
HAL Id: hal-00574226
https://hal.science/hal-00574226

Submitted on 7 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Climbing depth-bounded adjacent discrepancy search for
solving hybrid flow shop scheduling problems with

multiprocessor tasks
Asma Lahimer, Pierre Lopez, Mohamed Haouari

To cite this version:
Asma Lahimer, Pierre Lopez, Mohamed Haouari. Climbing depth-bounded adjacent discrepancy
search for solving hybrid flow shop scheduling problems with multiprocessor tasks. International
Conference CPAIOR 2011, May 2011, Berlin, Germany. p. 117-130. �hal-00574226�

https://hal.science/hal-00574226
https://hal.archives-ouvertes.fr

Climbing Depth-bounded Adjacent Discrepancy

Search for Solving Hybrid Flow Shop Scheduling

Problems with Multiprocessor Tasks

Asma LAHIMER1, Pierre LOPEZ1, and Mohamed HAOUARI2

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077

Toulouse Cedex 4, France
asma.lahimer@laas.fr, pierre.lopez@laas.fr

2 INSAT ; Institut National des Sciences Appliquées et de Technologie
Centre Urbain Nord BP 676 - 1080 Tunis Cedex, Tunisie

mohamed.haouari@insat.rnu.tn

Abstract. This paper considers multiprocessor task scheduling in a
multistage hybrid flow-shop environment. The problem even in its sim-
plest form is NP-hard in the strong sense. The great deal of interest for
this problem, besides its theoretical complexity, is animated by needs of
various manufacturing and computing systems. We propose a new ap-
proach based on limited discrepancy search to solve the problem. Our
method is tested with reference to a proposed lower bound as well as the
best-known solutions in literature. Computational results show that the
developed approach is efficient in particular for large-size problems.

Keywords: Hybrid flow shop scheduling, Multiprocessor tasks, Discrep-
ancy search

1 Introduction

Flow shop scheduling refers to a manufacturing facility in which all jobs visit
the production machines in the same order. In hybrid flow shop scheduling, the
jobs serially traverse stages following the same production route, and must be
assigned to one of the parallel machines composing each stage. The hybrid flow
shop scheduling problem with multiprocessor tasks is itself a generalization of
the hybrid flow shop problem, allowing tasks to be processed on more than one
processor in a given stage, at a time. It can also be viewed as a specific case of
the resource-constrained project scheduling problem (RCPSP).

Many applications of hybrid scheduling problems with multiprocessor tasks
can be found in various manufacturing systems (e.g., work-force assignment in
[6], transportation problem with recirculation in [4]), as well as in some computer
systems (e.g., real-time machine-vision [8]).

Hybrid flow shop scheduling problem with multiprocessor tasks has received
considerable attention from researchers and has been solved by various ap-
proaches, e.g. genetic algorithms [14], tabu search, and ant colony system [19].

Motivated by the success of discrepancy search for solving shop scheduling prob-
lems, in particular hybrid flow shop [2], [3], we propose in this paper a new ap-
proach based on discrepancy search to solve the hybrid flow shop problem with
multiprocessor tasks.

2 Problem Definition

The hybrid flow shop scheduling problem with multiprocessor tasks can be for-
mally described as follows: A set J={1, 2, . . . , n} of n jobs, have to be processed
in m stages. Hence, a job is a sequence of m tasks (one task for each stage). Each
stage i = {1, 2, . . . ,m} consists of mi identical parallel processors. In a stage i,
the job j requires simultaneously sizeij processors. That is, sizeij processors
selected at stage j are required for processing job j for a period of time equal to
the processing time requirement of job j at stage i, namely pij . The objective is
to minimize the makespan (Cmax), that is, the completion time of all tasks in the
last stage. According to the classical 3-field notation in production scheduling,
the problem is denoted by Fm(m1,. . .,mm)|sizeij |Cmax.

