Asma Lahimer
email: asma.lahimer@laas.fr

Pierre Lopez
email: pierre.lopez@laas.fr

Mohamed Haouari
email: mohamed.haouari@insat.rnu.tn

Climbing Depth-bounded Adjacent Discrepancy Search for Solving Hybrid Flow Shop Scheduling Problems with Multiprocessor Tasks

Keywords: Hybrid flow shop scheduling, Multiprocessor tasks, Discrepancy search

Climbing depth-bounded adjacent discrepancy search for solving hybrid flow shop scheduling problems with multiprocessor tasks

Asma Lahimer, Pierre Lopez,

Introduction

Flow shop scheduling refers to a manufacturing facility in which all jobs visit the production machines in the same order. In hybrid flow shop scheduling, the jobs serially traverse stages following the same production route, and must be assigned to one of the parallel machines composing each stage. The hybrid flow shop scheduling problem with multiprocessor tasks is itself a generalization of the hybrid flow shop problem, allowing tasks to be processed on more than one processor in a given stage, at a time. It can also be viewed as a specific case of the resource-constrained project scheduling problem (RCPSP).

Many applications of hybrid scheduling problems with multiprocessor tasks can be found in various manufacturing systems (e.g., work-force assignment in [START_REF] Chen | General multiprocessor task scheduling[END_REF], transportation problem with recirculation in [START_REF] Bertel | A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation[END_REF]), as well as in some computer systems (e.g., real-time machine-vision [START_REF] Ercan | Real-time image interpretation on a multi-layer architecture[END_REF]).

Hybrid flow shop scheduling problem with multiprocessor tasks has received considerable attention from researchers and has been solved by various approaches, e.g. genetic algorithms [START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF], tabu search, and ant colony system [START_REF] Ulusoy | Multiprocessor task scheduling in multistage hybrid flow-shops: An ant colony system approach[END_REF].

Motivated by the success of discrepancy search for solving shop scheduling problems, in particular hybrid flow shop [START_REF] Ben Hmida | Solving two-stage hybrid flow shop using climbing depth-bounded discrepancy search[END_REF], [START_REF] Ben Hmida | Climbing depth-bounded discrepancy search for solving hybrid flow shop scheduling problems[END_REF], we propose in this paper a new approach based on discrepancy search to solve the hybrid flow shop problem with multiprocessor tasks.

Problem Definition

The hybrid flow shop scheduling problem with multiprocessor tasks can be formally described as follows: A set J={1, 2, . . . , n} of n jobs, have to be processed in m stages. Hence, a job is a sequence of m tasks (one task for each stage). Each stage i = {1, 2, . . . , m} consists of m i identical parallel processors. In a stage i, the job j requires simultaneously size ij processors. That is, size ij processors selected at stage j are required for processing job j for a period of time equal to the processing time requirement of job j at stage i, namely p ij . The objective is to minimize the makespan (C max), that is, the completion time of all tasks in the last stage. According to the classical 3-field notation in production scheduling, the problem is denoted by Fm(m 1 ,. . .,m m)|size ij |C max .

Discrepancy Search

General Statement

Limited discrepancy search (LDS) was introduced in 1995 by Harvey and Ginsberg [START_REF] Harvey | Limited discrepancy search[END_REF]. This seminal method can be considered as an alternative to the branchand-bound procedure, backtracking techniques, and iterative sampling. From an optimization view-point this technique is similar to variable neighbourhood search. Indeed, it starts from an initial global instantiation suggested by a given heuristic and successively explores branches with increasing discrepancies from it, in order to obtain a solution (in a satisfaction context), or a solution of better performance (in an optimization context). A discrepancy is associated with any decision point in a search tree where the choice goes against the heuristic. For convenience, in a tree-like representation the heuristic choices are associated with left branches while right branches are considered as discrepancies. Since LDS proposition in 1995, several variants were suggested, among them, Improved Limited Discrepancy Search (ILDS) [START_REF] Korf | Improved limited discrepancy search[END_REF], Depth-bounded Discrepancy Search (DDS) [START_REF] Walsh | Depth-bounded discrepancy search[END_REF], Discrepancy-Bounded Depth First Search [START_REF] Beck | Discrepancy-bounded depth first search[END_REF] and Climbing Discrepancy Search (CDS) [START_REF] Milano | On the relation between complete and incomplete search: an informal discussion[END_REF].

