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The analysis of dynamics of Biological Regulatory Networks (BRNs) requires innovative

methods to cope with the state space explosion. This paper settles an original approach

for deciding reachability properties based on the Process Hitting, a framework suitable to

model dynamical complex systems. In particular, the Process Hitting has been shown of

interest to model dynamics of BRNs with discrete values. The Process Hitting describes

the way each process is able to act upon (i.e. to ”hit”) an other one (or itself) in order to

”bounce” it as another process further acting. By using complementary abstract

interpretations of the succession of actions, we build a very efficient static analysis to

over- and under-approximate reachability properties within Process Hittings. Applied to

a large BRN of 94 components, our method replies quasi-instantaneously to reachability

questions, overtaking the state-of-the-art approaches and showing a very promising

scalability.
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1. Introduction

Biological regulatory networks (BRNs) are a common framework to model the concurrent

regulations between biological components (RNA, proteins, etc.). These regulations are

generally represented as interaction graphs, where nodes are components of the system,

and edges state the regulation between them, either positive (activation) or negative

(inhibition). To each node is also assigned a numerical value representing the state (e.g.

the concentration) of the component of the network, at a given time. This value evolves

in response to the various regulations the component is subject to. In 1973, the biolo-

gist René Thomas proposed a formalisation of BRNs where the value of components are

boolean (Thomas, 1973). His formalisation uses an interaction graph and René Thomas’

parameters (or equivalently, boolean functions between nodes inputs) to describe dynam-

ics of a BRN. A full description of BRNs formalism with discrete values for components

can be found in (Bernot, Cassez, Comet, Delaplace, Müller and Roux, 2007).

The derivation of dynamical properties from the interaction graph of BRNs has been

the motivation of various mathematical works. Twenty years ago, René Thomas conjec-

tured that the presence of positive circuits within the interaction graph is a necessary

condition to achieve systems with multi-stationnarity. The conjecture has been proven in

several frameworks, notably in discrete dynamical systems (Richard and Comet, 2007).

By using more elaborated interaction graph analyses, the maximum number of fixed

points within boolean networks can be characterised (Aracena, 2008). Under strong con-

ditions, particular fixed points (qualified as topological) can be fully extracted from the

interaction graph (Paulevé and Richard, 2010): these points are fix in all possible dynam-

ics matching the interaction graph. Finally, the presence of negative circuits in interaction

graphs has been proven necessary for sustained oscillations in the dynamics (Remy, Ruet

and Thieffry, 2008; Richard, 2010).

To produce more precise analyses of BRNs dynamics, it is required to take into account

the boolean functions specified together with the interaction graph (as in (Bernot, Comet

and Khalis, 2008), for instance). The majority of current techniques use standard model-

checking methods (Richard, Comet and Bernot, 2006) based on the (explicit or symbolic)

exploration of the state space of the model. Such methods suffer from the state space

explosion, and are intractable on large regulatory networks. We propose here a novel

and original method relying on the Process Hitting framework to address this scalability

issue.

The Process Hitting (Paulevé, Magnin and Roux, 2011) is a recently introduced frame-

work suitable to model BRNs with discrete values. Basically, each discrete component

value is modelled as a process; at any time, one and only one process of each component

(referred to as sort) is present; this process stands for the current state of the component.

A sort changes of process on the hit of at most one other process. Static analyses have

already been developed in the Process Hitting framework, notably for obtaining all the

fixed points of dynamics of a Process Hitting (Paulevé et al., 2011). Being a particular
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restriction of Communicating Finite-State Machines (Brand and Zafiropulo, 1983), the

Process Hitting can be applied to less specific dynamical complex systems.

The static analysis by abstract interpretation (Cousot and Cousot, 1977) aims at

providing an efficient analysis of a program without executing it. This is achieved by

constructing one or several sound abstractions of the semantics of the program; these

abstractions are then interpreted to decide the validity of a given property, resulting in

over- or under-approximations of the validity of the property in the concrete program.

Hereafter, we refer to this validity as the concretizability of the abstract property.

In this paper, we present a novel static analysis by abstract interpretation of Process

Hittings. We address the decision of a successive reachability of processes. Our approach

is based on two complementary abstractions of a succession of actions within a Pro-

cess Hitting. Several refinement operators upon these two abstractions are then defined.

These refinements detail an abstraction, with the aim of simplifying the concretizability

decision. By using the abstraction refinement operators, over- and under-approximations

of the process reachability decision are developed. Their implementations rely on the

analysis of an abstract structure, that can be represented as a graph. We show that this

abstract structure has always a reasonable size (i.e., polynomial in the total number of

processes); and, while its computation can be exponential in the number of processes

within a single sort, the approximations are always linear or polynomial in its size.

The scalability of our approach is illustrated by its application to the decision of

reachability of gene expression levels within a BRN of 94 components. Our methods

responds very fast to the decision, while a well established symbolic model checking

technique (SDD, (Hamez, Thierry-Mieg and Kordon, 2009)) regularly fails because of

the state space explosion.

A preliminary version of these results have been presented in (Paulevé, Magnin and

Roux, 2010). This paper extends them in several ways: the general framework for present-

ing the analyses has been deeply reworked and unified; the conclusiveness of the overall

method has been largely improved; the BRN application case has been extended to 94

components, instead of 40.

This paper is structured as follows. The Process Hitting framework is defined in Sect. 2.

Sect. 3 presents complementary abstractions of scenarios (i.e., sequences of actions) and

defines the abstraction refinements operators. These refinements operators are then ap-

plied to the over- and under-approximation of process reachability in Sect. 4; their imple-

mentation and complexity is also detailed. Sect. 5 briefly presents the encoding of BRNs

dynamics into Process Hittings and applies the above methods to a large BRN relating

94 components. Finally, Sect. 6 summarises and discusses the contributions of this paper.

Notations: Given a countable set S = {e1, . . . , en}, |S| = n; ℘(S) is the power set. Given

a finite sequence of elements A = e1 :: . . . :: en, |A| = n is the length of the sequence;

IA = {1, . . . , |A|} is the set of A indexes; Ai = ei, ∀i ∈ IA; ε is the empty sequence; Ai..j

is the subsequence Ai, . . . , Aj ; Ai..j = ε if j < i. lfp{x0} (x 7→ x′) is the least fix point

of the function f(x) = x′ initially applied to x0.
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2. The Process Hitting Framework

This section presents the Process Hitting framework (Paulevé et al., 2011) on which the

methods presented in this paper rely.

The Process Hitting gathers a finite number of concurrent processes grouped into a

finite set of sorts. A process belongs to one and only one sort and is noted ai where a is

the sort and i the identifier of the process within the sort a. At any time, one and only

one process of each sort is present, forming a state of the Process Hitting.

The concurrent interactions between processes are defined by a set of actions. Actions

describe the replacement of a process by another of the same sort conditioned by the

presence of at most one other process in the current state of the Process Hitting. An action

is denoted by ai→bj �bk where ai, bj , bk are processes of sorts a and b. It is required that

bj 6= bk and that a = b ⇒ ai = bj . An action h = ai→ bj � bk is read as “ai hits bj to

make it bounce to bk”, and ai, bj , bk are called respectively hitter, target and bounce of

the action, and can be referred to as hitter(h), target(h), bounce(h), respectively.

Definition 1 (Process Hitting). A Process Hitting is a triple (Σ, L,H):

— Σ = {a, b, . . . } is the finite countable set of sorts,

— L =
∏

a∈Σ La is the set of states, with La = {a0 . . . ala} the finite and countable set of

processes of sort a ∈ Σ and la a positive integer, a 6= b⇒ ai 6= bj ∀(ai, bj) ∈ La×Lb,

— H = {ai→bj �bk, · · · | (a, b) ∈ Σ2, (ai, bj , bk) ∈ La×Lb×Lb, bj 6= bk, a = b⇒ ai = bj},

is the finite set of actions.

Proc refers to the set of all processes (Proc = {ai | a ∈ Σ ∧ ai ∈ La}).

The sort of a process ai is referred to as Σ(ai) = a and the set of sorts present in an

action h ∈ H as Σ(h) = {Σ(hitter(h)),Σ(target(h))}. Given a state s ∈ L, the process

of sort a ∈ Σ present in s is denoted by s[a], that is the a-coordinate of the state s. We

define the following notations: if ai ∈ La, ai ∈ s ⇔ s[a] = ai; and if ps ∈ ℘(Procs),

ps ⊆ s⇔ ∀ai ∈ ps, ai ∈ s.