3 Discrepancy Search

3.1 General Statement

Limited discrepancy search (LDS) was introduced in 1995 by Harvey and Gins-
berg [9]. This seminal method can be considered as an alternative to the branch-
and-bound procedure, backtracking techniques, and iterative sampling. From
an optimization view-point this technique is similar to variable neighbourhood
search. Indeed, it starts from an initial global instantiation suggested by a given
heuristic and successively explores branches with increasing discrepancies from
it, in order to obtain a solution (in a satisfaction context), or a solution of bet-
ter performance (in an optimization context). A discrepancy is associated with
any decision point in a search tree where the choice goes against the heuristic.
For convenience, in a tree-like representation the heuristic choices are associ-
ated with left branches while right branches are considered as discrepancies.
Since LDS proposition in 1995, several variants were suggested, among them,
Improved Limited Discrepancy Search (ILDS) [12], Depth-bounded Discrepancy
Search (DDS) [21], Discrepancy-Bounded Depth First Search [1] and Climbing
Discrepancy Search (CDS) [13].

In the following sections, we focus on those methods that inspired our ap-
proach, in particular DDS and CDS.

3.2 Depth-bounded Discrepancy Search

Depth-bounded Discrepancy Search (DDS) developed in [21], is an improved
LDS that prioritizes discrepancies at the top of the tree to correct early mistakes

first. This assumption is ensured by means of an iteratively increasing bound
on the tree depth. Discrepancies below this bound are prohibited. DDS starts
from an initial solution. At ith iteration, it explores those solutions on which
discrepancies occur at a depth not greater than i.

3.3 Climbing Discrepancy Search

Climbing Discrepancy Search (CDS) is a local search method adapted to com-
binatorial optimization problems proposed in [13]. CDS starts from an initial
solution that would be dynamically updated. Indeed, it visits branches progres-
sively until a better solution is reached. Then, the initial solution is updated and
the exploration process is restarted.

4 Proposal: Climbing Depth-bounded Adjacent

Discrepancy Search

4.1 CDADS: Main Features

To stick to the problem under consideration, we now consider an optimization
context. We propose CDADS (Climbing Depth-bounded Adjacent Discrepancy
Search) method, that is a combination of a depth-bounded discrepancy search
and a climbing discrepancy search. We also assume that, if several discrepancies
occur in the construction of a solution, these discrepancies are necessarily ad-
jacent in the list of successive decisions. CDADS starts from an initial solution
obtained by a given heuristic, and explores its neighborhood progressively, ac-
cording to the depth-bounded discrepancy search strategy. Hence, a limit depth
d is fixed. Discrepancies below this bound are prohibited. At the ith iteration,
we allow i discrepancies above the limit level d.

When considering solutions with more than one discrepancy, we require these
discrepancies are achieved consecutively, that means a solution consists of dis-
crepancies that happen one after the other. This assumption of adjacency con-
siderably limits the search space. We also consider that the initial solution is
generated by a ‘good’ heuristic. Thus, only the immediate neighborhood of a
discrepancy may receive an additional discrepancy. We obtain a truncated DDS
based on adjacent discrepancies, DADS (Depth-bounded Adjacent Discrepancy
Search). This approach is illustrated by an example on a binary tree of depth
3 (see Figure 1). At the starting point, DADS visits the initial solution recom-
mended by the heuristic. For convenience, we assume that left branches follow
the heuristic. At first iteration, DADS visits leaf nodes at the depth limit with
exactly one discrepancy. The first line shown under the branches reports the
visit order of considered solution, while the second line illustrates the number of
discrepancies made in each solution. The 2nd iteration allows to exploring more
solutions with two discrepancies with respect to the adjacency assumption. In
this representation, the maximum depth bound is taken to be 3. If now, we limit

the depth to two levels, several branches would not be retained, namely the
branches 4, 6, and 7 would not be visited by DADS.

0th Iteration

1
0

1st Iteration

1
4

1
3

1
2

2nd Iteration

2
6

2
5

3th Iteration

3
7

Fig. 1. Depth-bounded Ajacent Discrepancy Search

Going back to the optimization issue, CDADS merges the DADS strategy
with a CDS exploration principle, that is the initial solution used by DADS is
dynamically updated when a best solution is found, and the exploration process
is restarted.

