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Abstract

Français.

La méthode d’imagerie passive en sismologie a été développée récemment
en vue d’imager la croûte terrestre à partir d’enregistrements du bruit sis-
mique. Elle repose sur le calcul des fonctions de corrélation de ce bruit.
Nous donnons dans cet article des formules explicites pour cette corrélation
dans le régime “semi-classique”. Pour cela, nous définissons le spectre
de puissance d’un champ aléatoire comme l’espérance de sa mesure de
Wigner, ce qui permet d’utiliser un calcul dans l’espace des phases : le
calcul pseudo-différentiel et la théorie des “rays”. Nous obtenons ainsi
une formule pour la corrélation du bruit sismique dans le régime “semi-
classique” avec une source de bruit qui peut être localisée et non homogène.

Nous montrons ensuite comment l’utilisation des ondes guidées de sur-
face permet d’imager la croûte terrestre.

Mots clés : Imagerie passive ; semi-classique ; ondes de surfaces.
English.

The method of passive imaging in seismology has been developped re-
cently in order to image the earth crust from recordings of the seismic
noise. This method is founded on the computation of correlations of the
seismic noise. In this paper, we give an explicit formula for this correlation
in the “semi-classical” regime. In order to do that, we define the power
spectrum of a random field as the ensemble average of its Wigner measure,
this allows phase-space computations: the pseudo-differential calculus and
the ray theory. This way, we get a formula for the correlation of the seismic
noise in the semi-classcial regime with a source noise which can be localized
and non homogeneous. After that, we show how the use of surface guided
waves allows to image the earth crust.

Keywords : passive imaging, semi-classics, surface waves.
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Introduction

Correlations of the noisy wave fields is used as a new tool in seismic imaging and
monitoring, starting from the pioneering work of Campillo and Paul [3] (similar
tools have been used in helio-seismology [11]) and followed by many works [7, 8,
17, 18, 19, 20, 21, 27, 28]. See also the review paper [14]. It has also been used in
the monitoring of the deformations of volcanœs [2]. Because it is a very powerful
method and, hopefully, in order to make it more efficient, it is quite challenging to
give mathematical supports to this method, now called “passive imaging”. This
has been done in a rather great generality in [6, 5] using semi-classical analysis
(see also [15, 17, 1, 14]).

Exact formulas for the correlations of the fields are known if the source noise
is homogeneous (a white noise). This assumption is not satisfied in applications.
It is therefore desirable to get formulate valid for more general source noises,
in particular if the source noise is localized in some part of the domain. This
turns out to be possible in the so-called semi-classical regime where the wave-
lengths are negligible with respect to the size of the propagation domain. The
field correlation admits a general expression in terms of the Green’s function and
the source correlation (Equation (3)). The idea is to find the asymptotics of this
expression in the semi-classical regime.

I will present in this paper approximate formulas which are valid in the range
of high frequency wave propagation and for which the source noise is localized
in some part of the domain of propagation. The correlation is explicitly given
in term of the decomposition of the Green’s function as a sum over rays and
the (phase-space) power spectrum of the source noise. I can use ray theory if I
assume that the source noise has a short correlation distance of the same order
of magnitude than the wavelengths. This calculus can be presented in a very
geometric way using rays propagation as well as a re-interpretation of the source
correlation in terms of the phase space power spectra. I use the calculus of
pseudo-differential operators in a very essential way. I will not reproduce the
mathematical arguments which are presented in my paper [5], but I will try not
only to give explicit formulas, but also to present the main ideas and tools.

Here is a more precise description of the content: the goal is to get the formula
given in Theorem 4.1 which gives the modification of the correlation of the seismic
noise induced by the non-homogeneity of the source noise. The modification is
given in terms of the power spectrum of the source noise, the attenuation and
the ray dynamics associated to the deterministic wave equation.

I first give a review of the pseudo-differential calculus (section 1): this allows
to put the basic terminology of rays dynamics and to define power spectra of
arbitrary random fields (section 2).

