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Abstract. By an argument similar to that of Gibbons and Stewart [10], but in
a different coordinate system and less restrictive gauge, we show that any weakly-
asymptotically-simple, analytic vacuum or electrovacuum solutions of the Einstein
equations which are periodic in time are necessarily stationary.

1. Introduction

The inspiral and coalescence of binary black holes or neutron stars appears to be the
most promising source for the detectors of gravitational waves, so that there has been
much effort going into the development of numerical codes and analytic approximation
methods to find the corresponding solutions of Einstein’s equations. One of the recent
approaches assumes the existence of a helical Killing vector k (see e.g. [25]). The field
is assumed stationary in a rotating frame where k generates time translations but k
becomes null at the light cylinder and is spacelike outside. k has the form k = 0; +w0dy
where 0, is timelike and 0y is spacelike with circular orbits with parameter length 27
(except where 0y = 0); w =constant. The space-time is not stationary but it is still
periodic where k is spacelike. Requiring the helical symmetry for a binary system
implies equal amounts of outgoing and incoming radiation so that the space-time,
containing energy radiated all times is not expected to be asymptotically flat. A
corresponding solution in Maxwell’s theory for two opposite point charges moving
on circular orbits was considered a long time ago by Schild [19]. The properties
of the field were analyzed recently in the Newman-Penrose formalism in [1]. The
rather complicated periodicity properties of the solution became apparent as well as
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its asymptotic behaviour: at Z— the advanced fields exhibit the standard Bondi-type
expansion and peeling, whereas the retarded fields do decay with r — oo but in
an oscillatory manner like (sinr)/r. Hence for the retarded plus advanced solution
no radiation field is asymptotically defined. Naturally, one would like to go beyond
the linearized theory. There are special exact, time-dependent, solutions known, for
example, Szekeres’s dust solution, which has in general no Killing vector, which can
be matched to an exterior Schwarzschild metric [3]. One can construct oscillating
spherical shells of dust particles moving with the same angular momentum, but in
every tangential direction, or oscillating Einstein clusters which are matched to the
Schwarzschild spacetime outside [8]. Can there be periodic solutions representing
“bound states” of gravitational or electromagnetic waves so that the radiation field at
infinity vanishes and the Bondi mass remains constant?

There have been various attempts to prove that, while solutions of the vacuum
Einstein equations can be genuinely periodic in a suitable time-coordinate (so not
time-independent), these solutions cannot be asymptotically flat. These started with
[15] and [16], with a summary in English in [17], and [24] and more recently was
considered in [10]. The method in [15] considers vacuum metrics which are everywhere
nonsingular, weak and asymptotically-flat and which can be expanded in a series in
some parameter, with the flat metric as the first term in the series. Each term in the
series is assumed to be periodic in a fixed Minkowski time-coordinate and to satisfy
the de Donder gauge condition. The second and third terms, call them vy, and wgy
respectively, are expanded as Fourier series in the background time-coordinate and
the Einstein equations then imply that v, satisfies the source-free wave equation, and
wqp satisfies a wave equation whose source is a quadratic expression in v,p. Assuming
that the solution for v, is everywhere regular, the author shows that there cannot
be an asymptotically-flat solution for wg;, unless v, vanishes. Therefore the space-
time is flat. In [16], a similar calculation when v, is regular only outside a certain
radius leads to the conclusion that wv,, must be time-independent in order to have
asymptotically-flat wgp, and the space-time is stationary. In [24] it was observed
by integrating the Einstein pseudotensor and matter energy-momentum tensor over
a 4-dimensional volume that “the mean value of power radiated by a periodic,
asymptotically Minkowskian gravitational field is equal to zero”. The question of
existence of periodic fields was left open. In [10] the authors used the spin-coefficient
formalism (see e.g. [14], [22]) to study the system of conformal Einstein equations
of Friedrich [5]. A coordinate system is based on two families of null hypersurfaces,
incoming from past null infinity Z— and labelled by constant v and outgoing near
7~ and labeled by constant . The authors make a definition of periodicity which
enables them to prove that, at Z—, the u-derivatives of all orders of all components
of the metric are independent of v. They conclude that if the metric is analytic in
these coordinates, then it necessarily has a Killing vector, which in these coordinates
is Oy, at least in a neighbourhood of Z~. Thus any analytic metric, periodic in their
sense, has such a Killing vector. While certainly correct, there is a problem with this
conclusion in that, by construction, the Killing vector is null wherever it is defined,
and reduces at Z— to a constant translation along the generators. These are strong
conditions and in fact no Killing vector in flat space has these properties (any null
Killing vector is necessarily a null translation, and a null translation is zero along one
generator of 7)f. Thus flat space is not periodic according to the definition of [10]

1 For example the null translation 0; 4+ 0, becomes 2 cos? (6/2) 8y on Z—, which vanishes at 6 = .
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and nor is any of the familiar stationary, asymptotically flat solutions, for example
the Schwarzschild solution.