In the following sections, we focus on those methods that inspired our approach, in particular DDS and CDS.

Depth-bounded Discrepancy Search

Depth-bounded Discrepancy Search (DDS) developed in [START_REF] Walsh | Depth-bounded discrepancy search[END_REF], is an improved LDS that prioritizes discrepancies at the top of the tree to correct early mistakes first. This assumption is ensured by means of an iteratively increasing bound on the tree depth. Discrepancies below this bound are prohibited. DDS starts from an initial solution. At ith iteration, it explores those solutions on which discrepancies occur at a depth not greater than i.

Climbing Discrepancy Search

Climbing Discrepancy Search (CDS) is a local search method adapted to combinatorial optimization problems proposed in [START_REF] Milano | On the relation between complete and incomplete search: an informal discussion[END_REF]. CDS starts from an initial solution that would be dynamically updated. Indeed, it visits branches progressively until a better solution is reached. Then, the initial solution is updated and the exploration process is restarted.

4 Proposal: Climbing Depth-bounded Adjacent Discrepancy Search

CDADS: Main Features

To stick to the problem under consideration, we now consider an optimization context. We propose CDADS (Climbing Depth-bounded Adjacent Discrepancy Search) method, that is a combination of a depth-bounded discrepancy search and a climbing discrepancy search. We also assume that, if several discrepancies occur in the construction of a solution, these discrepancies are necessarily adjacent in the list of successive decisions. CDADS starts from an initial solution obtained by a given heuristic, and explores its neighborhood progressively, according to the depth-bounded discrepancy search strategy. Hence, a limit depth d is fixed. Discrepancies below this bound are prohibited. At the ith iteration, we allow i discrepancies above the limit level d.

When considering solutions with more than one discrepancy, we require these discrepancies are achieved consecutively, that means a solution consists of discrepancies that happen one after the other. This assumption of adjacency considerably limits the search space. We also consider that the initial solution is generated by a 'good' heuristic. Thus, only the immediate neighborhood of a discrepancy may receive an additional discrepancy. We obtain a truncated DDS based on adjacent discrepancies, DADS (Depth-bounded Adjacent Discrepancy Search). This approach is illustrated by an example on a binary tree of depth 3 (see Figure 1). At the starting point, DADS visits the initial solution recommended by the heuristic. For convenience, we assume that left branches follow the heuristic. At first iteration, DADS visits leaf nodes at the depth limit with exactly one discrepancy. The first line shown under the branches reports the visit order of considered solution, while the second line illustrates the number of discrepancies made in each solution. The 2nd iteration allows to exploring more solutions with two discrepancies with respect to the adjacency assumption. In this representation, the maximum depth bound is taken to be 3. If now, we limit the depth to two levels, several branches would not be retained, namely the branches 4, 6, and 7 would not be visited by DADS.

0th Iteration

1 0 1st Iteration 1 4 1 3 1 2
2nd Iteration

2 6 2 5
3th Iteration

3 7

Fig. 1. Depth-bounded Ajacent Discrepancy Search

Going back to the optimization issue, CDADS merges the DADS strategy with a CDS exploration principle, that is the initial solution used by DADS is dynamically updated when a best solution is found, and the exploration process is restarted.

Heuristics

CDADS is strongly based on the quality of the initial solution. Thus, we carried out an experimental comparison between various priority rules presented in the literature [START_REF] Ulusoy | Multiprocessor task scheduling in multistage hybrid flow-shops: An ant colony system approach[END_REF], [START_REF] Oguz | Parallel genetic algorithm for a flow shop problem with multiprocessor tasks[END_REF]. We considered the most effective heuristics to multiprocessor task hybrid flow shop scheduling. The four selected rules are:

-SPT (Shortest Processing Time), which ranks jobs according to the ascending order of their processing times; -SPR (Shortest Processing Requirement), which ranks jobs according to the ascending order of their processing requirement; -the Energy rule, considering first the jobs with the smallest energy (where the energy of an operation j at a stage i is evaluated by p ij × size ij); and -NSPT LastStage (Normalized SPT applied at the last stage). For this latest rule, S ¸erifoglu and Ulusoy [START_REF] Ulusoy | Multiprocessor task scheduling in multistage hybrid flow-shops: An ant colony system approach[END_REF] propose to schedule jobs according to their ranking index (RI j) defined by:

RI j = max k {p mk } -p mj + 1 max k {p mk } + 1 .
In Table 1, the selected priority rules are ranked according to their percentage of best solutions found, that is, performance.