An action h = ai→bj �bk ∈ H is playable in s ∈ L if and only if s[a] = ai and s[b] = bj .

In such a case, (s ·h) stands for the state resulting from the play of the action h in s, that

is (s · h)[b] = bk and ∀c ∈ Σ, c 6= b, (s · h)[c] = s[c]. For the sake of clarity, ((s · h) · h′),

h′ ∈ H is abbreviated as (s · h · h′).

If A is a sequence of actions, the set of sorts present in A is given by Σ(A) =⋃
n∈IA

Σ(An). The first (resp. last) process of sort a appearing in the sequence is re-

ferred to as fsta(A) (resp. lasta(A)):

fsta(A) =





∅ if a /∈ Σ(A),

hitter(Am) if m = min{n ∈ IA | a ∈ Σ(An)} ∧ Σ(hitter(Am)) = a,

target(Am) else if Σ(target(Am)) = a ;

(1)
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lasta(A) =





∅ if a /∈ Σ(A),

bounce(Am) if m = max{n ∈ IA | a ∈ Σ(An)}

∧Σ(bounce(Am)) = a,

hitter(Am) else if Σ(hitter(Am)) = a .

(2)

Amongst sequences of actions, the particular sequences composed only of successively

playable actions form scenarios (Def. 2). A scenario δ is said to be playable in a state

s ∈ L, if and only if δ1 is playable in s and for all n ∈ Iδ, n < |δ|, δn+1 is playable in the

state (s·δ1 ·. . .·δn); or equivalently δ is playable in s if and only if support(δ) ⊆ s (Eq. (3)).

The state resulting from the sequential play of the scenario in s is denoted by s · δ. One

can easily show that ∀ai ∈ end(δ), (s · δ)[a] = ai and ∀b ∈ Σ\Σ(δ), (s · δ)[b] = s[b]; where

end(δ) is defined in Eq. (4).

Definition 2 (Scenario (Sce)). Given a Process Hitting (Σ, L,H), a scenario δ is a

sequence of actions in H such that for all n ∈ Iδ, ai = hitter(δn) (resp. target(δn))

⇒ lasta(δ1..n−1) ∈ {∅, ai}. The set of all scenarios is denoted by Sce. support(δ) and

end(δ) give the first and last processes of each sort, respectively:

support(δ) = {p ∈ Proc | Σ(p) ∈ Σ(δ) ∧ p = fstΣ(p)(δ)} , (3)

end(δ) = {p ∈ Proc | Σ(p) ∈ Σ(δ) ∧ p = lastΣ(p)(δ)} . (4)

Fig. 1 represents a Process Hitting (Σ, L,H) where Σ = {a, b, c, d}, L = {a0, a1} ×

{b0, b1, b2} × {c0, c1} × {d0, d1, d2} and H = {a0→ c0 � c1, a1→ b1 � b0, c1→ b0 � b1, b1→

a0 � a1, b0→ d0 � d1, b1→ d1 � d2, d1→ b0 � b2, c1→ d1 � d0, b2→ d0 � d2}. Playing

the action b1→ a0 � a1 in the state 〈a0, b1, c0, d0〉 results in the state 〈a1, b1, c0, d0〉.

δ = a0→c0 �c1 ::b1→a0 �a1 ::a1→b1 �b0 ::b0→d0 �d1 ::d1→b0 �b2 is a scenario playable in

the state s = 〈a0, b1, c0, d0〉, and s · δ = 〈a1, b2, c1, d1〉.

Remark 1. The Process Hitting framework can be considered as a class of Communic-

ating Finite-State Machines (Brand and Zafiropulo, 1983) where at most two machines

(sorts) share a synchronization label (action) and one and only one machine changes its

state (process) at each synchronization (action play).

3. Abstract Interpretation of Scenarios

After having introduced preliminary definitions (Subsect. 3.1), this section establishes

two orthogonal abstractions of scenarios: by objective sequences (Subsect. 3.2) and by

bounce sequences (Subsect. 3.3). The former describes a succession of process changes per

sort (called objectives), while the latter details the actions actually played to resolve these

objectives. While objective sequences can be seen as a sparse representation of a scenario,

bounce sequences emphases the necessary actions required to resolve an objective.

Upon these two complementary abstractions, several objective sequence refinements

operators are derived in Subsect. 3.4. The aim of these refinements is at providing more
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Figure 1. A Process Hitting example. Sorts are represented by labeled boxes, and

processes by circles (ticks are the identifiers of the processes within the sort, for

instance, a0 is the process ticked 0 in the box a). An action (for instance

a0→c0 �c1) is represented by a pair of directed arcs, having the hit part (a0 to c0)

in plain line and the bounce part (c0 to c1) in dotted line. The reachability of the

process d2 (double circled) is studied in next sections. The current state is

represented by the grayed processes: 〈a0, b1, c0, d0〉.

PH Sce

BS OS

BS∧

a
b
st
r
(3
.3
)

abstr
(3.2)ab

st
r
(3
.3
)

ρ

(3.4.1) ρ∧

(3.4.2)

Figure 2. Derivation relations between a Process Hitting (PH), scenarios (Sce),

objective sequences (OS, Subsect. 3.2), bounce sequences (BS and BS∧,

Subsect. 3.3) and refinement operators (e.g., ρ and ρ∧, Subsect. 3.4). The thicked

relations are used in Sect. 4 to decide the concretizability of an objective sequence.

precise abstractions on which the concretizability may be easier to decide. Fig. 2 summar-

izes the possible derivations between a Process Hitting and the different representations

of scenarios.
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3.1. Preliminaries

This subsection introduces the notion of objective and context used by the developed

abstractions.

The reachability of the process aj from a process ai is called an objective and is denoted

by ai �
∗aj (Def. 3).

Definition 3 (Objective (Obj)). The reachability of process aj from ai is called an

objective, noted ai �
∗aj . The set of objectives is denoted by Obj = {ai �

∗aj | a ∈ Σ ∧

(ai, aj) ∈ L2
a}. Given an objective P ∈ Obj, where P = ai �

∗aj , Σ(P ) = a, target(P ) =

ai, bounce(P ) = aj . An objective P is trivial if target(P ) = bounce(P ).

We extend the notion of state by the notion of context (Def. 4). A context references

the set of processes per sort that can serve as initial state.

Definition 4 (Context ς (Ctx)). A context ς associates with each sort in Σ a non-

empty subset of its processes: ∀a ∈ Σ, ς[a] ⊆ La ∧ ς[a] 6= ∅. Ctx refers to the set of

contexts.

Given a context ς, we note ai ∈ ς ⇔ ai ∈ ς[a]; ps ∈ ℘(Proc), ps ⊆ ς ⇔ ∀ai ∈ ps, ai ∈ ς.

The override of a context ς by a set of processes ps is noted ς ⋓ ps (Def. 5). For instance,

〈a1, a2, b1, c1〉 ⋓ {a3, b2, b3} = 〈a3, b2, b3, c1〉.

Definition 5 (⋓ : Ctx×℘(Proc) 7→ Ctx). Given a context ς ∈ Ctx and ps ∈ ℘(Proc),

the override of ς by ps is noted ς ⋓ ps and is defined as

∀a ∈ Σ, (ς ⋓ ps)[a] =

{
{p ∈ ps | Σ(p) = a} if ∃p ∈ ps,Σ(p) = a,

ς[a] otherwise.

A scenario δ ∈ Sce is playable in the context ς if and only if support(δ) ⊆ ς. The play of

δ in ς is denoted by ς · δ where ς · δ = ς ⋓ end(δ).

3.2. Abstraction of Scenarios into Objective Sequences

During the execution of a scenario, processes of different sorts bounce one after the other,

following the play of the actions. An abstraction of such an execution is a succession of

objectives: the process aj is reached (after a certain number of actions) from ai, then the

process bj is reached from bi, etc. This forms an objective sequence (Def. 6). The append

of an objective to an objective sequence is specified in Def. 7.

Definition 6 (Objective Sequence (OS)). An Objective Sequence is a sequence ω =

P1 :: . . . ::P|ω|, where ∀n ∈ Iω, ωn ∈ Obj and ai = target(ωn)⇒ lasta(ω1..n−1) ∈ {∅, ai}.