4.2 Heuristics

CDADS is strongly based on the quality of the initial solution. Thus, we carried
out an experimental comparison between various priority rules presented in the
literature [19], [15]. We considered the most effective heuristics to multiprocessor
task hybrid flow shop scheduling. The four selected rules are:

– SPT (Shortest Processing Time), which ranks jobs according to the ascend-
ing order of their processing times;

– SPR (Shortest Processing Requirement), which ranks jobs according to the
ascending order of their processing requirement;

– the Energy rule, considering first the jobs with the smallest energy (where
the energy of an operation j at a stage i is evaluated by pij × sizeij); and

– NSPT LastStage (Normalized SPT applied at the last stage). For this
latest rule, Şerifoğlu and Ulusoy [19] propose to schedule jobs according to
their ranking index (RIj) defined by:

RIj =
max

k
{pmk} − pmj + 1

max
k

{pmk}+ 1
.

In Table 1, the selected priority rules are ranked according to their percentage
of best solutions found, that is, performance.

Table 1. Heuristic selection

Priority Rule Performance (%)

NSPT LastStage 27

Energy 25

SPT 17

SPR 14

4.3 Schedule Generation Scheme

Schedule generation schemes (SGSs) are widely used in solving preemptive prob-
lems. We distinguish between serial SGS and parallel SGS. These two heuristics
ensure task scheduling based on a given priority rule. Hence, tasks are selected
one after the other and a start time is fixed for each one.

Serial SGSs are introduced in [11]. At each iteration, the first available task
in ζ is selected, where ζ is the priority list recommended by the priority rule.
The selected task is scheduled as soon as possible with respect to both resource
constraints and precedence constraints.

Parallel SGSs developed in [5], suggest a chronological procedure in schedul-
ing tasks. At each time t, a set ζt of tasks being scheduled is defined: this set
contains unscheduled tasks that can be processed at t without breaking neither
precedence constraints nor resource constraints. If we consider that t is the first
time where ζt 6= ∅, the first task in the priority list ζ belonging to ζt is performed
at t. The same process is applied until all tasks are scheduled. The two schemes
depicted above may appear similar. However, the schedule they generate are dif-
ferent: a serial SGS provides an active schedule while a parallel SGS generates
a non-delay schedule.

In the scheduling theory, Sprecher et al. [20] show that the set of active
schedules includes at least one optimal solution. On the contrary, non-delay
schedules may eliminate all optima.

Concerning our method CDADS, we do not enumerate all possible solutions,
so even serial SGSs may exclude all optimum solutions. Furthermore, in practice,
parallel SGSs are known for their operational efficiency. Hence, we opt for the
implementation of a parallel SGS which has been proved, moreover, to be more
efficient in our experimental studies.

4.4 Lower Bound

For efficiency purpose, we join CDADS with an evaluation of lower bounds at
each node. The proposed lower bound is based on lower bounds previously pre-
sented in [14]. Thus, we suggest this formula:

LB = max(LBs,LBj)

where LBj is a job-based lower bound similar to the one suggested in [14]:

LBj = max
j∈J

(

m
∑

i=1

pij); and LBs is a stage-based lower bound: LBs= max
i=1..m

LB(i).

For this latter bound, we claim that:

LB(i) =











































max[M1(i),M2(i),max
j∈J

(pij)] + min
j∈J

(
m
∑

l=i+1

plj) , ∀i = 1

min
j∈J

(

i−1
∑

l=1

plj) + max[M1(i),M2(i),max
j∈J

(pij)] + min
j∈J

(

m
∑

l=i+1

plj) , ∀i = 2..m− 1

min
j∈J

(

i−1
∑

l=1

plj) + max[M1(i),M2(i),max
j∈J

(pij)] , ∀i = m

where

M1(i) =

⌈

1

mi

∑

j∈J

(pijsizeij)

⌉

and

M2(i) =
∑

j∈Ai

pij +
1

2

∑

j∈Bi

pij ,

with
Ai = {j|sizeij >

mi

2
}

and

Bi = {j|sizeij =
mi

2
}.

Justification of the expression of LB(i).

We assume that only non-delay task scheduling is considered.

The first term of LB(i) gives a lower bound on the beginning of every
job j ∈ J on any machine of stage i.

The last term can be explained accordingly, since it is associated with
the minimal required time to achieve the processing of every job j on all
the subsequent stages of stage i.