Schedule Generation Scheme

Schedule generation schemes (SGSs) are widely used in solving preemptive problems. We distinguish between serial SGS and parallel SGS. These two heuristics ensure task scheduling based on a given priority rule. Hence, tasks are selected one after the other and a start time is fixed for each one. Serial SGSs are introduced in [START_REF] Kelley | The critical-path method: Resources planning and scheduling[END_REF]. At each iteration, the first available task in ζ is selected, where ζ is the priority list recommended by the priority rule. The selected task is scheduled as soon as possible with respect to both resource constraints and precedence constraints.

Parallel SGSs developed in [START_REF] Brooks | An algorithm for finding optimal or near optimal solutions to the production scheduling problem[END_REF], suggest a chronological procedure in scheduling tasks. At each time t, a set ζ t of tasks being scheduled is defined: this set contains unscheduled tasks that can be processed at t without breaking neither precedence constraints nor resource constraints. If we consider that t is the first time where ζ t = ∅, the first task in the priority list ζ belonging to ζ t is performed at t. The same process is applied until all tasks are scheduled. The two schemes depicted above may appear similar. However, the schedule they generate are different: a serial SGS provides an active schedule while a parallel SGS generates a non-delay schedule.

In the scheduling theory, Sprecher et al. [START_REF] Sprecher | Semi-active, active, and non-delay schedules for the ressource-constrained project scheduling problem[END_REF] show that the set of active schedules includes at least one optimal solution. On the contrary, non-delay schedules may eliminate all optima.

Concerning our method CDADS, we do not enumerate all possible solutions, so even serial SGSs may exclude all optimum solutions. Furthermore, in practice, parallel SGSs are known for their operational efficiency. Hence, we opt for the implementation of a parallel SGS which has been proved, moreover, to be more efficient in our experimental studies.

Lower Bound

For efficiency purpose, we join CDADS with an evaluation of lower bounds at each node. The proposed lower bound is based on lower bounds previously presented in [START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF]. Thus, we suggest this formula:

LB = max(LB s ,LB j)
where LB j is a job-based lower bound similar to the one suggested in [START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF]:

LB j = max

LB(i).

For this latter bound, we claim that:

LB(i) =                      max[M 1 (i), M 2 (i), max j∈J (p ij)] + min j∈J (m l=i+1 p lj) , ∀i = 1 min j∈J (i-1 l=1 p lj) + max[M 1 (i), M 2 (i), max j∈J (p ij)] + min j∈J (m l=i+1 p lj) , ∀i = 2..m -1 min j∈J (i-1 l=1 p lj) + max[M 1 (i), M 2 (i), max j∈J (p ij)] , ∀i = m
where

M 1 (i) = 1 m i j∈J (p ij size ij)
and

M 2 (i) = j∈Ai p ij + 1 2 j∈Bi p ij , with A i = {j|size ij > m i 2 }
and

B i = {j|size ij = m i 2 }.
Justification of the expression of LB(i).

We assume that only non-delay task scheduling is considered.

The first term of LB(i) gives a lower bound on the beginning of every job j ∈ J on any machine of stage i.

The last term can be explained accordingly, since it is associated with the minimal required time to achieve the processing of every job j on all the subsequent stages of stage i.

The middle term concerns the processing of jobs on stage i. M 1 (i) stands for the mean stage load for job preemptive scheduling, while M 2 (i) reviews two different situations for partitionning the jobs according to their resource requirement. Set A i consists of jobs that must be processed sequentially (resource requirement greater than the half of the resource capacity m i). Set B i groups together the jobs having a resource requirement exactly equal to the half of the resource capacity. Obviously, a job belonging to A i and another job belonging to B i must also be processed sequentially. The added term max j∈J (p ij) contributes to maximize the evaluation of stage load on a considered stage i, especially when some jobs having high processing time are being scheduled.