The set of objective sequences is referred to as OS. The definitions of lasta (Eq. (2)), fsta
(Eq. (1)), support (Eq. (3)) and end (Eq. (4)) are straightforwardly derived to objective

sequences by omitting the hitter case.
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Definition 7 (⊕ : OS×Obj 7→ OS). The join between an objective sequence ω ∈ OS

and an objective ai �
∗aj ∈ Obj is defined as:

ω ⊕ ai �
∗aj =

{
ω ::ai �

∗aj if a /∈ Σ(ω),

ω :: lasta(ω)�
∗aj otherwise.

A scenario can be abstracted by several objective sequences, describing process changes

more or less sparsely. For instance, the scenario a0→c0 �c1 :: b1→a0 �a1 ::a1→b1 �b0 ::

b0→d0 �d1 ::d1→b0 �b2 can be abstracted to c0 �∗ c1 ::a0 �∗a1 ::b1 �∗ b0 ::d0 �∗ d1 ::b0 �∗

b2; or, more sparsely, to a0 �∗ a1 ::b1 �∗b2; or to b1 �∗ b2 ; etc. (bolded processes are the

ones kept in the succeeding abstraction).

The set of scenarios concretizing an objective sequence ω in a context ς is given by

γς(ω) (Def. 8). We also define the concretization of a set of objective sequences as the

union of their concretizations (Def. 9).

Definition 8 (γς : OS 7→ ℘(Sce)). Given ω ∈ OS, γς(ω) is the set of scenarios concret-

izing ω in the context ς:

γς(ω) = {δ ∈ Sce |(ω△ = ε ∧ δ = ε) ∨ ω△ 6= ε ∧ support(δ) ⊆ ς

∧ ∃φ : Iω 7→ Iδ, (∀n,m ∈ Iω, n < m⇔ φ(n) ≤ φ(m))

∧ ∀n ∈ Iω, bounce(ωn) ∈ ς · δ1..φ(n)} ,

where ω△ refers to the objective sequence ω where trivial objectives have been removed.

Definition 9 (γς : ℘(OS) 7→ ℘(Sce)). γς(Ω) = {δ ∈ γς(ω) | ω ∈ Ω} .

It is worth noticing that the concretization of an objective sequence ω does not depend

on its support support(ω) as it is imposed by the context. In that way, we use ⋆�∗ai to

denote an objective where the target can be any process of sort a present in the context:

γς(⋆�
∗ai) = γς(aj �

∗ai), ∀aj ∈ ς[a] . (5)

We finally refer to ας as the reverse operation of concretization of a set of scenarios

(Def. 10). This straightforwardly provides the Galois connection in Property 1.

Definition 10 (ας : ℘(Sce) 7→ ℘(OS)).

ας(∆) = {ω ∈ OS | ∃δ ∈ ∆, δ ∈ γς(ω)} .

Property 1. (℘(Sce),⊆) −−−→←−−−
ας

γς

(℘(OS),⊆) is a Galois connection.

Proof. ∀∆ ∈ ℘(Sce),Ω ∈ ℘(OS), ας(∆) ⊆ Ω⇔ ∆ ⊆ γς(Ω) .

3.3. Abstraction of Scenarios into Bounce Sequences

Bounce sequences result from a local reasoning on a single sort a. Bouncing from ai
to aj (i.e., resolving the objective ai �∗ aj) may require the play of several actions on

processes of sort a, forming a bounce sequence (Def. 11). Remark that bounce sequences
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are generally not scenarios: e.g., bi→ai �aj :: bj→aj �ak is a bounce sequence but not a

scenario if bi 6= bj .

Definition 11 (Bounce Sequence (BS)). A bounce sequence ζ is a sequence of actions

such that ∀n ∈ Iζ , n < |ζ|, bounce(ζn) = target(ζn+1). BS denotes the set of bounce

sequences. We refer to the set of bounce sequences resolving the objective P as BS(P ):

BS(ai �
∗aj) = {ζ ∈ BS | target(ζ1) = ai ∧ bounce(ζ|ζ|) = aj} .

Obviously, BS(ai �
∗ai) = {ε}; and BS(ai �

∗aj) = ∅ if there is no possibility to reach aj
from ai.

In a bounce sequence ζ, target and bounces of all actions share the same sort Σ(ζ). In

the scope of this paper, we do not consider bounce sequences that contain cycles between

targets and bounces of actions. In that way, the maximum length of a bounce sequence

for a sort a is the number of processes of sort a.

The full set of bounce sequences can be computed directly from the set of actions H

of the Process Hitting without any enumeration of scenarios. Given an objective ai �
∗ aj ,

the computation of bounce sequences BS(ai �∗ aj) (Def. 11) works by a depth-first

research between actions on the sort a to form a bounce sequence without cycle. Such a

computation is exponential in the number of actions on the sort a, and is then efficient

when this number is small in front of the total number of actions.

We also consider a sparse representation of a bounce sequence ζ resolving an objective

P by considering the set of hitters of its actions that have a different sort than that of

P . We denote by BS∧(P ) the set of such abstracted bounce sequences (Def. 12).

Definition 12 (BS∧ : Obj 7→ ℘(Proc)).

BS∧(P ) = {ζ∧ | ζ ∈ BS(P ), ∄ζ ′ ∈ BS(P ), ζ ′∧ ( ζ∧} ,

where ζ∧ = {hitter(ζn) | n ∈ Iζ ∧ Σ(hitter(ζn)) 6= Σ(P )}.

It is worth noticing that BS∧(P ) can be computed directly from the Process Hitting in

the same manner as BS(P ), but yet more efficiently since only minimal sets of hitters

are kept, pruning redundant explorations.

The relations of abstractions and concretizations between scenarios and (abstracted)

bounce sequences can be derived easily, and are not detailed here.

Looking at the Process Hitting example in Fig. 1, ζ = a1→ b1 � b0 :: d1→ b0 � b2 is

the only bounce sequence resolving the objective b1 �∗ b2 (i.e. BS(b1 �∗ b2) = {ζ}, and

BS∧(b1 �∗ b2) = {{a1, d1}}).

3.4. Objective Sequence Refinements

Before introducing objective sequence refinements operators, we define the relation 4OS

between two objective sequences (Def. 13). Basically, if ω 4OS ω′, we say ω is a more

precise abstraction than ω′, hence γς(ω) ⊆ γς(ω
′) (Property 2). In such a setting, an

objective sequence joined to an objective is a more precise abstraction than the objective

alone (Property 3).
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Definition 13 (4OS⊂ OS×OS). ω 4OS ω′ if and only if the following properties are

satisfied:

— |ω| ≥ |ω′|;

— there exists a mapping φ : Iω
′

7→ Iω such that ∀n ∈ Iω
′

, bounce(ω′
n) = bounce(ωφ(n))

and ∀n,m ∈ Iω
′

, n < m⇔ φ(n) < φ(m).

Property 2. ω 4OS ω′ =⇒ γς(ω) ⊆ γς(ω
′) .

Property 3. Given ω ∈ OS and P ∈ Obj, ω ⊕ P 4OS P .

Finally, given an objective P , BSς(P ) (Def. 14) and BS∧
ς (P ) (Def. 15) generalise

BS(P ) and BS∧(P ) to the scope of the context ς, respectively.

Definition 14 (BSς : Obj 7→ ℘(BS)).

BSς(⋆�
∗aj) =

⋃
ai∈ς[a] BS(ai �

∗aj) .

Definition 15 (BS∧
ς : Obj 7→ ℘(℘(Proc))).

BS∧
ς (⋆�

∗aj) =
⋃

ai∈ς[a] BS∧(ai �
∗aj) .

3.4.1. Objective refinement by BS (ρ). We build the function β such that, given an

objective sequence P , a bounce sequence ζ ∈ BS(P ) is abstracted by β(ζ) to the ob-

jective sequence describing the successive reachability of its hitters (Def. 16). From BSς

definition, if a scenario concretizes P in context ς, it necessarily concretizes one bounce

sequence ζ ∈ BSς(P ), thus β(ζ). The refinement operator ρ(P,BSς(P )) extends P to

the set of objective sequences where P is prefixed by each β(ζ), ζ ∈ BSς(P ) (Def. 17).