The middle term concerns the processing of jobs on stage i. M1(i) stands
for the mean stage load for job preemptive scheduling, while M2(i) re-
views two different situations for partitionning the jobs according to their
resource requirement. Set Ai consists of jobs that must be processed se-
quentially (resource requirement greater than the half of the resource
capacity mi). Set Bi groups together the jobs having a resource require-
ment exactly equal to the half of the resource capacity. Obviously, a job
belonging to Ai and another job belonging to Bi must also be processed
sequentially. The added term max

j∈J
(pij) contributes to maximize the eval-

uation of stage load on a considered stage i, especially when some jobs
having high processing time are being scheduled.

This justifies the validity of the bound. 2

5 Computational Study

5.1 Test Beds

For comparison purpose, we assess the performance of CDADS on instances
of Oğuz’s benchmark available on her home page: http://home.ku.edu.tr/
coguz/public_html/. This benchmark is widely used in the literature [18], [10],
[16].

The number of jobs is taken to be n = 5, 10, 20, 50, 100 and the number of
stages m takes its value from the set {2, 5, 8}. The benchmark considers two
types of problems, “Type-1” and “Type-2”. In ‘Type-1’ instances, the number
of processors mi available at each stage i (resource capacity) is randomly deter-
mined from the set {1, . . . , 5}, while in ‘Type-2’ mi is fixed to 5 processors for
every stage i. In fact, ‘Type-2’ instances are globally more flexible than ‘Type-1
instances’. For each combination of n and m, and for each type, 10 instances are
randomly generated, which leads a total of 300 instances. The processing time
of each job j in stage i (pij) and its processing requirement (sizeij) are integer
and are randomly generated from sets {1, . . . , 100} and {1, . . . ,mi}, respectively.

The algorithm implementing CDADS was coded in C++ and run on an In-
tel core 2 Duo 2 GHz PC. The maximum CPU time is set to 60 seconds. The
exploration is also stopped when CDADS reaches a given lower bound on the
makespan. Obviously, if CDADS misses the optimal solution, the best-found so-
lution when the maximum CPU time is reached, is then taken to be the problem
solution.

5.2 Restart Policy

For the computational study, we have then retained four priority rules to generate
the initial solutions (see Section 4.2). That is why whe have introduced a restart

http://home.ku.edu.tr/coguz/public_html/
http://home.ku.edu.tr/coguz/public_html/

policy to benefit from these heuristics. At a starting point, we use the best
rule, that is the NSPT LastStage. However, if no improvement is noticed during
the CDADS search, we restart the process with another solution obtained by
applying the next rule “Energy” that could lead a more efficient solution for this
specific instance, and so on.

The restart policy is limited by the size of the heuristics pool: restarts are
then allowed at most four times, since we have selected four rules. At each restart
k (starting from k = 0), we increase the number of maximum nodes that can be
visited according to a geometrical series nbrNodes ×fk, where f is fixed to 1.3
and nbrNodes varies linearly with the problem size (the number of jobs n; for
example for n = 20 we fix nbrNodes to 2000 nodes). Hence the search space is
expanded at each restart.

5.3 Results

We tested two strategies for applying discrepancy: Top First and Bottom First.
In the Top First exploration, discrepancies at the top of the tree are privileged
while the Bottom First strategy favors discrepancies at the bottom. Computa-
tional study shows that CDADS is really more efficient with a Top First strategy
(then contradicting – for the problem at hand – the statement of relative indif-
ference of discrepancy order by [17]). Thus, the results shown below refer to this
latter strategy.

Table 2 gives for each configuration (n: number of jobs, and m: number of
stages) and each type, the average percentage deviation (%dev) and the average
CPU time. The average percentage deviation is measured in two ways:

• For small problems, solutions are compared to the optimal solutions (C∗

max

denotes the optimum makespan):

Cmax − C∗

max

C∗
max

× 100;

• For larger problems, solutions found by the CDADS are compared to the
lower bound (LB):

Cmax − LB

LB
× 100.

As explained in Section 5.2, CDADS is run four times on each of the selected
priority rules (NSPT LastStage, Energy, SPT, SPR) for each instance. The best
solution is taken to be the CDADS solution for the corresponding problem.
According to findings of [19], the Fm(m1,. . .,mm)|sizeij|Cmax problem and its
symmetric have the same optimal makespan. Referring to this property, we apply
a two-directional planning (forward schedule and backward schedule).