For convenience, we follow [10] in working at Z~ rather than Z*, though this is
trivial to switch, but we shall make a weaker definition of ‘periodic in time’ which
will permit metrics stationary near Z~ and indeed will allow only these for analytic,
asymptotically-flat vacuum or electrovac metrics. We follow the method of [10] for
both the vacuum and electrovac field equations, deferring other cases to a second
article, but in a different coordinate and tetrad system. Our coordinate and tetrad
system is similar to the one used at Z in [14], and to prove the existence of a symmetry
at the event horizon in [11] and at a compact Cauchy horizon in [12]. We also differ
from [10] in the choice of conformal gauge. In [10] the unphysical Ricci scalar is set to
zero by a choice of conformal factor obtained by solving a wave equation. However,
the solution of the characteristic IVP for this wave equation as posed in [10] will not
in general be periodic, so that the rescaled, unphysical metric would not in general
share the periodicity of the physical metric - in fact, in the particular case of the
Reissner-Nordstrom solution this gauge choice is compatible with periodicity only for
zero mass, as we show in Appendix C. Thus we assume that there is at least one
conformal factor which is periodic and then modify this choice in the course of the
calculation in order to simplify the spin coefficients. From this point on, our method is
then essentially the same as in [10], though a little more complicated, and we arrive at
the same conclusion, but now with a Killing vector which is time-like in the interior,
at least near to Z—. The condition of time-like periodicity which we impose is as
follows: a space-time is time-like periodic if there is a discrete isometry taking any
point of the physical space-time to a point in its chronological future. To define time-
like periodicity at Z— for an asymptotically-flat space-time, we require this isometry
to extend to an isometry of a neighbourhood of Z— which preserves the generators
of Z7. In particular, we require the existence of at least one ) which conformally
compactifies the spacetime and preserves the periodicity. The isometry has to be a
supertranslation [22],

v—v+a(d,d), (1)

on Z~, in terms of the usual coordinates (v, 8, ¢) on Z~ and we shall assume that a # 0.
(We could imagine allowing a to vanish on some generators of Z—, since as noted above
periodicity along a null translation in flat space would appear like this at Z—, but this
would be null-periodicity rather than time-like periodicity.) We could assume further
that a is actually a positive constant but this turns out not to be necessary, as we shall
find that, for analytic space-times, this assumption of periodicity necessarily leads to
a space-time metric with a Killing vector which, in coordinates to be defined, is 9,
and is time-like near Z—. Our result is

Theorem 1.1. A weakly-asymptotically simple, vacuum or electrovac, time-periodic
space-time which is analytic in a neighbourhood of I~ in the coordinates introduced
below necessarily has a Killing vector which is time-like in the interior and extends to
a translation on I~ .

Thus there are no non-trivial time-periodic solutions satisfying these conditions,
in the sense that they would necessarily be actually time-independent if time-periodic.
In a later article, we shall prove the corresponding result for the Einstein equations
coupled to either a massless scalar field with the usual energy-momentum tensor, or a
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solution of the conformally-invariant wave equation with the energy-momentum tensor
from p125 of [18] (sometimes called the ‘new improved energy momentum tensor’).

The method of proof requires the assumption of analyticity. It was shown in [6]
that there are vacuum solutions analytic near Z—. However, one would like either to
drop the assumption of analyticity, for example following the lead of [7] or [9] with a
similar problem, or to prove that it follows from the assumptions of periodicity and
asymptotic-flatness. It remains to be seen in what circumstances this can be done
since, as noted above, there are non-analytic solutions with matter in periodic motion
and matched to a (static) Schwarzschild exterior.

While this work is primarily motivated by an interest in the possibility or
impossibility of helical motions, it is worth noting the connection with the question of
the inheritance of symmetry. Recall that, for a solution of Einstein’s field equations
with matter, the matter is said to inherit the symmetry of the metric if any isometry
of the metric is necessarily a symmetry of the matter. There are explicit solutions
of the Einstein-Maxwell equations known for which an isometry of the metric is not
a symmetry of the Maxwell field [13] but these solutions are not asymptotically-flat.
In [21] some other references may be found for explicit solutions with Maxwell fields
which do not share the symmetry of the metric. The same will be true for some
Robinson-Trautman solutions with null electromagnetic field which may depend on
time though the metric is static (see [21], §28.2) These solutions will very likely have
wire singularities extending to infinity. From Theorem 1.1 noninheritance cannot
happen with asymptotically-flat, analytic solutions:

Corollary 1.2. In any weakly-asymptotically simple, stationary electrovac space-time
which is analytic in a neighbourhood of T~ in the coordinates introduced below, the
Mazwell field is also stationary.