This justifies the validity of the bound. 2

5 Computational Study

Test Beds

For comparison purpose, we assess the performance of CDADS on instances of Oguz's benchmark available on her home page: http://home.ku.edu.tr/ coguz/public_html/. This benchmark is widely used in the literature [START_REF] Ulusoy | Multiprocessor task scheduling in multistage hybrid flow-shops: A genetic algorithm approach[END_REF], [START_REF] Jouglet | Hybrid flow-shop: a memetic algorithm using constraint-based scheduling for efficient search[END_REF], [START_REF] Oguz | Hybrid flow shop scheduling problems with multiprocessor task systems[END_REF].

The number of jobs is taken to be n = 5, 10, 20, 50, 100 and the number of stages m takes its value from the set {2, 5, 8}. The benchmark considers two types of problems, "Type-1" and "Type-2". In 'Type-1' instances, the number of processors m i available at each stage i (resource capacity) is randomly determined from the set {1, . . . , 5}, while in 'Type-2' m i is fixed to 5 processors for every stage i. In fact, 'Type-2' instances are globally more flexible than 'Type-1 instances'. For each combination of n and m, and for each type, 10 instances are randomly generated, which leads a total of 300 instances. The processing time of each job j in stage i (p ij) and its processing requirement (size ij) are integer and are randomly generated from sets {1, . . . , 100} and {1, . . . , m i }, respectively. The algorithm implementing CDADS was coded in C++ and run on an Intel core 2 Duo 2 GHz PC. The maximum CPU time is set to 60 seconds. The exploration is also stopped when CDADS reaches a given lower bound on the makespan. Obviously, if CDADS misses the optimal solution, the best-found solution when the maximum CPU time is reached, is then taken to be the problem solution.

Restart Policy

For the computational study, we have then retained four priority rules to generate the initial solutions (see Section 4.2). That is why whe have introduced a restart policy to benefit from these heuristics. At a starting point, we use the best rule, that is the NSPT LastStage. However, if no improvement is noticed during the CDADS search, we restart the process with another solution obtained by applying the next rule "Energy" that could lead a more efficient solution for this specific instance, and so on.

The restart policy is limited by the size of the heuristics pool: restarts are then allowed at most four times, since we have selected four rules. At each restart k (starting from k = 0), we increase the number of maximum nodes that can be visited according to a geometrical series nbrNodes ×f k , where f is fixed to 1.3 and nbrNodes varies linearly with the problem size (the number of jobs n; for example for n = 20 we fix nbrNodes to 2000 nodes). Hence the search space is expanded at each restart.

Results

We tested two strategies for applying discrepancy: Top First and Bottom First. In the Top First exploration, discrepancies at the top of the tree are privileged while the Bottom First strategy favors discrepancies at the bottom. Computational study shows that CDADS is really more efficient with a Top First strategy (then contradicting -for the problem at hand -the statement of relative indifference of discrepancy order by [START_REF] Prosser | LDS: testing the hypothesis[END_REF]). Thus, the results shown below refer to this latter strategy.

Table 2 gives for each configuration (n: number of jobs, and m: number of stages) and each type, the average percentage deviation (%dev) and the average CPU time. The average percentage deviation is measured in two ways:

• For small problems, solutions are compared to the optimal solutions (C * max denotes the optimum makespan):

C max -C * max C * max × 100;
• For larger problems, solutions found by the CDADS are compared to the lower bound (LB):

C max -LB LB × 100.
As explained in Section 5.2, CDADS is run four times on each of the selected priority rules (NSPT LastStage, Energy, SPT, SPR) for each instance. The best solution is taken to be the CDADS solution for the corresponding problem. According to findings of [START_REF] Ulusoy | Multiprocessor task scheduling in multistage hybrid flow-shops: An ant colony system approach[END_REF], the Fm(m 1 ,. . .,m m)|size ij |C max problem and its symmetric have the same optimal makespan. Referring to this property, we apply a two-directional planning (forward schedule and backward schedule).

From Table 2, it is observed that the average percentage deviation is higher for 'Type-1' instances. Globally, %dev is 1.66% for 'Type-1' problems and 6.39% for 'Type-2' problems. This increase can be linked to several assumptions: the lower bound becomes less effective as m i increases in 'Type-2' instances and so the average percentage deviation would be higher. Another explanation can also be considered: the number of processors are fixed in 'Type-2' problems, that is m i = 5, and the scheduling problem becomes more difficult to solve for CDADS.