From Table 2, it is observed that the average percentage deviation is higher
for ‘Type-1’ instances. Globally, %dev is 1.66% for ‘Type-1’ problems and 6.39%
for ‘Type-2’ problems. This increase can be linked to several assumptions: the

Table 2. CDADS performance

‘Type-1’ Problems ‘Type-2’ Problems
n m %dev CPU(s) %dev CPU(s)

5 2 0 < 0.1 0 < 0.1
5 0.21 < 0.1 0.46 < 0.1
8 1.71 < 0.1 0.5 < 0.1

10 2 0 < 0.1 1.72 < 0.1
5 0.66 0.4 6.44 < 0.1
8 8.47 < 0.1 9.61 0.2

20 2 0.05 0.1 3.34 3.1
5 2.57 1.1 7.97 1.3
8 5.11 0.2 15 1.3

50 2 0.49 2.3 1.74 4.2
5 0.54 5 8.2 13.5
8 1.62 6.8 12.42 33.4

100 2 0.08 11.1 3.32 22.8
5 1.5 13.6 10.75 40.9
8 1.86 11 14.33 47.3

Global average 1.66 3.44 6.39 10.53

lower bound becomes less effective as mi increases in ‘Type-2’ instances and so
the average percentage deviation would be higher. Another explanation can also
be considered: the number of processors are fixed in ‘Type-2’ problems, that is
mi = 5, and the scheduling problem becomes more difficult to solve for CDADS.

Results show the behavior of our approach with variations of n and m. For a
given n, the average percentage deviation increases with increasing m. Indeed,
the problem difficulty increases when m increases and the obtained solution is
further away from the lower bound. On the other hand, for a given number
of stages m, increasing n has no significant effect on the average percentage
deviation, as the effectiveness of CDADS is independent of the number of jobs:
the stability of our method seems to be not linked to the number of jobs n, since
for a given m (e.g., m = 8), in ‘Type-1’ problems, when n increases from 50
jobs to 100 jobs, the average percentage deviation increase slightly (from 1.62%
to 1.86%). It also can be noticed, that in some cases, increasing n results in a
decrease in the deviation value (for the configuration n = 20,m = 8 the %dev is
taken to be 5.11%, and is evaluated to 1.62% for n = 50,m = 8). Apparently,
the lower bound becomes more effective with n increasing.

From the experimental studies, it can be observed that CDADS converges
quickly. The average CPU time varies between less than 0.1 seconds and 47.3
seconds. The computational cost is more important in ‘Type-2’ instances, con-
firming the difficulty of these problems. Similarly, for a fixed m, increasing n

leads to CPU time increase. Conversely, when n is fixed, increasing m increases
the CPU time.

5.4 Comparison of CDADS Solutions with State-Of-the-Art Results

Table 3 presents the results of CDADS on%dev, the average percentage deviation
(as well as a synthesis of the average CPU time for all instances, in the last line
of the table). Furthermore, it shows the results obtained by Jouglet et al. in [10].
These results are the most recent and the best-known solutions in literature.
Thus, we have compared the results of CDADS with GA (genetic algorithm),
CP (constraint programming), and MA (a memetic algorithm that combines
GA and CP). We disregard the results published by Ercan et al. [14] given
inconsistency encountered. We contrast our results only versus those presented
in [10]. However, we omit the average deviation published in this latest paper
due to detected miscalculation (induced by Ercan et al.’s errors). Hence, we
recalculated the average percentage deviation for all methods given in [10]. The
maximum CPU time is fixed at 900 seconds for GA, CP, and MA.