One can raise the question of inheritance also for Einstein-scalar field solutions but
the answer is rather different: for a massive (complex) Klein-Gordon field there do exist
solutions, the so-called ‘boson stars’, for which the metric is spherically-symmetric,
asymptotically-flat and static but the scalar field has a phase linear in time (see e.g.
[2]); however these solutions are not analytic at infinity and, by a scaling argument,
such solutions do not exist with massless scalar fields. In a later article, we shall
obtain this result as a corollary of the result corresponding to Theorem 1.1. In that
subsequent work we start from the conformal Einstein field equations with a general
energy-momentum tensor as a source and specialize them to scalar field cases.

In Section 2 we analyze the conformal Einstein-Maxwell equations. We first
rewrite Maxwell’s equations in the unphysical space-time, then translate the physical
Bianchi identities and obtain differential equations for the unphysical Weyl spinor and
Ricci spinor. In Appendix A we summarize a number of quantities, their relations and
behaviour under conformal transformations in the Newman-Penrose formalism ([14]);
these are extensively used in the main text and in Appendices B and C. In particular,
all conformal equations for the gravitational and electromagnetic field analyzed in
terms of spinors in Section 2 are projected on the spin basis (i.e. the null tetrad)
and written down in the Newman-Penrose formalism in Appendix B. In Section 3
a suitable coordinate system and a convenient Newman-Penrose null tetrad which
gives special values to some of the Newman-Penrose spin-coefficients are introduced
in the neighbourhood of Z—. As noted above, these differ from those used by the
authors of [10]. At he end of Section 3 we explain in detail in what our choice of
the coordinate system and the null tetrad differs from that of [10]. In Appendix C
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we demonstrate that in contrast to [10] our choice of gauge admits simple static (i.e.
“periodic”) spacetimes like flat space and the Reissner-Nordstrom metric. In Section 4
we follow [10] (although in a different conformal gauge) and study the problem in the
NP formalism in the unphysical space-time, with data on Z—. Assuming periodicity
along 7~ we first discover that the only possibility is the independence of all geometric
quantities of an affine parameter v along Z—. By induction we then prove that all
derivatives of all geometric quantities, including the physical metric components, in
the direction into the physical spacetime must also be v—independent. The proof of
Theorem 1.1 and Corollary 1.2 then follows from the assumed analyticity.

This paper arose from a collaboration after P. T. posted his work [23] on the
gr-qc arXive and J. B. informed him that he and his PhD. student M. S. were already
engaged in tackling the same problem [20].

2. The conformal Einstein-Maxwell equations

We first introduce conformal equations for the gravitational and electromagnetic field
in the formalism of 2-component spinors. In Appendix B these equations are written
down explicitly after the projection on a spin basis, in the form employed in the
Newman-Penrose formalism. In the physical space-time, Maxwell’s equations without
sources are simply§ (see e.g. [22])

VAY $ap =0. (2)

They are conformally invariant if under conformal rescaling the Maxwell spinor ¢ ap
tranforms with conformal weight 1,

bap =Qap, (3)

when the convention used in this article for conformal rescaling is €45 = Q leap.
From the transformation of the derivative operator (see (A12)), in the unphysical
space-time equations (2) become

vAA ¢ap = 0. (4)

The situation is more complicated in the case of the gravitational field. The
physical Bianchi identities read

ﬁg'@ABCD = ﬁ(Dc:ci)AB)C’D’a (5)

where U apcp and ®4pcrp are the Weyl and the Ricci spinor, respectively. Using
the rules for the conformal transformation of these spinors (eq. (A15) and (A17)) we
find

QQngwABCD = Q v%q)AB)C’D’ + (V(DA/Q) q)BC)C’D/ + V(DCCVA(C/VD’)B)S-L
(6)

where Yapcp = Q 'Wapcp. These equations are the physical Bianchi identities
written in terms of the quantities in the unphysical space-time. We simplify them by
employing Einstein’s equations in the physical space-time,

Papap =kdap dup (7)

§ Spinor indices are labelled by A, A’, B, B, ... and have values 0,1. The metric has signature -2.
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Here we used the fact that the physical scalar curvature vanishes for the
electromagnetic field; we put the constant factor k& on the r.h.s. of (7) equal to 1
following the convention of [14], unlike, e.g. [18]. From egs. (A15), (7) and (3) we
obtain