Results show the behavior of our approach with variations of n and m. For a given n, the average percentage deviation increases with increasing m. Indeed, the problem difficulty increases when m increases and the obtained solution is further away from the lower bound. On the other hand, for a given number of stages m, increasing n has no significant effect on the average percentage deviation, as the effectiveness of CDADS is independent of the number of jobs: the stability of our method seems to be not linked to the number of jobs n, since for a given m (e.g., m = 8), in 'Type-1' problems, when n increases from 50 jobs to 100 jobs, the average percentage deviation increase slightly (from 1.62% to 1.86%). It also can be noticed, that in some cases, increasing n results in a decrease in the deviation value (for the configuration n = 20, m = 8 the %dev is taken to be 5.11%, and is evaluated to 1.62% for n = 50, m = 8). Apparently, the lower bound becomes more effective with n increasing.

From the experimental studies, it can be observed that CDADS converges quickly. The average CPU time varies between less than 0.1 seconds and 47.3 seconds. The computational cost is more important in 'Type-2' instances, confirming the difficulty of these problems. Similarly, for a fixed m, increasing n leads to CPU time increase. Conversely, when n is fixed, increasing m increases the CPU time.

Comparison of CDADS Solutions with State-Of-the-Art Results

Table 3 presents the results of CDADS on %dev, the average percentage deviation (as well as a synthesis of the average CPU time for all instances, in the last line of the table). Furthermore, it shows the results obtained by Jouglet et al. in [START_REF] Jouglet | Hybrid flow-shop: a memetic algorithm using constraint-based scheduling for efficient search[END_REF]. These results are the most recent and the best-known solutions in literature. Thus, we have compared the results of CDADS with GA (genetic algorithm), CP (constraint programming), and MA (a memetic algorithm that combines GA and CP). We disregard the results published by Ercan et al. [START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF] given inconsistency encountered. We contrast our results only versus those presented in [START_REF] Jouglet | Hybrid flow-shop: a memetic algorithm using constraint-based scheduling for efficient search[END_REF]. However, we omit the average deviation published in this latest paper due to detected miscalculation (induced by Ercan et al.'s errors). Hence, we recalculated the average percentage deviation for all methods given in [START_REF] Jouglet | Hybrid flow-shop: a memetic algorithm using constraint-based scheduling for efficient search[END_REF]. The maximum CPU time is fixed at 900 seconds for GA, CP, and MA. As revealed in Table 3 (and as already noticed in Table 2), on the whole, the total average of %dev obtained by CDADS is 1.66% and 6.39% for the 'Type-1' and 'Type-2' problems, respectively. Compared to the corresponding averages of 2.27% and 7.28% achieved by GA, and the corresponding values of 5.39% and 11.92 % obtained by CP, CDADS outperforms the GA and CP algorithms. Furthermore, CDADS was clearly superior to CP especially for larger instances (n = 50 and n = 100).

As depicted in the table, MA finds slightly better solutions in 'Type-1' problems, that is 1.60% is obtained by MA while CDADS gives an average deviation percentage of 1.66%. Overall, CDADS outperforms significantly MA, as CDADS results are at 6.39% from optimal solutions (or lower bounds) for 'Type-2' problems against 8.32% for MA.

To further assess the effectiveness of CDADS, we measure the number of improved known solutions. It can be seen from Table 4 that CDADS improves 75 known solutions among the 300 tested instances. Thus, the rate of improvement reaches 25%. The results also outline that most improvements are spotted in large instances (n = 50, see figure 2. No significant improvements are noticed for small instances (n = 5, 10) since all optimal solutions for these problems are known. In this study, we also compare the convergence of algorithms. It can be seen from the last line of Table 3, that CDADS outperforms the genetic algorithm (GA), constraint programming (CP), and the memetic algorithm (MA). Indeed, CDADS takes between less than 0.1 seconds (for small problems) and 47.3 seconds (for large problems) to find their solutions, while methods proposed in [START_REF] Jouglet | Hybrid flow-shop: a memetic algorithm using constraint-based scheduling for efficient search[END_REF] converge much more slower [0.7 sec, 900 sec]. Even all results were obtained under different computational budgets, we can conclude that CDADS demonstrates fast convergence. Indeed, according to Dongarra's normalized coefficients [START_REF] Dongarra | Performance of various computers using standard linear equations software[END_REF], our machine is approximately only 3.5 times faster than the machine used by Jouglet et al.