I then introduce the simplest mathematical model where the source noise is
simply the right-handside of the wave equation (section 3) and I present our main
formula in section 4. The interest of the result depends of the relation between
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2 time scales discussed in section 5: the Ehrenfest time given in terms of the
Lyapounov exponent and the attenuation time.

How to use all of this in imaging problems? I do that (section 6) in the case
of seismology using the effective wave equation for the guided surface waves. The
final problem turns out to be an inverse spectral problem whose mathematical
solution is known.

Finally, I discuss in section 7 a related issue, namely the calculus of the
correlations of plane waves scattered by an obstacle or an inhomogeneity viewed
as random waves: the direction of the waves is supposed to be random and
uniform. This way, I show that the result of [19] is completely general.

1 A short review of the pseudo-differential cal-

culus and Wigner measures

For the mathematics of pseudo-differential operators, see [9, 12, 13, 24].
The pseudo-differential operators (ΨDO’s) were introduced in the sixties by

Calderon, Zygmund, Nirenberg, Hörmander and others as a tool in the study of
linear partial differential equations with non constant coefficients. They provide
also the geometrical extension of Hamiltonian formalism of classical mechanics
to wave mechanics (see [10]). In applications to physics, it is often called the ray
theory (see [16]). The same tools apply to the study of the semi-classical limit of
quantum mechanics and to the high frequency limit of wave equations (acoustic,
electromagnetic or seismic waves).

There is a small parameter ε > 0 in the theory which is the Planck “con-
stant” ~ in quantum mechanics and the wave length or more precisely the dimen-
sionless ratio between the wave length and the size of the propagation domain for
wave equations. Most results are only valid in the limit ε → 0, but, for simplicity,
the reader can think of ε as a fixed, small enough, number.

1.1 ΨDO’s

A pseudo-differential operator (ΨDO) on Rd is a linear operator on functions
f : Rd → C, Aε := Opε(a), defined using a suitable function defined on the phase
space, a(x, ξ) : Rd

x ⊕ R
d
ξ → C, called the symbol of Aε, by the formula (Weyl

quantization)

Aε(f)(x) =
1

(2π)d

∫

Rd×Rd

ei(x−y).ξa

(

x+ y

2
, εξ

)

f(y)dydξ .

The function a is assumed to be smooth and homogeneous near infinity in ξ. The
Schwartz kernel1 [Aε](x, y) of Aε is located near the diagonal x = y and is of the

1The “Schwartz kernel” of a linear operator A is the “continuous matrix” of A, we will
denote it by [A](x, y) and it is characterized by Af(x) =

∫

X
[A](x, y)f(y)dy.
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form
[Aε](x, y) ∼=ε→0 k(x, (x− y)/ε)

where k(x, z) is a smooth function outside z = 0 going to 0 as z → ∞.
Simple examples are

• Opε(1) = Id by the Fourier inversion formula

• Opε(ξj) =
ε
i

∂
∂xj

• Opε(xj) is the multiplication by xj

• If χ is a positive function with bounded support, the operator Opε(χ(ξ)) is
a frequency filter

• Op~(|ξ|2 + V (x)) = −~
2∆+ V (x): the Schrödinger operator

• Opε(n(x)|ξ|2) = −ε2div (n(x) grad): the acoustic wave operator.

The main properties are the following ones which hold as ε → 0:

• Composition:
Opε(a) ◦Opε(b) ≈ Opε(ab)

• Brackets:
[Opε(a),Opε(b)] ≈

ε

i
Opε{a, b}

where

{a, b} =

d
∑

j=1

(

∂a

∂ξj

∂b

∂xj
− ∂a

∂xj

∂b

∂ξj

)

is the Poisson bracket. This last property is very important because it
relates the algebra of ΨDO’s to the geometry of the phase space given by
the Poisson bracket.