VaaVeyp=Q%dap dap — Q@apap. (8)

Applying Vg, symmetrizing and using Maxwell’s equations (4), we can express the
term containing the third derivative of {2 appearing in (6) as follows:

30200 0 pas VR + DocinViibap — QViePapop — (VieQ)®agopr-

Inserting this result into (6) we arrive at the conformal Bianchi identities for the
Einstein-Maxwell field expressed in terms of the quantities in the unphysical space-
time:

Véapop =30an ¢ap Ve + Qoap V(i dap)- (9)

Projecting these equations onto the spin basis we obtain the set of the equations which
are explicitly written down (using the NP formalism) in Appendix B, see (B5a)-(B5h).
Equations (9) are differential equations for the unphysical Weyl spinor. To obtain the
equations for the Ricci spinor we use the Bianchi identities valid for quantities in the
unphysical spacetime:

VOV apcp = V®apcip:- (10)
Combining the last two equations, we get
V(B(;q)AB)A/B/ =Yapop VEQ + 3Qdban dan Vg; Q+ @ QZA/B/V(BCI PaB)-
(11)

In the following we shall also need the expression for quantities V44 Vpp/ Q. Let
us decompose V44V g€ into its symmetric and antisymmetric parts,

1 !
VaaVeeQ=VauaVesQ + 5 can Vac' VG Q. (12)
The first term on the r.h.s. is given in (8), the second term can be decomposed again:
, / 1
Vac' VG Q=VeouVsa + 5 €4 O (13)

Since the operator VC,(AV% is just the commutator V[,V contracted by eA/Bl, it
annihilates scalar quantities. Using equations (8), (12) and (13) we obtain
- 1
VaaVep Q= dapdap — QPapap + 1 CAB €AB 0.
(14)
It will be convenient to introduce the quantity
]. ’7
F=3 Q1 (VaaQ) (VA Q), (15)

which can be seen to be smooth in the unphysical space-time from the rule for the
conformal transformation of the scalar curvature (A15) in the form

OQ=4QA — 4Q7'A + 4F, (16)
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since the physical scalar curvature A = 0 for the electromagnetic field. From equation
(14) we now obtain the following expressions for the second derivatives of :

VaaVpp Q=0 ¢apdap — QPapap + eapeap(F + QA).
(17)

Finally we wish to derive expressions for V 44/ F. Directly from the definition of
the unphysical Riemann tensor and from the decomposition (A3), we have

(VaaVpp —Vpp'Vaa) VBBIQ = —Z@ABA,B/VBB/Q +6AVaa Q. (18)

Employing Maxwell’s equations (4) and the contracted Bianchi identities (A21), we
find that equations (14) and (18) imply

VaarF = 0? ¢§ (Eg: Viepl — CI)ABA/B,VBB/Q + AV a4 0. (19)

3. Coordinates, tetrad and conformal gauge

We assume that we have an analytic, time-periodic solution of the Einstein-Maxwell
equations and an analytic, time-periodic conformal factor so that the unphysical metric
with Z~ also has these properties. We construct a convenient coordinate system and
a Newman-Penrose null tetrad in the neighborhood of Z~ (see Figs. 1, 2). We stay in
the unphysical space-time in order to include Z—. Let S C Z~ be a particular space-
like 2-sphere. We can introduce arbitrary coordinates 2/, I = 2,3 on S and propagate
them along 7~ by the condition

V!l =0, (20)

where v = v(v) is an affinely-parametrized null generator of Z=. We may set v = 0
on S. The triple (v, x?, 23) represents suitable coordinates on Z~. In order to go into
the interior of space-time we introduce the family of null hypersurfaces N, orthogonal
to Z~ and intersecting Z~ in the space-like cuts S, of constant v. Let 4" = +/(r) be
the null generators of the surface N, labeled by x!. Here, r is the affine parameter
which can be chosen so that » =0 on Z~ and g(dv,dr) =1 at Z—. We propagate the

coordinates v and 2! onto N, by conditions

Via! =0, Vv = 0. (21)
We thus have established a coordinate chart
o = (v, r, 2%, %), p o= 0,1,2,3, (22)

in the neighbourhood of past null infinity. ||

Next we construct a suitable Newman-Penrose null tetrad. N, are null
hypersurfaces v = constant, therefore the gradient of v is both tangent and normal to
N,; we denote it by

Nng=Vav. (23)
Since n® is tangent to 7/ along which only r varies,
0
- 2 24
"= o (24)

|| Components of tensors with respect to the basis induced by these coordinates will be labelled by
Greek letters p, v, .... Components with respect to an arbitrary tetrad will be labelled by Latin letters
a, b, ... from the beginning of the alphabet. Indices labelled by capital letters I, J,.. have values 2, 3.
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Figure 1. Construction of coordinate system.