Conclusions

In this paper, the hybrid flow shop problem with multiprocessor tasks is addressed by means of a discrepancy search method. The proposed method, Climbing Depth-bounded Adjacent Discrepancy Search (CDADS), is based on adjacent discrepancies. We selected several heuristics to generate the initial solution. A lower bound is also proposed to lead a more efficient search. Compared to the best-known results in the literature, CDADS provides better solutions in little CPU time.

In the short-term, we prospect to apply CDADS to simpler problems like classical hybrid flow shop (size ij = 1, ∀ i, j), widely studied in the literature. Another expected aim would be to adapt the proposed implementation of discrepancy search to more general scheduling problems, in particular the Resource-Constrained Project Scheduling Problem, which still remains one of the most challenging problems in large-scale scheduling.

p

 ij); and LB s is a stage-based lower bound: LB s = max i=1..m

Table 4 .

 4 Number of improved solutions n 'Type-1' Problems 'Type-2

Fig. 2 .

 2 Fig. 2. Variation of the number of improved solutions with the number of jobs

Table 1 .

 1 Heuristic selection

	Priority Rule Performance (%)
	NSPT LastStage	27
	Energy	25
	SPT	17
	SPR	14

Table 2 .

 2 CDADS performance

			'Type-1' Problems	'Type-2' Problems
	n	m	%dev CPU(s)	%dev CPU(s)
	5	2	0	< 0.1	0	< 0.1
		5	0.21	< 0.1	0.46	< 0.1
		8	1.71	< 0.1	0.5	< 0.1
	10	2	0	< 0.1	1.72	< 0.1
		5	0.66	0.4	6.44	< 0.1
		8	8.47	< 0.1	9.61	0.2
	20	2	0.05	0.1	3.34	3.1
		5	2.57	1.1	7.97	1.3
		8	5.11	0.2	15	1.3
	50	2	0.49	2.3	1.74	4.2
		5	0.54	5	8.2	13.5
		8	1.62	6.8	12.42	33.4
	100	2	0.08	11.1	3.32	22.8
		5	1.5	13.6	10.75	40.9
		8	1.86	11	14.33	47.3
	Global average 1.66	3.44	6.39	10.53

Table 3 .

 3 Comparing average percentage deviation (and CPU time)

			'Type-1' Problems		'Type-2' Problems	
	n	m	CDADS GA	CP MA	CDADS GA	CP	MA
	5	2	0	0.29	0	0	0	1.23	0	0
		5	0.21	1.35	0	0	0.46	1.44	0	0
		8	1.71	4.15	0	0	0.5	2.38	0	0
	10	2	0	0	0	0	1.72	2.83 1.72 1.75
		5	0.66	1.64	0	0	6.44	7.8	6.1	5.67
		8	8.47	9.38 10.32 8.02	9.61	10.87 8.37	8.8
	20	2	0.05	0.44 2.59 0.66	3.34	3.7	6.72 3.43
		5	2.57	3.49 10.85 2.78	7.97	9.57 22.86 9.57
		8	5.11	5.69 17.98 5.32	15	17.26 28.52 16.02
	50	2	0.49	0.63 2.79 0.49	1.74	2.76 6.54 2.21
		5	0.54	0.59 5.3 0.51	8.2	10.95 20.01 10.32
		8	1.62	2.17 14.42 1.71	12.42 15.89 30.06 17.25
	100	2	0.08	0.15 1.96 0.07	3.32	3.05 5.68	2.7
		5	1.5	2.5 5.19 2.33	10.75 14.95 19.13 14.37
		8	1.86	1.99 9.47 2.15	14.33 20.06 23.15 17.83
	Global average	1.66	2.27 5.39 1.6	6.39	7.28 11.92 8.32
	Average CPU(s) 3.44 879.93 320.3 326.01 10.53 879.08 423.09 511.27