef) s [l < v>2 Y2 Wif|2 + || < v>2 M2 By f|2 < | £l N

For the other remaining term Bf, W;]W; f, Bxf), we have in view of the commutators that it
looks as something similar to
(< V>V VRV f, VAoy ) + (< v > (& A €).Vy VIV f, VAdy ) + (< v>Y dy vaVjf, Yady,f)
and thus it looks as

<V>FTLVEE 0y f) + (< v > Vi, A f)
S <v>? VEFILE < vty fll+ 11 < v>7 DA< v > V|

Y
SI<v>? VEfILI < v>2 Bof[[+ [ < v>Y DI < v > V]|

S el <V VEEIP+ Coll < v>2 Vyf|2 + &l < v > DR + Coll < v >7 V|2
But we can also write that
| <v>?Vifl? = (< v>? Vif,Vjf) = (<v>7 ijf,<v>7 f) <l <v>Y VA D2 f| || <v>Y f
thus , .
I <v>? DT <v>Y Vifll sl <v>? DPFIE | <v > f2
and by using Holder with exponent and a small expomeadain, we find that it is less than
el < v>Y IDYPFI? + Coll < v > I

All in all, we have shown that all terms from the scalar pradbat for the positive) in[(3.16) can
be absorbed with previous ones. That is the scalar produttedrh.s. of [3.73) can be absorbed with
all the other terms, taking into account alfo (B.15). Thisnisugh to conclude the proof of the main
Theorem, in view of the exponents appearing on the r.h.s.

Remark 3.3. We make some comments about the case of the Cauchy problemywatking say on
a time interval(0, T) (possibly with T= +c0), with an initial value at time & 0 given by §.

Letg, = ¢1(t) be a smooth and compactly supported positive function baiiegfor small positive
values of time. Lep, = ¢»(t) be again a smooth and positive function, but being one fagdavalues
of t and such tha#; + ¢» ~ 1. Let fi = ¢1f and £ = ¢ f. We shall also assume that eventually
has a compact support on the right of the real axis.

We first consider,f Then

(8.17)  difo+V.Vyfo— Vyd(W)Vy o — (VA V) u(V)(V A Yy F2) + F(V) f2(v) = doh + o) f = hp.

Now considering the fact that this equation ferhblds true all oveiR, the previous results apply. Of
course, we need f to be irflin all variables. This statement might be assumed, but ateit also
follows from the equation if we assume that —2 by using the coercivity from the third term of the
diffusive part.

We can now turn to;fwhich also satisfies:

(3.18) 9; f1+Vv.Vy 1 = V. AWV, f1 = (VA V). u(V(VAV, F2) + F(V) f1 (V) = ¢1h+¢’1f = hy, fili=o = fo.

A careful look at the previous proof shows that if we assurae fhfy belongs to B, then we have
again the same conclusion as in the main theorem.
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Finally, a last (formal) comment can be made if we assume @ from the beginning. In that
case, as it is standard in semi group theory, we can get fdynmabre regularity. As explained above,
we assume > -2 to ensure that we have automatically af tound. Then following formally the
arguments fronffd], we see that, using only norms w.(x, v) variables

(V.5 f — L) T < %llfoll

By using the main Theorem (without time dependence), weéhaegvé have hypoelliptic results on
f(t) in terms of the initial data, and with a singular behavior ase¢s tends t@.
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