Table 3. Comparing average percentage deviation (and CPU time)

‘Type-1’ Problems ‘Type-2’ Problems
n m CDADS GA CP MA CDADS GA CP MA

5 2 0 0.29 0 0 0 1.23 0 0
5 0.21 1.35 0 0 0.46 1.44 0 0
8 1.71 4.15 0 0 0.5 2.38 0 0

10 2 0 0 0 0 1.72 2.83 1.72 1.75
5 0.66 1.64 0 0 6.44 7.8 6.1 5.67
8 8.47 9.38 10.32 8.02 9.61 10.87 8.37 8.8

20 2 0.05 0.44 2.59 0.66 3.34 3.7 6.72 3.43
5 2.57 3.49 10.85 2.78 7.97 9.57 22.86 9.57
8 5.11 5.69 17.98 5.32 15 17.26 28.52 16.02

50 2 0.49 0.63 2.79 0.49 1.74 2.76 6.54 2.21
5 0.54 0.59 5.3 0.51 8.2 10.95 20.01 10.32
8 1.62 2.17 14.42 1.71 12.42 15.89 30.06 17.25

100 2 0.08 0.15 1.96 0.07 3.32 3.05 5.68 2.7
5 1.5 2.5 5.19 2.33 10.75 14.95 19.13 14.37
8 1.86 1.99 9.47 2.15 14.33 20.06 23.15 17.83

Global average 1.66 2.27 5.39 1.6 6.39 7.28 11.92 8.32

Average CPU(s) 3.44 879.93 320.3 326.01 10.53 879.08 423.09 511.27

As revealed in Table 3 (and as already noticed in Table 2), on the whole, the
total average of %dev obtained by CDADS is 1.66% and 6.39% for the ‘Type-1’

and ‘Type-2’ problems, respectively. Compared to the corresponding averages
of 2.27% and 7.28% achieved by GA, and the corresponding values of 5.39%
and 11.92 % obtained by CP, CDADS outperforms the GA and CP algorithms.
Furthermore, CDADS was clearly superior to CP especially for larger instances
(n = 50 and n = 100).

As depicted in the table, MA finds slightly better solutions in ‘Type-1’ prob-
lems, that is 1.60% is obtained by MA while CDADS gives an average deviation
percentage of 1.66%. Overall, CDADS outperforms significantly MA, as CDADS
results are at 6.39% from optimal solutions (or lower bounds) for ‘Type-2’ prob-
lems against 8.32% for MA.

To further assess the effectiveness of CDADS, we measure the number of im-
proved known solutions. It can be seen from Table 4 that CDADS improves 75
known solutions among the 300 tested instances. Thus, the rate of improvement
reaches 25%. The results also outline that most improvements are spotted in
large instances (n = 50, 100), see figure 2. No significant improvements are no-
ticed for small instances (n = 5, 10) since all optimal solutions for these problems
are known.

Table 4. Number of improved solutions

n ‘Type-1’ Problems ‘Type-2’ Problems

5 0 0

10 1 0

20 5 10

50 8 20

100 8 23
total 22 53

In this study, we also compare the convergence of algorithms. It can be seen
from the last line of Table 3, that CDADS outperforms the genetic algorithm
(GA), constraint programming (CP), and the memetic algorithm (MA). Indeed,
CDADS takes between less than 0.1 seconds (for small problems) and 47.3 sec-
onds (for large problems) to find their solutions, while methods proposed in [10]
converge much more slower [0.7 sec, 900 sec]. Even all results were obtained
under different computational budgets, we can conclude that CDADS demon-
strates fast convergence. Indeed, according to Dongarra’s normalized coefficients
[7], our machine is approximately only 3.5 times faster than the machine used
by Jouglet et al.

20 40 60 80 100

0

5

10

15

20

25

Number of jobs

N
u
m
b
er

o
f
im

p
ro
v
ed

so
lu
ti
o
n
s

Type1.

Type2.

Fig. 2. Variation of the number of improved solutions with the number of jobs

6 Conclusions

In this paper, the hybrid flow shop problem with multiprocessor tasks is ad-
dressed by means of a discrepancy search method. The proposed method, Climb-
ing Depth-bounded Adjacent Discrepancy Search (CDADS), is based on adjacent
discrepancies. We selected several heuristics to generate the initial solution. A
lower bound is also proposed to lead a more efficient search. Compared to the
best-known results in the literature, CDADS provides better solutions in little
CPU time.

In the short-term, we prospect to apply CDADS to simpler problems like
classical hybrid flow shop (sizeij = 1, ∀ i, j), widely studied in the literature.
Another expected aim would be to adapt the proposed implementation of dis-
crepancy search to more general scheduling problems, in particular the Resource-
Constrained Project Scheduling Problem, which still remains one of the most
challenging problems in large-scale scheduling.