Finally, Lemma 1 states the correctness of this refinement, ensuring the preservation of

the concretization set.

Definition 16 (β : BS 7→ ℘(OS)).

β(ζ) = {ω ∈ OS | |ω| = |ζ| ∧ ∀n ∈ Iζ , bounce(ωn) = hitter(ζn)} .

Definition 17 (ρ : Obj× ℘(BS) 7→ ℘(OS)).

ρ(P, zs) = {ω ⊕ P | ω ∈ β(ζ), ζ ∈ zs} .

Lemma 1. γς(P ) = γς(ρ(P,BSς(P ))) .

Proof. (⊇) ∀ω ∈ ρ(P,BSς(P )), ω 4OS P , therefore γς(P ) ⊇ γς(ρ(P,BSς(P )));

(⊆) By definition of BSς(P ), ∀δ ∈ γς(P ), ∃ω ∈ ρ(P,BSς(P )), δ ∈ γς(ω), thus γς(P ) ⊆

γς(ρ(P,BSς(P ))).

3.4.2. Objective refinement by BS∧ (ρ∧). The refinement of an objective P by BS∧ is

done in a similar way. A set of hitters ps ∈ BS∧(P ) is abstracted by β∧(ps) into the set of

objective sequences describing any ordering of reach of these hitters. The relation between

objective sequences in β(ζ) and in β∧(ps) is emphased in Property 4. The refinement

ρ∧(P,BS∧
ς (P )) is presented in Def. 19 and the preservation of concretizations is stated

in Lemma 2.
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Definition 18 (β∧ : ℘(Proc) 7→ ℘(OS)).

β∧(ps) = {ω ∈ OS | |ω| = |ps| ∧ ∀p ∈ ps, ∃n ∈ Iω, bounce(ωn) = p} .

Property 4. ∀ζ ∈ BS(P ), ∀ω ∈ β(ζ), ∃ω′ ∈ β∧(ζ∧), ω 4OS ω′.

Definition 19 (ρ∧ : Obj× ℘(℘(Proc)) 7→ ℘(OS)).

ρ∧(P, pss) = {ω ⊕ P | ω ∈ β∧(ps), ps ∈ pss} .

Lemma 2. γς(P ) = γς(ρ
∧(P,BS∧

ς (P ))) .

Proof. (⊇) ∀ω ∈ ρ∧(P,BS∧
ς (P )), ω 4OS P ; (⊆) by Property 4, ∀ω ∈ ρ(P,BSς(P )),

∃ω′ ∈ ρ∧(P,BS∧
ς (P )), ω 4OS ω′, thus γς(ρ(P,BSς(P )) ⊆ γς(ρ

∧(P,BS∧
ς (P )).

3.4.3. Objective sequence refinements (ρ̃). Finally, to generalize the refinements defined

on objective to objective sequence, we exhibit an objective sequence refinement operator

that uses any of the above refinements. We took the operator ρ as an example and define

the refinement ρ̃(ω,BS) (Def. 21). Basically, this refinement chooses any objective ωn of

the objective sequence, refines it using ρ, and returns all the interleaving of the obtained

refined sequences with the objective sequence ω1..n−1 (Def. 20); the concretization set is

then preserved (Lemma 3).

Definition 20 (interleave : OS×OS 7→ ℘(OS)).

interleave(ω1, ω2) = {ω ∈ OS ||ω| = |ω1|+ |ω2| ∧ ∃φ1 : Iω
1

7→ Iω, φ2 : Iω
2

7→ Iω,

(∀n,m ∈ Iω
1

, n < m⇔ φ1(n) < φ1(m))

∧(∀n,m ∈ Iω
2

, n < m⇔ φ2(n) < φ2(m))

∧(∄n1 ∈ Iω
1

, n2 ∈ Iω
2

, φ1(n1) = φ2(n2))} .

Definition 21 (ρ̃ : OS× ℘(BS) 7→ ℘(OS)).

ρ̃(ω,BS) = {̟ ⊕ ωn..|ω| |n ∈ Iω, ω′ ⊕ ωn ∈ ρ(ωn,BSς(ωn)),

̟ ∈ interleave(ω1..n−1, ω
′)} .

Lemma 3. γς(ω) = γς(ρ̃(ω,BS)) .

Proof. (⊇) ∀ω′ ∈ ρ̃(ω,BS), ω′ 4OS ω;

(⊆) by Lemma 1 and Def. 20, δ ∈ γς(ω)⇒ ∃ω
′ ∈ ρ̃(ω,BS), δ ∈ γς(ω

′).

4. Over- and Under-approximations of Process Reachability

We define the Process Reachability problem as deciding if a given objective sequence

ω ∈ OS is concretizable for a given Process Hitting in a context ς; i.e. if the set γς(ω) is

not empty. The process reachability problem can also be formulated in a subclass of the

CTL (Clarke and Emerson, 1981), restricted to the following form:

Φ ::= ai | ai ∧ ϕ ϕ ::= EF Φ ,
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where ai ∈ Proc is true if the current state contains the process ai and EF stands for

the usual exists finally predicate. Given an objective sequence ω, one can encode it into

CTL using the following recursive definition of [| · |]:

[|aj �
∗ ai ::ε|] = EF ai [|aj �

∗ ai ::ω|] = EF (ai ∧ [|ω|]) if ω 6= ε .

Based upon the refinements operators defined in the previous section, we establish

several necessary or sufficient conditions for the concretizability of an objective sequence

in a given context ς. These objective sequences can be either given by a user (to check

some temporal properties), or extracted from BS (with β, Def. 16) to refine this set of

bounce sequences. Indeed, if a bounce sequence is not concretizable in ς, it can be ignored

in all analyses in the scope of this context.

These approximations aim at being very fast to compute, overcoming the state space

explosion problem inherent to such a kind of dynamics analysis. While inconclusive in

some cases, the application section (Sect. 5) shows the very good suitability of our ana-

lyses to biological regulatory networks dynamics with a very promising scalability.

The remainder of this section is structured as follows. Subsect. 4.1 presents a first over-

approximation based on an un-ordered analysis of objectives required to concretize the

given objective sequence; Subsect. 4.2 refines this former approximation by exploiting the

sequentiality of objectives to concretize; then Subsect. 4.3 uses order constraints between

process occurrences to complete these over-approximations. Finally, Subsect. 4.4 sets up

an under-approximation of the process reachability decision.

4.1. Un-ordered Over-approximation

Given a context ς and an objective sequence ω, we obtain that ω is concretizable only

if each objective ωn, n ∈ Iω, is independently concretizable in the same context (Pro-

position 1). In this way, one can approximate the concretizability of a bounce sequence

by recursively applying Proposition 1 to extract objectives from the given objective se-

quence, and use the refinement operator ρ∧ to extend the objective into several objective

sequences.

Proposition 1. γς(ω) 6= ∅ =⇒ ∀n ∈ Iω, γς(ωn) 6= ∅ .

Proof. By Def. 13 and Property 2, ω 4OS ωi.

Given an objective P , minContς(P ) (Def. 22) is the set of re-targeted objectives Q,

with target(P ) 6= target(Q) and bounce(P ) = bounce(Q), which are always derived from

a recursive application of ρ∧(P,BS∧(P )) with Proposition 1 (Lemma 4). The recursive

procedure to check necessary conditions for the concretizability of an objective is then

summarised by Proposition 2. If P is concretizable, then there is an execution of this

procedure without cycle, and all tested objectives have at least one solution (Theorem 1).
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Definition 22 (minContς : Obj 7→ ℘(Obj)).

minContς(⋆�
∗aj) = {ak �

∗aj | ak 6= aj ∧ ∀ai ∈ ς[a], ak ∈ minContObj
ς (a, ai �

∗aj)}

minContObj
ς : Σ×Obj 7→ ℘(Proc)

minContObj
ς (a, P ) = ∅ if BS∧(P ) = ∅, otherwise,

minContObj
ς (a, P ) = {p ∈ Proc | ∀ps ∈ BS∧(P ), ∃q ∈ ps, p ∈ minContProc

ς (a, q)}

minContProc
ς : Σ×Proc 7→ ℘(Proc)

minContProc
ς (a, bi) =





{bi} if a = b,

{p ∈ Proc | ∀bj ∈ ς[b],

p ∈ minContObj
ς (a, bj �

∗bi)} otherwise.