On each cut S, : v,r = constant there exists exactly one null direction normal to S,
not proportional to n*. We choose the vector field [* to be parallel to this direction
and normalize it by nyl* = 1. It can be written in the form
0 0 0
l=— - H— + C'—.
v or ox

On Z~ [ is tangent to the generators v(v), so functions H and C! vanish on 7. The
conformal gauge can be chosen so that

09 _
or

(25)

1 on I°. (26)

Figure 2. NP null tetrad.

Let us now turn to the 2-spheres S, on which J; are basis vectors. Since S, is
a space-like sphere, we choose, following standard procedure, a complex vector m and
its complex conjugate m, such that

m*m, = 0, m*m, = —1; (27)
m has the form
; 0
Ox!’
where P2, P? are complex functions. The coordinates z! can be chosen to be the

standard spherical coordinates, 2 = (0, ¢). Then the appropriate choice of the null
vector m at Z~ is (see e.g. [22])

m =

(28)

1 1

b v .
e o e - 2 (00). e
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The vectors m,m are orthogonal to [ and n. The contravariant components of the
tetrad read

" =(1,-H,C* C%),
n* =(0,1,0,0), (30)
m* = (0,0, P%, P3).
The contravariant components of the metric tensor are given, regarding the relation
gtV = 21n) — 2mHm¥) | by the matrix

0 1 0 0
1 —2H c? 3
nv o __ _ _ _
g = 0 2 _9p2 p2 _p2 p3_ p3p2 (31)
0 C® -—p?2p3_p3p? —2p3 p3
Using (30) and the inverse of (31) we find the covariant components of the tetrad
vectors:
Z;t = (Ha 17 0; 0)7
n, = (1,0,0,0), (32)
my, = (wa 07 RQ; R3)7
where
p3 p?
Ry = —gmr——o Ry = oo,
pP2p3 — p3p2? pP3p2 — p2ps (33)
w = — CI R].
The covariant components of the metric are
2H —2ww 1 —wRy— @Ry  —wRs;—WR;
1 0 0 0
Guv = —LURQ —wRy 0 _gRQRQ ~ —RgRQ —ﬁgRg (34)
—wR3 —wR3s 0 —RsRs — RoR3 —2R3Rs3

The vectors [,n, m and m constitute the NP tetrad. However, it is not unique since
there is a rotation gauge freedom m — eXm which will be used later. Following the
standard notation of the NP formalism (e.g. [14], [22]), we define the operators:

D =1"V,, A = 1n*V,, 6 = m*V,. (35)
We shall also employ the spin basis (0?,:4) associated with the null tetrad,
o= ot e = AW, mt = oM (36)

normalized by 04 ¢t* = 1. Note that this coordinate and tetrad system has some more

gauge freedom associated with it. In particular we may make another choice Q) with
Q) = OQ) where O is also periodic and takes the value one at Z—. Thus

gab = Q_2gab = Q_2gab7
and 50 §qp = O2gap. We assume that © = 1+ f(v,r,2!) with f = O(r). This will
change the definition of the affine parameter 7 , to 7 say, and then we must accompany

the change of conformal factor with a null-rotation of the tetrad so that § is tangent
to the sphere S,;, thus

g = Ng,
Me = O(Mmg + Zng), (37)
lo =0%ly+ Zing + Zma + ZZn,),
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where Z, which parametrises the null rotation, is fixed by requiring of = 0; the
associated operators change according to

A =072A,
b =046+ ZA), (38)
D=D+ 25+ 25+ ZZA

With the coordinate v common to both systems, we define 7 as the affine
parameter with

A = O 2AF = 1.

This can be integrated to give

F = /r O%dr =+ O(r?), (39)

o

and we need

0

oF = 7167 + ZAF),
so that
7 = —-07%57,

which can be calculated from (39). Note that Z = O(r?). We shall need to exploit
this gauge freedom below. Next we examine what special values some of the spin
coefficients take due to the above choice of the null tetrad (we calculate for the
unhatted system, but the same relations hold in the hatted systems). Acting by
the commutators (A2) on the coordinate v, we find

Yy+5y =a+pf—-—7 =v = pu—p=0. (40)
Furthermore, commutators [§, A]r and [6, 6]r give
r—a—f=p—p=0. (41)

Applying the remaining commutators on the variables v, and 2! leads to the “frame
equations”, i.e. the equations for the metric functions H, C' and P!:

AH =—(e+9), (42a)
0H = — K, (420)
Act =-—27Pl — 27 P, (42¢)
spPl — spP! :( - B) Pl — (a-p) P!, (424)
A P! —(u—~y+75) P — P, (42¢)
sct — DPI —(p+e—& P — oPL (42f)

Since the generators vy(v) of Z~ are affinely parametrized null geodesics, DI* = 0 on
Z~. Comparing this with the general relation

Di*=( + &)l* — &m* — km*, (43)
we see that

e+é =r=0 on I . (44)



No periodic asymptotically flat solutions of the Finstein-Maxwell equations. 11

Next we wish to show that the freedom in choosing the basis (m,m) of the space
tangential to S, allows us to set v = 0. From the definition of v (eq. Al) we have
v — 4 = m*Amg,. Under the rotation through yx,

m® — eXm?, (45)

the quantity v — 74 transforms according to

Y=7 =7 + Ay, (46)
so by solving the equation

Ax =iy —7), (47)
and regarding (40) we can set

v =0. (48)

Because the A—operator is the derivative with respect to the coordinate r, further
rotation (45) with an r—independent function x does not violate the equality (48).
The quantity e — & under the rotation (45) transforms according to

e —&—¢e — &+ iDx. (49)
Solving the equation

Dx=i(e — &) (50)
on Z—, where r = 0, we set ¢ = & which, together with (44), implies

e=0 on I . (51)

To end this section, we exploit the gauge freedom (37) and (38) to achieve a further
simplification. From the commutator [6,A] (see (A2) with the values of the spin
coefficients fixed above) we calculate

fi=0"2(u+071A8),

so that we can set i = 0 by choosing

O =exp </ udr).
0

Having done this, we omit the hats.

In order to elucidate the differences between our choice of the coordinate system
and the null tetrad and those used by Gibbons and Stewart, we conclude this section
by giving the details of their construction. Instead of affine parameter r they use
coordinate u, defined as follows. Let S be a spacelike cut on Z= and N/, S C NV, a
null hypersurface such that the null generators of A are orthogonal to S. Now, the
real function u on N’ is defined in such a way, that u = 0 on S, and the (spacelike,
two-dimensional) hypersurface S, : u =constant is orthogonal to the null generators of
N'. The cut S, defines another null hypersurface N,, with null generators orthogonal
to S,. Coordinate u is obtained by setting u =constant on N,. Similarly, the family
of null hypersurfaces N} orthogonal to spacelike cuts S;, on Z~, with v being the
affine parameter along the null generators of Z, is constructed. Coordinates z! are
chosen freely on & and propagated into the spacetime along N’ and A,. Functions
o* = (u,v, 2%, 23) constitute a coordinate system in the neighbourhood of Z~.

The NP tetrad used in [10] consists of vectors [, tangent to N, n, tangent to
N, and m,m spanning the tangent space of S and propagated into the spacetime.
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Coordinate expressions of their tetrad read (this should be compared with our
expressions (24), (25) and (28))

I =Qd,, n=20,+C"9, m = Plo, (52)
where Q, CT and P! are metric functions. In this tetrad, following equation holds:
An® = —(y+7)n".

Therefore, the null generators of NV are geodesics, but u is not an affine parameter.

The periodicity of the spacetime is defined as the periodicity of all geometrical
quantities in variable v. It is shown in [10] that K = 9, is the Killing vector of the
metric and concluded that the spacetime is stationary. However, K is null everywhere
by construction as it is tangent to the null generators of N, while the stationarity
requires timelike Killing vector. Thus, it is impossible to conclude that the spacetime
is stationary from the fact that K is the Killing vector. As was mentioned in the
introduction, even the Minkowski spacetime does not posses Killing vector which is
everywhere null and tangent to Z—.

In the following, we use the coordinates and the tetrad introduced in the beginning
of this section. We show that K = 0, is the Killing vector null on Z~ but timelike in
its neighbourhood.

4. Proof of the theorem

Having chosen coordinates and tetrad and fixed special values of some of the NP
coefficients we now analyse all geometric quantities assuming analyticity in the chosen
coordinates and periodicity on Z~ in v. Following [10] we introduce the notation

So = DU, S; = 60, Sy = AQ,

U, 53
ﬁa n:071a273a47 ( )

where ¥,, are the NP components of the Weyl spinor (see eq. (A10)). In the case
of asymptotically-flat space-time they vanish on Z—, so assuming smoothness, the ¥,
are regular there. Tangential derivatives of the conformal factor vanish on 77, i.e.
So = S1 = 0, and so, again by smoothness, the quantity F' is regular on Z—. The
remaining component of V2 is S3 which is 1 on Z~ (cf. (26)), so that its tangential
derivatives also vanish on Z~. Equations (17) and (19) are explicitly written down in
the NP formalism in Appendix B as (B2a) - (B4c). Equations (B2d)-(B2j) show that
onZ~