References

1. J. C. Beck and L. Perron. Discrepancy-bounded depth first search. In Proceedings
of CPAIOR 2000, pages 8–10, 2000.

2. A. Ben Hmida, M. Haouari, M.-J. Huguet, and P. Lopez. Solving two-stage hy-
brid flow shop using climbing depth-bounded discrepancy search. Computers and
Industrial Engineering, 2010. In Press.

3. A. Ben Hmida, M.-J. Huguet, P. Lopez, and M. Haouari. Climbing depth-bounded
discrepancy search for solving hybrid flow shop scheduling problems. European
Journal of Industrial Engineering, 1(2):223–243, 2007.

4. S. Bertel and J.-C. Billaut. A genetic algorithm for an industrial multiprocessor
flow shop scheduling problem with recirculation. European Journal of Operational
Research, 159(3):651–662, 2004.

5. G. Brooks and C. White. An algorithm for finding optimal or near optimal solutions
to the production scheduling problem. Journal of Industrial Engineering, 16:34–40,
1965.

6. J. Chen and C.-Y. Lee. General multiprocessor task scheduling. Naval Research
Logistics, 46:57–74, 1999.

7. J. Dongarra. Performance of various computers using standard linear equations
software. Technical report, University of Tennessee, 2009.

8. M. F. Ercan and Y.-F. Fung. Real-time image interpretation on a multi-layer
architecture. In Proceedings of IEEE TENCON’99, pages 1303–1306, 1999.

9. W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95),
volume 1, pages 607–615, Montréal, Québec, Canada, August 1995.

10. A. Jouglet, C. Oğuz, and M. Sevaux. Hybrid flow-shop: a memetic algorithm using
constraint-based scheduling for efficient search. Journal of Mathematical Modelling
and Algorithms, 8:271–292, 2009.

11. J.E. Jr Kelley. The critical-path method: Resources planning and scheduling.
In Thompson G.L. and Muth J.F., editors, Industrial Scheduling, pages 347–365.
Prentice-Hall, Englewood Cliffs, 1963.

12. R. E. Korf. Improved limited discrepancy search. In Proceedings of the 13th
National Conference on Artificial Intelligence (AAAI-96), volume 1, pages 286–
291, Portland, OR, August 1996.

13. M. Milano and A. Roli. On the relation between complete and incomplete search:
an informal discussion. In Proceedings of CPAIOR 2002, pages 237–250, Le Croisic,
France, 2002.

14. C. Oğuz and M. F. Ercan. A genetic algorithm for hybrid flow-shop scheduling
with multiprocessor tasks. Journal of Scheduling, 8:323–351, 2005.

15. C. Oğuz, Y.-F. Fung, M. F. Ercan, and X.-T. Qi. Parallel genetic algorithm for
a flow shop problem with multiprocessor tasks. In International Conference on
Computational Science, pages 548–559, Berlin Heidelberg, 2003.

16. C. Oğuz, Y. Zinder, V. Ha Do, A. Janiak, and M. Lichtenstein. Hybrid flow
shop scheduling problems with multiprocessor task systems. European Journal of
Operational Research, 152:115–133, 2004.

17. P. Prosser and C. Unsworth. LDS: testing the hypothesis. Technical Report DCS
TR-2008-273, Dept of Computing Science, University of Glasgow, 2008.

18. F. S. Şerifoğlu and G. Ulusoy. Multiprocessor task scheduling in multistage hy-
brid flow-shops: A genetic algorithm approach. European Journal of Operational
Research, 55(5):504–512, May 2004.

19. F. S. Şerifoğlu and G. Ulusoy. Multiprocessor task scheduling in multistage hybrid
flow-shops: An ant colony system approach. International Journal of Production
Research, 44(16):3161–3177, 2006.

20. A. Sprecher, R. Kolisch, and A. Drexl. Semi-active, active, and non-delay schedules
for the ressource-constrained project scheduling problem. European Journal of
Operational Research, 80(1):94–102, 1995.

21. T. Walsh. Depth-bounded discrepancy search. In Proceedings of the 15th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-97), volume 2, pages
1388–1395, Nagoya, Japan, August 1997.