1.2 Wigner functions

Wigner functions define the localization of energy in the phase space Rd
x × Rd

ξ

for a wave function u = u(x). They involve the scale ε. The Wigner function
W ε

u(x, ξ) of u is the function on the phase space defined by the identities

∀a ∈ C∞
0

(

R
2d
)

,

∫

R2d

a(x, ξ)W ε
u(x, ξ)dxdξ = 〈Opε(a)u|u〉 ,

where 〈u|v〉 =
∫

u(x)v̄(x)dx, or

W ε
u(x, ξ) =

1

(2π)d

∫

Rd

e−iv.ξu
(

x+
εv

2

)

ū
(

x− εv

2

)

dv .
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I have
∫

Rd

W ε
u(x, ξ)dξ = |u(x)|2,

∫

Rd

W ε
u(x, ξ)dx = |Fεu(ξ)|2 ,

where Fεu(ξ) = is the ε−Fourier transform of u given by

Fεu(ξ) =
1

(2πε)d/2

∫

e−ix.ξ/εu(x)dx .

This means that the marginals of the Wigner measure W ε
u(x, ξ)dxdξ are |u(x)|2dx

and |Fεu(ξ)|2dξ.

1.3 Hamiltonian dynamics and ray method

Let us consider the wave equation utt −Lu = 0 where L is an elliptic ΨDO like
the acoustic operator L = div(n grad). The symbol, usually called the dispersion
relation, of this equation is ω2 − n(x)‖ξ‖2 = 0. To this relation is associated a
dynamics called the ray dynamics given by the Hamilton equations:

dxj

dt
=

∂H

∂ξj
,
dξj
dt

= −∂H

∂xj
(1)

with H =
√
n‖ξ‖. The main result (Theorem 4.1 below) uses the “Hamiltonian

flow” Φt: Φt(x, ξ) is the value at time t of the previous differential system (1)
with data (x, ξ) at the time t = 0. In the case of an homogeneous medium,
n = n0 =constant, I have

Φt(x, ξ) = (x+ t
√
n0ξ/‖ξ‖, ξ) .

In the ray theory, this correspond to the group velocity of waves
√
n0.

The mathematical theory of rays is called the theory of Fourier Integral Op-
erators and has been developed in the seventies by Hörmander and Duistermaat
(see [10]) following some pioneering work of Lax and Maslov. A presentation more
adapted to physicists is given in [16]. Unfortunately, the geometric background
is rather sophisticated and cannot be presented in a few pages. However, explicit
formulas in terms of oscillatory functions and oscillatory integrals are available.

In what follows, I will use the fact that the Green’s function G(t, x, y) of wave
equation admits, in the semi-classical regime (short wave-length), a decomposi-
tion as a sum of contributions of rays γ going from y to x in time t: G =

∑

γ Gγ.

2 Random fields: power spectra and correla-

tions

Let f = f(x), x ∈ Rd, be a random complex-valued field with zero mean value.
Let us denote by E the expectation or ensemble average.
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Definition 2.1 The correlation of the random field f is the 2-points function
given by

C(x, y) := E(f(x)f̄(y))

The power spectrum of the random field f is the function on the phase
space given by the expectation of the Wigner functions

pε := E(W ε
f ) .

The power spectrum and the correlation contain the same information:

• The correlation C(x, y) is ((2πε)d times) the operator kernel of Opε(p) or

C(x, y) =

∫

ei〈x−y|ξ〉/εpε

(

x+ y

2
, ξ

)

dξ .

• pε is ((2πε)
−d times) the symbol of the operator whose integral kernel is C.

Example 2.1 : the white noise

C = δ(x− y), pε = 1/(2πε)d.

Example 2.2 : a stationary noise on R with ε = 1, C(s, t) = F (s − t) and
p1(s, ω) is the Fourier transform F(F )(ω).

3 A mathematical model

I will now discuss the basic mathematical model: it consists of 2 parts :

• A deterministic wave equation which could be the elastic wave equation or
more simply here the acoustic wave equation. Because the source of noise
will be permanent, some attenuation in the equation is needed.

• A source noise assumed to be stationary and ergodic in time. In seismology,
this source is usually created by the interaction of the fluids surrounding
the earth crust (atmosphere or ocean) with the crust itself. This source
is modeled by a random field which I put on the right-handside of the
equation.