Lemma 4. ak �
∗aj ∈ minContς(⋆�

∗aj) =⇒ γς(⋆�
∗aj) = γς(⋆�

∗ak ::ak �
∗aj) .

Proof. By induction on minContς , ak occurs in all recursive refinements of ⋆�∗aj by

ρ∧.

Proposition 2. γς(P ) 6= ∅ =⇒ ∃ps ∈ BS∧
ς (P ), ∀p ∈ ps, γς(⋆�

∗p) 6= ∅, and ∀Q ∈

minContς(P ), γς(Q) 6= ∅, with BS∧
ς (⋆�

∗aj) = {ps ∈ BS∧(ai �
∗aj) | ai ∈ ς[a]}.

Proof. By Lemma 2, Lemma 4 and Proposition 1.

Theorem 1 (Un-ordered over-approximation). γς(ω) 6= ∅ =⇒ ∀n ∈ Iω, there

exists a finite recursive application of Proposition 2 to γς(ωn) 6= ∅ such that for all tested

objective P , BS∧
ς (P ) 6= ∅.

Proof. By induction, if γς(P ) 6= ∅ requires γς(P
′) 6= ∅, P ′ 6= P , and if γς(P

′) 6= ∅

requires again γς(P ) 6= ∅, then γς(P ) = ∅; therefore, by Proposition 1, there exists a

finite recursion of Proposition 2 application on γς(ωn) 6= ∅, ∀n ∈ Iω. Finally, Proposition 2

implies the non-emptyness of BS∧
ς (P ) for each tested objective P .

Implementation. Given a context ς and an objective sequence ω, we define an abstract

structure Aω
ς (Def. 23) which mimics the relations between objectives during the ex-

ecution of Proposition 2 (Lemma 5). Aω
ς gathers three relations (Reqως , Sol

ω
ς ,Cont

ω
ς ),

respectively the requirements, solutions, and minimal continuity (or re-targeting).

Definition 23 (Aω
ς ). Given a context ς and an objective sequence ω, we define the

abstract structure Aω
ς = (Reqως , Sol

ω
ς ,Cont

ω
ς ), where Reqως , Sol

ω
ς and Contως are defined

as follows:

Reqως ={(ai, aj �
∗ai) ∈ Proc×Obj | aj ∈ ς[a] ∧ (∃(P, ps) ∈ Solως , ai ∈ ps

∨ ∃n ∈ Iω, bounce(ω) = ai)}

Solως ={(P, ps) ∈ Obj× ℘(Proc) | ∃(ai, P ) ∈ Reqως ∧ ps ∈ BS∧(P )}

Contως ={(P,Q) ∈ Obj×Obj | ∃(P, ps) ∈ Solως ∧Q ∈ minContς(p)} .

Lemma 5. Given an objective P referenced in Aω
ς ,
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— ω′ ⊕ P ∈ ρ∧(P,BS∧(P )) ⇐⇒ (P, {bounce(ω′
n) | n ∈ Iω

′

}) ∈ Solως ∧ ∀n ∈ Iω
′

, aj =

bounce(ω′
n), ∀ai ∈ ς[a], (aj , ai �

∗aj) ∈ Reqως ;

— Q ∈ minContς(P )⇐⇒ (P,Q) ∈ Contως .

Proof. By construction of Aω
ς .

Aω
ς has a graph structure, with cycles, potentially. We remark that, as |Obj| =∑

a∈Σ |La|
2, the size of Reqως and Contως sets are polynomial in the number of processes

in the Process Hitting. The size of Solως also depends on the cardinality of BS∧ which

follows the maximum number of combinations of |La| different processes, far below an

exponential growth.

Finally, Algorithm 1 details the computation of the Theorem 1 decision.

Algorithm 1 (Un-ordered over-approximation). Given a context ς, an objective

sequence ω ∈ OS and the abstract structure Aω
ς :

1 Initialise Θ = {P ∈ Obj | (P, ∅) ∈ Solως }.

2 Repeat until fix-point:

(a) Υ = {p ∈ Proc | ∃P ∈ Θ, (p, P ) ∈ Reqως };

(b)Θ = {P ∈ Obj | ∃(P, ps) ∈ Solως , ps ⊆ Υ ∧ ∀(P,Q) ∈ Contως , Q ∈ Θ}.

3 γς(ω) 6= ∅ =⇒ ∀n ∈ Iω, ∃P ∈ Θ, target(P ) ∈ ς ∧ bounce(P ) = bounce(ωn).

Complexity. The computation ofAω
ς is done by iteratively adding the required processes

and objectives. The steps of Algorithm 1 are done polynomially in the size of Aω
ς . Putting

aside the BS∧ computation complexity, the proposed over-approximation can then be

achieved by a number of operations polynomial in the size of the abstract structure.

Examples. Fig. 3 represents graphically the abstract structure that has been extracted

from the Process Hitting example in Fig. 1 for a particular objective sequence and context.

In this case, Theorem 1 is satisfied. Fig. 4 applies Theorem 1 to the Process Hitting

example in Fig. 1 for the decision of the objective d1 �∗ d2 concretizability. In this case,

the necessary condition is not satisfied.

4.2. Ordered Over-approximation

This subsection exploits the ordering of objectives in an objective sequence to increase

the conclusiveness of the over-approximation for its concretizability.

Given an objective P which is not trivial in the given context ς, we denote by ends(P )

the set of processes a scenario concretizing P may lead to (Def. 24, Proposition 3). This

set is computed from BS(P ) by taking the hitter and bounce of the last action in each

bounce sequence.

Definition 24 (endsς : Obj 7→ ℘(℘(Proc))).

endsς(⋆�
∗ai) = {end(h) |∃aj ∈ ς[a], ∃ζ ∈ BS(aj �

∗ai), ζ 6= ε ∧ h = ζ|ζ|} .

Proposition 3. γς(⋆�
∗ai) 6= ∅ ∧ ai /∈ ς[a] =⇒ ∃δ ∈ γς(⋆�

∗ai), ∃eps ∈ endsς(⋆�
∗ai) such

that eps ⊆ end(δ) .
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d0 �∗ d2

b1 b0

b1 �∗ b1

b2 �
∗b1
⊥

b1 �∗ b0

a1

a1 �
∗a1

b2 �
∗b0
⊥

b2

b1 �
∗b2

d1

d0 �
∗d1

b2 �
∗b2

b0 �∗ b2

d2

Legend

Requirement

aj ai �
∗ aj

Solution

({bi, cj} ∈ BS∧(ai �
∗ aj))

ai �
∗ aj

bi

cj

Continuity

ai �
∗ aj ak �∗ aj

Trivial solution

ai �
∗ aj

No solution

ai �
∗ aj

⊥

Figure 3. Graphical representation of the abstract structure Aω
ς extracted from

the Process Hitting in Fig. 1, with ω = d0 �
∗d2 and ς = 〈a1, b1, b2, d0〉.

d1 �∗ d2

d2
b2 b0 �∗ b2 d1 d1 �∗ d1

b1 b0 �∗ b1 c1 c0 �∗ c1 a0 a1 �∗ a0⊥

Figure 4. Abstract structure Aω
ς for the Process Hitting example in Fig. 1 with

ω = d1 �
∗d2 and ς = 〈a1, b0, c0, d1〉. By Theorem 1, the objective d1 �

∗d2 is not

concretizable.
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Proof. As ai /∈ ς[a], there exists n ∈ Iδ such that bounce(δn) = ai; hence δ1..n ∈

γς(⋆�
∗ai) and end(δn) ⊆ end(δ1..n). By Def. 24, end(δn) ∈ endsς(⋆�

∗ai).

Given an abstract structure Aω
ς ∈ A, procs(Aω

ς ) is the set of processes referenced in

Aω
ς (Def. 25) from which derives Proposition 4. We then define maxprocsς(ω) (Def. 26)

as the set of processes present in the abstract structure having its context saturated (i.e.,

such that ς ⋓ procs(Aω
ς ) = ς). Note a particular optimisation when ω = P , in which case

the process bounce(P ) can be ignored by the context.