For simplicity, I will discuss only the case of a scalar acoustic wave equation
on some domain in Rd

x with a random source field f = f(x, t) (t is the time):

utt + a(x)ut − Lu = f (2)

where
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• The field u = u(x, t) is scalar

• a, the attenuation, is a smooth > 0 function. I will assume for simplicity
that a is time independent, but it is not really necessary

• L is a self-adjoint pseudo-differential operator of symbol −ε−2l20(x, ξ). Usu-
ally, l0 is homogeneous of degree 1 which makes L independent of ε. This
will not be the case for dispersive waves like surface waves. Typical exam-
ples are the Laplace-Beltrami operator of a Riemannian metric on X with
l0(x, ξ) =

√

gij(x)ξiξj and the acoustic wave operator div (n(x) grad)) with

l0(x, ξ) =
√

n(x)‖ξ‖. I introduce L0 := Opε(l0) = ε
√
−L

• f = f(x, t) is a stationary and ergodic (in time) random field with cor-
relation E(f(s, x)f(s′, y)) = δ(s− s′)Γ(x, y) and power spectrum p(x, ξ); I
assume that p(x, ξ) has bounded support and that f is real valued and hence
that p(x, ξ) is even w.r. to ξ. I assume that p is independent of ε, this implies
that the correlation is ε− dependent: in particular, Γ(x, y) << |x − y|/ε.
The source noise decorrelates rapidly as |x− y| >> ε.

The Green’s function is the integral kernel G giving the causal solution of
Equation (2) in terms of f :

u(x, t) =

∫ ∞

0

ds

∫

X

G(s, x, y)f(t− s, y)dy .

Our goal is to compute the correlation

CA,B(τ) = lim
T→+∞

1

T

∫ T

0

u(A, t)u(B, t− τ)dt .

Lemma 3.1 The following relation holds: CA,B(−τ) = CB,A(τ).

Hence I can (and will!) restrict ourselves to τ > 0.
Using the fact that the source noise is ergodic and stationary, I get the fol-

lowing result

Theorem 3.1 The field correlation is given by Equation (3) only in terms of the
Green’s function G and the correlation Γ of the source noise

CA,B(τ) =

∫ ∞

0

ds

∫

X×X

dxdyG(s+ τ, A, x)G(s, B, y)Γ(x, y). (3)

All the work is now concentrated to get a more explicit and more geometric
expression: this will be done using an expression of the Green’s function as a
sum over rays going from B to A in time τ and using the power spectrum p of f
which is a semi-classical expression of the correlation of the source noise.
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4 The main formula

Let us denote by Ω±(t) the “one-parameter groups” of linear operators generated
by ±iL0 − εa/2: Ω+(t)u0 is the solution of the differential equation u̇ = ( i

ε
L0 −

a/2)u with u(0) = u0, and similarly for Ω−(t). The use of Ω±(t) is a way to split
the Green function of the wave equation usually given by some “sinus” function
into 2 exponentials: this way, I reduce the wave equation from an equation with
of second order in time to a diagonal system of first order in time.

Ω±(t) = et(±
i
ε
L0−a/2) = et(±i

√
−L−a/2) .

I will express the result in terms of operators instead of expressing them in terms
of their kernels (matrices). This gives a much more compact expression! The
symbol ◦ means the composition of operators while Ĉ(τ) is the operator whose
integral kernel (matrix) is CA,B(τ):

(Ĉ(τ)u)(A) =

∫

X

CA,B(τ)u(B)dB .

The main result is

Theorem 4.1 The correlation is given, for τ > 0, as ε goes to 0, by

Ĉ(τ) ∼= [Ω+(τ) + Ω−(τ)] ◦ Π , (4)

with Π = Opε(π) and

π(x, ξ) =
ε2

4l20

∫ 0

−∞
e−

∫
0

t
a(Φs(x,ξ))dsp(Φt(x, ξ))dt , (5)

and if a = a0 is constant

π(x, ξ) =
ε2

4l20

∫ 0

−∞
e−a0|t|p(Φt(x, ξ))dt .