Definition 25 (procs : A 7→ ℘(Proc)).

procs((Solως ,Req
ω
ς ,Cont

ω
ς )) = {p ∈ Proc |∃(P, ps) ∈ Solως , p ∈ ps

∨ p = target(P )

∨ (P 6= ω ⇒ p = bounce(P ))} .

Proposition 4. For each objective Q 6= ω tested by Proposition 2 during the checking

of Theorem 1 on γς(ω), bounce(Q) ∈ procs(Aω
ς ) and ς[Σ(Q)] ⊆ procs(Aω

ς ).

Proof. By Lemma 5.

Definition 26 (maxprocsς : OS 7→ ℘(Proc)).

maxprocsς(ω) = procs(⌈Aω
ς ⌉) where ⌈Aω

ς ⌉ = lfp{Aω
ς }

(
Aω

ς 7→ A
ω
ς⋓procs(Aω

ς )

)
.

By intersecting maxprocsς(ω) and endsς(ω1), we obtain a context into which ω2..|ω|

concretizability should satisfy Theorem 1, if ω is concretizable in ς. This is stated by

Theorem 2, which gives a straightforward refinement of Theorem 1 by taking the sequen-

tiality of objectives in ω into account.

Theorem 2 (Ordered over-approximation). Given a context ς and ω = P ::ω′ ∈ OS

such that bounce(P ) /∈ ς, γς(P ::ω′) 6= ∅ =⇒ Theorem 1 is satisfied with γmaxς(ω
′) 6= ∅,

where maxς = ς ⋓maxprocsς(ω) ⋓ eps and eps ∈ endsς(P ).

Proof. δ ∈ γς(P ::ω′) ⇒ ∃n ∈ Iδ such that bounce(δn) = bounce(P ), eps ⊆ end(δ1..n),

and δn+1..|δ| ∈ γς′(ω
′) with ς ′ = support(δ). Therefore, Theorem 1 is satisfied with

γς′(ω
′) 6= ∅. Let Q be an objective tested by Proposition 2 when checking Theorem 1

satisfaction with γmaxς(ω
′) 6= ∅. By Proposition 2, target(Q) ∈ maxς. If target(Q) ∈

eps then target(Q) ∈ ς ′, thus by hypothesis, Proposition 2 is satisfied. In the case of

target(Q) /∈ eps, by Def. 26 and Proposition 4, bounce(Q) ∈ maxprocsς(ω), thus Pro-

position 2 holds.

By defining maxCtx(ς, ω, n) as the maximum context after the resolution of ω1..n

(Def. 27), the above theorem can be straightforwardly extended to Corollary 1.

Definition 27 (maxCtx : Ctx×OS× N 7→ Ctx). (we assume n ∈ {0} ∪ In):

maxCtx(ς, ω, n) =





ς if n = 0,

ς ⋓maxprocsς(ω) if bounce(ωn) ∈ maxCtx(ς, ω, n− 1)

ς ⋓maxprocsς(ω) ⋓ eps otherwise, where eps ∈ endsς(ωn)
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∗a0
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∗a0
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b0 �
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b1

b1 �
∗b1

b0 �
∗b1

a1

a0 �
∗a1

a1 �
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Figure 5. (right) Saturated abstract structure ⌈Aω
ς ⌉ of the (left) Process Hitting

with ς = 〈a1, b0〉 and ω = a1 �∗ a0 ::b0 �∗ b1. Theorem 2 concludes this objective

sequence is not concretizable.

Corollary 1. γς(ω) 6= ∅ =⇒ ∀n ∈ Iω, γmaxς(ωn) 6= ∅, with maxς = maxCtx(ς, ω, n− 1).

Implementation. The computation of maxprocsς(ω) requires at most |Proc| iterations,

giving a number of steps polynomial in the number of processes. Regarding the compu-

tation of endsς(⋆�
∗ai), it can either be derived from prior BS(⋆�∗ai) computations; or,

if BS are too costly to compute, it can be approximated by either {{bounce(P )}}, or by

{end(h) | h ∈ H ∧ bounce(h) = ai ∧ ∃aj ∈ ς[a], ∃ps ∈ BS∧(aj �
∗ai), target(h) ∈ ps}.

Example. Given the Process Hitting defined in Fig. 5, with ς = 〈a1, b0〉, Theorem 1 is

inconclusive on the concretizability of ω = a1 �
∗a0 :: b0 �

∗b1. By applying Theorem 2, it

appears that b0 �
∗b1 is not concretizable in maxς = maxCtx(ς, ω, 1) = 〈a0, b0〉 (in such a

case, the Ab0�
∗b1

maxς forms a unique cycle between b1 and a1).

4.3. Over-approximation using Process Occurrences Order Constraints

An objective ai �
∗ aj having no solution (BS∧(ai �

∗aj) = ∅) informs that the process aj
never occurs after ai. This order constraints between process occurrences is referred to

as aj ⊳ ai (Def. 28, Property 5).

Definition 28 (⊳). The binary relation ⊳⊂ Proc×Proc is a partial pre-order such that

aj ⊳ ai (i.e., (aj , ai) ∈⊳) if and only if there exists no scenario where aj occurs after ai:

aj ⊳ ai ⇐⇒ ∄δ ∈ Sce such that ∃n,m ∈ Iδ, n ≤ m, target(δn) = ai ∧ bounce(δm) = aj .

Property 5 (Order constraint uncovering). BS(ai �
∗ aj) = ∅ =⇒ aj ⊳ ai .

Knowing some order constraints on process occurrences, we want to check if some

sequence of objectives doesn’t contradict such constraints. This can be achieved by com-

puting the processes that always occur when resolving an objective: given an objective

sequence ω, if a process ai is required by ωn and a process aj by ωm, n < m, then the

constraint aj ⊳ ai should not exist. This is illustrated by Fig. 6.

In a similar fashion to minContς (Def. 22), minProcς(P ) refers to the set of processes

of any sort that occur in all refinements of P in the context ς (Def. 29, Lemma 6). By
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. . . ωn

. . .

. . . ωm
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. . .

⊳?

ω|ω|

Figure 6. Illustration of the method developed in Subsect. 4.3 to

over-approximate the concretizability of an objective sequence ω in the state ς: for

each objective, the minimal set of occurring processes (represented as squares) are

computed using minProc (Def. 30); the sequence is not concretizable as soon as

two processes (in black) occurring in distinct objectives resolution contradict the

process occurrences order ⊳.

using the previously defined maxCtx (Def. 27), we define minProc(ς, ω, n) (Def. 30) the

set of processes occurring in the resolution of ωn after having resolved ω1..n−1. From this

definition, Theorem 3 states the over-approximation illustrated in Fig. 6.

Definition 29 (minProcς : Obj 7→ ℘(Proc)). Given a context ς,

minProcς(⋆�
∗ai) = {p ∈ Proc | ∀aj ∈ ς[a],

BS(aj �
∗ai) 6= ∅ ⇒ p ∈ minProcObj

ς (aj �
∗ai)}

minProcObj
ς : Obj 7→ ℘(Proc)

minProcObj
ς (aj �

∗ai) = {ai} ∪ {p ∈ Proc

| ∀ps ∈ BS∧(aj �
∗ai), ∃q ∈ ps, p ∈ minProcς(⋆�

∗q)

∨ ∃ak �
∗ai ∈ minContObj

ς (a, aj �
∗ai),

p ∈ minProcObj
ς (ai �

∗ak) ∪minProcObj
ς (ak �

∗ai)))} .

Lemma 6. ∀δ ∈ γς(P ), ∀p ∈ minProcς(P ), p ∈ δ .

Proof. By induction on minProcς , p occurs in all recursive refinements of P by ρ∧.

Definition 30 (minProc : Ctx×OS× N 7→ ℘(Proc)). (we assume n ∈ {0} ∪ Iω):

minProc(ς, ω, n) =





{ai ∈ ς} if n = 0

minProcmaxς(ωn) otherwise,

with maxς = maxCtx(ς, w, n− 1) .

Theorem 3 (Ordered over-approximation refined by ⊳). γς(ω) 6= ∅ =⇒ ∄n,m ∈
{0} ∪ Iω, n < m, ∃p ∈ minProc(ς, ω, n), ∃q ∈ minProc(ς, ω,m), q ⊳ p.

Proof. By Lemma 6, Corollary 1 and Def. 30.

Implementation. The implementation is very similar to the one presented in Subsect. 4.2.