I will compare our result (Equations (4) and (5)) to the Green’s function.
In the semi-classical regime, i.e. as ε → 0, I have

G(t, A,B) ∼= ε

2i

[

(Ω+(t)− Ω−(t)) ◦ L−1
0

]

(A,B) ,

Let us now compute the τ−derivative of CA,B(τ):

d

dτ
C(τ) ∼= −ε

i
(Ω+(τ)− Ω−(τ)) ◦ L0 ◦ Π .

In the case of white noise and constant attenuation a0, I know (see for example
[5] Section 5.1 for a derivation)) that

d

dτ
C(τ) = − 1

2a0
G(τ) (6)

which is consistent with the previous semi-classical formula.
I can now give a more concrete formula:
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Corollary 4.1 Writing G(τ, A,B) as a sum
∑

γ Gγ of contributions of rays γ(s)
with γ(0) = (B, ξB) and γ(τ) = Φτ (B, ξB) = (A, ξA), I get

d

dτ
C(τ, A,B) ∼=

∑

γ

MγGγ ,

with

Mγ = −1

2

∫ 0

−∞
e−

∫
0

t
a(γ(s))dsp(γ(t))dt .

In the case of the white noise p = 1 and a = a0, I recover the formula

Mγ = −1/2a0 . (7)

Let us also remark that, if there is an unique trajectory from B to A in time
τ , the prefactor Mγ applies to the Green’s function itself. It is the case, if I work
with wave equations with constant coefficients in R

n.
The previous formula is consistent with the observations of the paper [22]:

the correlation CA,B(τ) is not always an even function of τ as it is if the source
is a white noise. The evenness is valid only up to scaling of CA,B(τ):

CB,A(τ) = CA,B(−τ) ∼ kCA,B(τ) .

The factor k is the ratio of the integrals giving Mγ for the ray γ(t) going from B
to A and γ(−t) going from A to B.

5 Time scales

As I see from the general expression of the correlation given in Equation (3), the
proof of the main theorem 4.1 involves the knowledge of the Green’s function
at large times. This is a well known difficulty and the semi-classical expansions
of the Green’s functions are valid up to to the so-called Lyapounov time which
involves the Lyapounov exponent measuring the rate of instability of the ray
dynamics. Roughly speaking, the Lyapounov exponent is the smallest number λ
so that the distance between any to rays γ1(t) and γ2(t) satisfies the estimates

d(γ1(t), γ2(t)) ≤ Ceλtd(γ1(0), γ2(0)

with C independent of γ1(0) and γ2(0). There is an associated time scale TLyap =
1/λ. On the other hand there is an attenuation time scale for the wave dynamics
expressed in terms of the decay of the Green’s function

|G(t, x, y)| ≤ Ce−T/Tatt .

Tatt satisfies the estimate Tatt ≥ 2/ inf a. The approximation given in Theorem
4.1 is better when Tatt >> TLyap. In particular, this condition is necessary in
order to get point-wise convergence (i.e. convergence for A and B fixed).
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6 The use of surface waves for passive imaging

A remarkable application of the previous tool is to the imaging of the earth crust
[15, 25, 26, 3, 20, 21]. This is done using the part of the Green’s function associ-
ated to the surface waves: the earth crust acts as a wave guide on elastic waves
and these waves follow an effective wave equation. The effective Hamiltonian is
described now: let us start with the acoustic wave equation utt−div(n gradu) = 0
with the function n coming from a stratified medium n = n(x, z) (here z = 0
is the surface) where n is weakly dependent of x (this can be formalized as
n(x, z) = N(εx, z) with N smooth and ε small). Using the adiabatic separation
of variables u ∼ U(εx, z)ei〈x|ξ〉 with U weakly dependent of x, I can operate as if
n was independent of x and I get the reduced equation