The uncovering of ⊳ is done linearly in the size of the saturated abstract structure ⌈Aω
ς ⌉.
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Figure 7. (bottom) Saturated abstract structure ⌈Aω
ς ⌉ of the (top) Process

Hitting with ς = 〈a1, b1, z1〉 and ω = z1 �∗ z2 ::z2 �∗ z1 ::z1 �∗ z2. Theorem 3

concludes this objective sequence is not concretizable.

Example. Let us define the Process Hitting as in Fig. 7, and its saturated abstract struc-

ture ⌈Aω
ς ⌉, with ς = 〈a1, b1, z1〉 and ω = z1 �∗ z2 :: z2 �∗ z1 :: z1 �∗ z2, for which the con-

cretizability has to be decided. The evaluation of minCont(ς, ω, n) and maxCtx(ς, ω, n)

give the following:
n = 0− ς n = 1− z1 �∗ z2 n = 2− z2 �∗ z1 n = 3− z1 �∗ z2

minProc(ς, ω, n) a1, b1, z1 a0, a1, b0, z0, z2 b1, z1 a0,a1, b0, z0, z2

maxCont(ς, ω, n) a1, b1, z1 a0, a1, b0, z2 a0, a1, b1, z1 -

As a1 ⊳ a0, ω is not concretizable in ς.

4.4. Under-approximation

The under-approximation procedure presented in this subsection takes advantage of a

variant of the abstract structure used in the above over-approximations. If certain condi-

tions on this abstract structure are verified, then it is shown that a scenario concretizing
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the given objective sequence exists. The proposed construction of the scenario is made

by a so-called top-down resolution: given an objective sequence ω, we first build the

scenario concretizing ω1 by preempting the resolution of the objective sequence ω2..|ω|

(and hence, ignoring any objective interleaving that may be required to concretize ω).

As stated by the refinement operators in Subsect. 3.4, the concretization of ω1 involves

the concretization of a refinement of ω1, resulting in a recursive procedure of scenario

construction.

We first define an alternative definition of the set of scenarios concretizing an objective

sequence ω in a context ς: ℓς(ω) is empty unless, for each state s ∈ L included in ς, there

exists a scenario δ ∈ γς(ω) such that δ is playable in s; in that case, ℓς(ω) = γς(ω)

(Def. 31). Property 6 is directly derived from this definition and the extension of ℓς to a

set of objective sequence is given in Def. 32.

Definition 31 (ℓς : OS 7→ ℘(Sce)).

ℓς(ω) =

{
γς(ω) if ∀s ∈ L, s ⊆ ς, ∃δ ∈ γς(ω), support(δ) ⊆ s

∅ otherwise.

Property 6. ς ′ ⊆ ς ∧ ℓς(ω) 6= ∅ =⇒ ℓς′(ω) 6= ∅ .

Definition 32 (ℓς : ℘(OS) 7→ ℘(Sce)). ℓς(Ω) = {δ ∈ ℓς(ω) | ω ∈ Ω}

Given an objective P , maxContς(Σ(P ), P ) (Def. 33) is the set of processes of sort Σ(P )

that may be encountered during the resolution of P . We then define the saturated abstract

structure ⌈Bως ⌉ = (⌈Reqως ⌉, ⌈Sol
ω
ς ⌉, ⌈Cont

ω
ς ⌉) (Def. 34) similarly to ⌈Aω

ς ⌉ (Def. 23), except

that ⌈Solως ⌉ can arbitrarily selects bounce sequences to resolve an objective, and that

⌈Contως ⌉ reflects maxContς instead of minContς . It appears that if ⌈B
ω
ς ⌉ contains no cycle,

and if all referenced objectives have at least one solution, then a top-down resolution of

any referenced objective succeeds in every state of ς. This is stated by Theorem 4, which

provides sufficient conditions for the concretization of an objective sequence in a given

context.

Definition 33 (maxContς : Σ×Obj 7→ ℘(Proc)).

maxContς(a, P ) = {p ∈ Proc |∃ps ∈ BS∧(P ), ∃bi ∈ ps, b = a ∧ p = bi

∨ b 6= a ∧ p ∈ maxContς(a, bj �
∗bi) ∧ bj ∈ ς[b])} .

Definition 34 (⌈Bως ⌉). The abstract structure ⌈Bως ⌉ = (⌈Reqως ⌉, ⌈Sol
ω
ς ⌉, ⌈Cont

ω
ς ⌉) is

defined as ⌈Bως ⌉ = lfp{Bως }
(
Bως 7→ B

ω
ς⋓procs(Bω

ς )

)
, with Bως = (Reqως , Sol

ω
ς ,Cont

ω
ς ):

Reqως ={(ai, aj �
∗ai) ∈ Proc×Obj | aj ∈ ς[a] ∧ (∃(P, ps) ∈ Solως , ai ∈ ps

∨ ∃n ∈ Iω, bounce(ω) = ai}

Solως ⊆{(P, ps) ∈ Obj× ℘(Proc) | ∃(ai, P ) ∈ Reqως ∧ ps ∈ BS∧(P )}

Contως ={(P, q�∗bounce(P )) ∈ Obj×Obj | ∃(P, ps) ∈ Solως

∧ q ∈ maxContς(Σ(P ), P )} .
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Theorem 4 (Under-approximation). If the graph ⌈Bως ⌉ has no cycle and all refer-

enced objectives have at least one solution, then ℓς(ω) 6= ∅.

Proof. We denote by maxς = ς ⋓procs(⌈Bως ⌉) the context handled by ⌈Bως ⌉. By induc-

tion on the acyclic graph ⌈Bως ⌉, we prove that ∀s ∈ L, s ⊆ maxς, for each objective P

referenced in ⌈Bως ⌉ such that targetP ∈ s, ∃δ ∈ ℓs(ω) and end(δ) ⊆ maxς.

— (P, ∅) ∈ ⌈Solως ⌉ ⇒ either target(P ) = bounce(P ) (thus δ = ε), or ∀ζ ∈ BS(P ), ζ ∈

Sce ∧ Σ(ζ) = {Σ(P )}, thus δ = ζ.

— we assume all objectives children of P concretizables (no cycles). If ∃Q ∈ ⌈Contως ⌉,

then by hypothesis, ℓs(target(P )�∗target(Q) ::Q) 6= ∅, thus ℓs(P ) 6= ∅. Otherwise, by

Def. 33, concretizations of children of P do not require any process of sort Σ(P ). Also,

there exists ζ ∈ BS(P ) such that (P, ζ∧) ∈ ⌈Solως ⌉. By hypothesis, ∀n ∈ Iζ , ∃δn ∈
ℓsn−1(⋆�∗hitter(ζn)) with either sn−1 = s if n = 1, or sn−1 = s · δ1 · . . . · δn−1;

and Σ(P ) /∈ Σ(δn) (by Def. 33). Therefore, δ = δ1 :: ζ1 :: . . . δn :: ζn ∈ ℓs(P ) and

end(δ) ⊆ maxς.

Finally, as ℓmaxς(ω) 6= ∅, ℓς(ω) 6= ∅ (Property 6).

From the proof of the above theorem, we define endProc(⌈Bως ⌉, P ) (Def. 35) as the

maximum set of processes a scenario built by Theorem 4 may end to (Corollary 2). This

allows a straightforward extension of Theorem 4 to take the sequentiality of objectives

into account (Corollary 3).

Definition 35 (endProc : B×Obj 7→ ℘(Proc)).

endProc(⌈Bως ⌉, P ) = {p ∈ Proc | Σ(p) = Σ(P )⇒ p = bounce(P )

∧ (∃(P,Q) ∈ ⌈Contως ⌉, p ∈ endProc(⌈Bως ⌉, target(P )�∗target(Q))

∨ p ∈ endProc(⌈Bως ⌉, Q)

∨ ∃(P, ps) ∈ ⌈Solως ⌉, ∃bi ∈ ps, ∃bj ∈ ς[b], p ∈ endProc(⌈Bως ⌉, bj �
∗bi))}

Corollary 2. Given P ∈ Obj, if Theorem 4 is satisfied with ℓς(P ) 6= ∅, then ∀s ∈ L, s ⊂

ς, ∃δ ∈ ℓς(P ) such that end(δ) ⊆ endProc(BPς , P ).