Utt +Op1(λ(x, ξ))U = 0

where λ(x, ξ) is an eigenvalue of the Sturm-Liouville operator

Lx,ξ = − d

dz
n(x, z)

d

dz
+ n(x, z)‖ξ‖2

with appropriate boundary conditions at z = 0.
From the correlation, I get the ray dynamics of the surface waves and hence the

effective Hamiltonians λ(x, ξ). The inverse problem to be solved is the following
inverse spectral problem: from the fundamental mode (or any other available
mode) of Lx0,ξ in some range of wave numbers |ξ|, recover n(x0, z). This is the
kind of well posed inverse problem for which analytical/numerical method can
be used (see [4]).

7 A formula for the scattering of random plane

waves

I have seen an exact formula for the correlation of the wave field when the at-
tenuation a is constant and the source noise is a white noise. I will see another
exact formula in the context of wave scattering by a perturbation sitting in a
bounded domain of Rd (see [6]). This formula is very general and applies in all
situations of wave scattering (scalar or elastic waves), i.e. for any medium which
is homogeneous near infinity: non-homogeneity’s lies at finite distances or there
is a scattering by a bounded obstacle. This calculus was motivated by the result
of [19], showing that this result is completely general.

Let us consider for example an acoustic wave equation (2) with n = n0 outside
a bounded set of Rd. I will consider scattering solutions of the stationary wave
equation

div(n gradu)− ω2u = 0 (8)
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which are of the following form: let us define, for k ∈ Rd, the plane wave

e0(x,k) = eik.x .

I am looking for solutions

e(x,k) = e0(x,k) + es(x,k)

of equation (8) in Rd, with n0k
2 = ω2(2), where es, the scattered wave, satisfies

the so-called Sommerfeld radiation condition:

es(x,k) =
eik|x|

|x|(d−1)/2

(

e∞
(

x

|x| ,k
)

+O

(

1

|x|

))

, x → ∞ .

The complex function e∞(x̂,k) is usually called the scattering amplitude and is a
signature of the inhomogeneities. The functions e(x,k) are deformed exponentials
and allow to write an explicit spectral decomposition of our wave operator, which
is a “deformation” of the Fourier transform.

Let us look at e(x,k) as a random wave with k = ω/
√
n0 fixed. The point-

point correlation of such a random wave Cscatt
ω (x, y) is given by:

Cscatt
ω (x, y) =

∫

k
√
n0=ω

e(x,k)e(y,k)dσ(k̂).

It is proved in [6], section 8, that

Cscatt
ω (x, y) = −2d+1πd−1n

d/2
0

ωd−2
ℑ(G(ω + i0, x, y)) ,

where G(ω, x, y) is the stationary Green’s function, i.e. the Schwartz kernel of
(ω2 + div(n grad))

−1
.

8 Conclusions

I hope to have convinced the reader, even if he is not very much involved in
mathematics, that it is possible to derive rather explicit asymptotic formulas for
the correlation CA,B(τ) of seismic noise. The main conclusion is that, in the semi-
classical regime, even if the source noise is not homogeneous, the field correlation
is very close to the Green’s function; in many cases, there is only a prefactor
which I computed and which introduces no phase shift. This prefactor vanishes
if the support of the source noise does not meet the rays from B to A.

Many other ideas and applications remains to be exploited:
Is it possible to use the previous tools in order to get informations on the

source noise? Can I extend the previous calculus to the case where the source
noise is located on a surface? Can I do something similarly in other regimes of
propagation, in particular in non-smooth media? Can I get applications of the
general formula to monitoring?

2As often, I denote k := |k| and k̂ := k/k
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[11] T. Duvall, S. Jefferies, J. Harvey & M. Pomerantz. Time-distance in helio-
seismology. Nature 362:430–432 (1993).

[12] L. Evans & M. Zworski. Lectures on semi-classical analysis (Version 0.2).
Available at http://math.berkeley.edu/∼zworski/

[13] G. B. Folland. Harmonic analysis in phase space. The Annals of mathematics
studies 122, Princeton University Press (1989).
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