Corollary 3. Given P ∈ Obj, and ω ∈ OS, if Theorem 4 is satisfied with ℓς(P ) 6= ∅, and

if Theorem 4 is satisfied with ℓς′(ω) 6= ∅, where ς
′ = ς ⋓endProc(BPς , P ), then Theorem 4

is satisfied with ℓς(P ⊕ ω) 6= ∅.

Implementation. The computation of the saturated abstract structure ⌈Bως ⌉ works by

progressive addition of relations between objectives and processes, found by several tra-

versing of the abstract structure, giving a maximal complexity polynomial in the size of

the abstract structure. Checking for Theorem 4 conditions is done linearly in the size of

the obtained abstract structure. It is worth noticing that arbitrarily selecting solutions

for objectives in ⌈Bως ⌉ prevents spurious saturations and may increase the satisfaction

of the above theorem, but potentially increases the complexity of checking (as several

combinations of solutions can be tested).
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d0 �∗ d2

d2
b0 b1 �∗ b0 a1 a1 �∗ a1

b0 �∗ b0

b1 b1 �∗ b1

b0 �∗ b1 c1 c1 �∗ c1

d0 �∗ d2

d2
b0 b1 �∗ b0 a1 a0 �∗ a1

b1 b1 �∗ b1

b0 �∗ b1 c1 c0 �∗ c1 a0 a0 �∗ a0

b0 �
∗b0 a1 �

∗a1

c1 �
∗c1 a1 �∗ a0⊥

Figure 8. Saturated abstract structure ⌈Bως ⌉ from the Process Hitting in Fig. 1

with ω = d0 �
∗d2 and ς = 〈a1, b1, c1, d0〉 (top), and ς = 〈a0, b1, c0, d0〉 (bottom). By

Theorem 4, ω is concretizable in 〈a1, b1, c1, d0〉. At this stage, our procedure is

inconclusive for the concretizability of ω in 〈a0, b1, c0, d0〉.

Examples. Fig. 8 shows two examples of the application of Theorem 4 on the Process

Hitting example in Fig. 1.

Discussion. Corollary 3 suggests that testing a refined objective sequence may reveal

more conclusive than testing the original given objective sequence. A future work may

use of graph analysis of ⌈Bως ⌉ to determine which refined objective sequences are good

candidates to satisfy Theorem 4, and then increase the conclusiveness of the method.

5. Application to Biological Regulatory Networks

5.1. From Biological Regulatory Networks to Process Hittings

We first sketch the modelling of a discrete BRN in the Process Hitting framework. Basic-

ally, to each component corresponds a sort, and to each state of components corresponds

a process. If a component a at state i activates a component b at state j, an action

ai→ bj � bk is added, where bk is the state of b after activation. The inhibition is mod-

elled similarly. The realisation of boolean functions between nodes are modelled using a

dedicated sort, and is illustrated in Fig. 9. The full formalisation of this translation can

be found in (Paulevé et al., 2011).
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0
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b
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c = ¬a ∧ b
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0 1
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0 1

c

0

1

ab

0 1 2 3

Figure 9. Examples of Process Hittings (right) from BRNs, having interaction

graphs at left. (1) simple inhibition of c by a. (2) boolean function between a

(inhibitor) and b (activator) on c ab reflects the state of sorts a and b. In this case,

ab3 reflects the state 〈a0, b1〉 (and, ab0 the state 〈a1, b0〉, ab1 the state 〈a1, b1〉, ab2
the state 〈a0, b0〉).

5.2. T-Cell Receptor Signalling Pathway (94 components)

Presented in (Saez-Rodriguez, Simeoni, Lindquist, Hemenway, Bommhardt, Arndt, Haus,

Weismantel, Gilles, Klamt and Schraven, 2007), this biological system models the T-Cell

Receptor (TCR) signalling pathway, the behaviours of which reveal an activation of

transcription factors controlling the cell’s fate, e.g. whether it proliferates or not. This

model is an extension of a former presented BRN relating 40 components (Klamt, Saez-

Rodriguez, Lindquist, Simeoni and Gilles, 2006).

The Process Hitting model† of this system is composed of 1124 actions between 448

processes splitted in 133 sorts (the largest sort has 16 processes). The total number of

states of this model is 2194 (≈ 2 · 1058).

Independant reachability decisions have been experimented from all possible inputs

combinations (components CD45, CD8, TCRlig) to each output (components SRE, AP1,

CRE, NFkB, NFAT, Cyc1, p21c p27k, FKHR, BclXL). All result in conclusive decisions.

It is worth noticing that only approximations defined by Theorem 1 (Subsect. 4.1) and

† Model and implementation available at http://processhitting.wordpress.com

http://processhitting.wordpress.com
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Theorem 4 (Subsect. 4.4) have been exploited, showing quite simple dynamics for the

independant reachability of components.

Computation times are around the hundredth of a second on a 3GHz processor with

2GB of RAM. To give a comparison, we did the same experiments with a standard sym-

bolic model-checking method using state-space compression based on Hierarchical Set De-

cision Diagrams (SDDs) (Hamez et al., 2009): the libddd framework (LIP6/Move, 2007),

known for its good performances. For the majority of reachability decisions, the program

runs out of memory, for others, computation times range from some seconds to hours.

This shows the remarkable efficiency of our method, based on abstract interpretation.

6. Discussion

The Process Hitting is a recently proposed framework suitable for modelling dynamics of

BRNs with discrete values. In Process Hitting, components are represented as sorts, and

their levels as processes; at any time, one and only one process of each sort is present.

The successive states of a component within the system are enclosed in the so-called

sort. The replacement of a process by another of the same sort (i.e. level change of a

component), is conditioned by the presence of at most one other process, of any sort.

Thanks to the particular structure of Process Hittings models, a powerful static ana-

lysis by abstract interpretation has been developed to decide the successive reachability

of processes, hence of component levels in the scope of BRNs modelling. The computation

is done by over- and under-approximation of the decision, and may reveal to be incon-

clusive. It exploits two complementary abstractions of scenarios in Process Hittings (by

objective and bounce sequences). Several refinements of an objective sequence are then

defined to detail the required steps necessary to its concretizability. These refinements

are exploited to derive necessary or sufficient conditions for the process reachability sat-

isfaction. Further work may improve the conclusiveness of our method, as it is discussed

in Subsect. 4.4. Also, the link between the conclusiveness of the developed method and

the structure of the interaction graph of the BRN could be studied.

The implementation of the presented approximations use of an abstract structure that

is ensured to have a size nearly polynomial in the total number of processes. On the one

hand, the computation of the refinements can be exponential in the number of processes

within a single sort; on the other hand the computations of the decisions are polynomial

in the size of the abstract structure. Hence, it is expected efficient analyses when the

number of processes within a sort is limited, while a large amount of sorts should be

handled.

This new and original approach has been applied to the analysis of a large BRN relating

94 components. Response times are really fast (around the hundredth of a second on a

desktop computer), showing a promising scalability of our method. It has been compared

to a standard symbolic model checking techniques which regularly fails to analyse the

model, because of the state space explosion. To our knowledge, this is the first successful

application of model checking to BRNs of such a size.

Related work. There has been recent work on the fast computation the set of reachable

components within Kappa models (Danos, Feret, Fontana and Krivine, 2008) (a rule



Static Analysis by Abstract Interpretation of BRNs Dynamics 25

based language). In the general case, this set is over-approximated and such an analysis

does not permit to decide the successive reachability of processes, as it is done in this

paper. The work presented in (Alimonti, Feuerstein, Laura and Nanni, 2011), on so-called

T-Paths within Petri Nets, establishes structural properties within Petri Nets to derive

either necessary or sufficient conditions for place marking reachability. This follows a

similar approach to ours. Finally, (Pilegaard, Nielson and Nielson, 2005) applies static

analysis techniques of bioambient models to study the behaviour of biological systems.

Future work investigate other applications of the presented refinements of the ab-

straction interpretations of Process Hitting. In particular, as they extract the causality

between process changes, they point up processes required for a certain process reachab-

ility. This kind of analysis may lead to a control of the studied system by acting upon

these key processes: e.g. knockdowning a key gene to prevent a cascade of gene activation

(gene therapy).

Another research direction is the incorporation of quantitative aspects within the

presented decision of process reachability, such as the probability of reaching a given

process in a given time interval.
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