1 _
F = 5(5052 - S151) Y0 =

o =0, (54a)
F =0, (540)
p =0 (54¢)
T =0 =68+ a=r, (54d)
ASy = 0, (54e)
ASs = 0, (54f)
AS; =0 (54g)
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Since F' = 0 on Z~, also the tangential derivatives DF' and §F vanish there. From
equations (B4a) and (B4b) we thus obtain
(I)OO = cI)Ol =0 on I . (55)

The metric functions P! on Z~ are given by (29). Inserting this expression into the
frame equation (42d) and using relation (54d) we find

1
o = —(3=——=cotf on I . 56
f=-575 (56)

The Ricci identity (A20¢g) now shows that
1
A + (I)ll = 5 on 7. (57)

In order to discover the behaviour of the other relevant quantities we shall take
into account the properties of the Bondi mass. In a general asymptotically flat
electrovacuum spacetime the total mass-energy at ZT is defined by the formula (see

e.g. [4])

Mp = — 2\1/%/015 (\1/3 + 50 30). (58)

By the superscript 0 we denote the leading term in the asymptotic expansion of
a quantity, superscripts 1,2, ... then denote higher-order terms, for example, ¢ =
7002 + 5102 + O(Q*). The rate of decrease of the Bondi mass is given by

. 1 -0=0 <0 =0
MB = — m dS g O + ¢2 ¢2 . (59)
The quantities o and ¢;, i« = 0, 1,2, are defined in (A1) and (A26). Following the

”conversion table” between ZT and Z~ (see (A14)), we analogously define the Bondi
mass at Z~ by

1 - <0 20
Mp = — ds (5 + XA ). 60
p=-gyz fas (84 23) o
Since radiation comes into the physical spacetime through Z— but can’t exit through

it, the total mass energy at Z— cannot decrease. Its rate of change in (advanced) time
v along Z~ is given by

. 1 :0 =0 =
MB:m/dS ()\ X+ ¢8¢2). (61)

Now we assume periodicity. But a non-decreasing periodic function must be a
constant. Hence, our assumption of periodicity of the mass-energy at Z— requires

A =0, ¢) =0. (62)
=0

The leading term in the asymptotic expansion of Wq is then ¥ = A\ = 0. Regarding

equations (A16) and (A18) and putting ‘ilg = (, we can write the asymptotic expansion

of Wy near 7~ as

T =05 Q° + O, (63)
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or (cf. eq. (53))

Yo = O(Q). (64)
Equation (63) implies

ATg=0 on 7~ . (65)
Similarly, eq. (A27), where we put (58 =0, implies ¢y € O(2) and

Ao = ¢y Sa on T~ . (66)

The geometrical quantities consist of the tetrad components, which give the metric
functions, the spin coefficients and the components of the Weyl and the Ricci tensor on
Z~. Because of our assumption of the periodicity of gravitational field, the geometrical
quantities are all assumed to be periodic in the variable v on Z~. We do not assume
the periodicity of the electromagnetic field since this field may not have the same
symmetries as the gravitational field (this is the issue of inheritance which we shall
return to). We have shown that the following spin coeflicients vanish on Z~ (and thus
do not depend on v):

H?p? 0-7 K)E)V7,Y)TF7T' (67)

The spin coefficients o and 8 are v—independent because of (56). Now we wish to
show that also the last spin coefficient X is independent of v. The Bianchi identity
(A23a) together with (65) and (55) shows that

D®yps =0 on I . (68)
If we now apply D to the Ricci identity (A20g), we get
D?X=0 on I. (69)

The general solution of this equation on Z~ is
A=2O 4 yA®), (70)

where A(® and AV are functions independent of v. Since X is assumed to be periodic
and a polynomial in v can be periodic only if it is constant, we get A = A(®) and

DX=0 on 7. (71)

(we borrow this style of argument from [10] where it is used extensively). The Ricci
identity (A20g) then implies

(I)OQ =0 on I°. (72)
The Ricci identity (A20h) on Z— becomes
A =0, (73)

and then by (57) ®1; = 1/2 there. Now from (A22¢) and D on (A20k), D®15 and
D®oyy vanish at Z—. We collect these results and some similar ones as a lemma:

Lemma 4.1. The following are zero on I~ :
H,C*, p,0,m K, € S0, 1, F, v0, ®oo, Po1, Loz, do, A,
DPA Do, DB, DSy, DX\, D®11, D® 5, D®oy, Dipy, Diby, Dips, Dipy, D1, Do,
DASy, DAS1, DAS,.
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Proof. The first line is done already, as is the second line up to D11, which comes from
(B5a). From D applied to (B5b)-(B5d) we obtain D?¢; = 0 whence by periodicity
Dvy; =0atZ—, in order for i = 2,3,4 . The same procedure applied to (A29a), (A29b)
takes care of D¢y, Dpo. Then the third line follows from D applied to (B2h)-(B2j). O

Now we turn to the proof of the Theorem. We set up an induction with
the following inductive hypothesis: Suppose inductively that 0,A7Q = 0 at I~ for

0 <j <k with @ one of

HaCIaPIaeaﬂ-a)‘7ﬁ7a7p70’7"<‘5F5wi5q)ija¢iaA (74)
and for 0 < j <k+1with @ =2S5;.
This is easily seen by the Lemma to hold for &k = 0, so we need to deduce it for j = k+1
from its truth for j < k. In this calculation, we use the fact that 9, = D at Z—, and

make extensive use of the commutators (A2). Under the inductive hypothesis, the
inductive step follows

o for H,CT P! from (42a), (42¢) and (42e);

o for €, A, 3, a, p, 0, k, respectively, from (A20f), (A207), (A207), (A201), (A200),
(A20n), (A20m) and (A20¢);

e for F' from (B4c);

o for ¢ and ¢; directly from (A29c¢) and (A29d) respectively; for ¢o, from (A29b)
we deduce at 7~

D*AM gy =0,
and then periodicity implies
DAF g, = 0;
o for v;,i =0,1,2,3 from (B5e)-(B5h); for ¢4, under the inductive hypothesis, we
deduce at 7~
D?*AM ey =0
from (B5d) and then periodicity implies
DAF Yy, = 0;

o for ®gg, Po1, Po2, P12 from (A22h), (A23b), (A22d) and (A23d) respectively, all
with W,, = Qpp; then for A, @11 and Pyy we use (A20h), (A24c) and (A20k).

This completes the inductive step for the first set of quantities Q). For @ = S; we use
DA**! applied to (B2h)-(B2j). Thus r-derivatives of all orders of the quantities in
(74), which includes the metric functions H,C! and P!, are independent of v. Now
analyticity in r forces these functions to be independent of v. Therefore, by (30), the
metric components are all independent of v and so K := 9/0v is a Killing vector of
the unphysical metric. However, for any j,

Oy AIQ = 9,AT71S,,
at 7~ and the r.h.s. vanishes for all j. Thus, by analyticity in r, {2 is also independent

of v and so K is a Killing vector of the physical metric too. The norm-squared of the
Killing vector is

g(K,K)=2(H — w).
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This is O(r?) at Z~ but there
A?g(K,K) =2A%H = —2A(e +&) =2

so that K is null at Z~ but time-like just inside: the metric is stationary. O

This completes the proof of the theorem. Note that we have shown that, under the
assumption of periodicity of both fields are necessarily time-independent. A slightly
different question is whether a stationary asymptotically-flat gravitational field might
be produced by an electromagnetic field which is not itself stationary. The content of
the Corollary 1.2 is that the answer is no.

Proof of Corollary 1.2. Starting from the assumption that the metric admits 9,
as a Killing vector, we want to show that this is also a symmetry of the Maxwell field.
We have

o = 0% ¢, ¢, (75)
and 8yi>ij = 0 so that, for some x possibly depending on v, we have
¢i = e Xy, (76)

where ¢; is v—independent. From the Maxwell equation (A29a), with ¢9 =0 on Z—,
we find 1 Dx = 0 on Z~ so that Dy = 0 unless ¢; = 0 there. If ¢1 = 0 there, (A29b)
gives Dx = 0 unless ¢ = 0, so we can conclude that D¢; = 0 on Z=. Now we set
up an induction to show that DA"¢; = 0 on Z~ for all n € N and ¢ = 0,1,2. The
inductive hypothesis will be

(VE < n)(Vi € {0,1,2})(DA*¢p; =0 on I7). (77)

Then by DA™ on (A29¢) and (A29d) we obtain this for k =n + 1 and ¢ = 0,1. For
i =2, DA™ on (A29b) gives

D?*A™" gy =0 on I7, (78)

which integrates to give A"*1¢y = av+b. This would contribute a v—dependent term
to @9 at O(22"+4) a contradiction unless a = 0. Then DA" "¢y = 0 on Z~, which
completes the induction.

By assumption, the Maxwell field is analytic and so has a convergent power series
in r near to Z— and we have shown that all coefficients are v—independent. Since the
spinor dyad is Lie-dragged by the Killing vector, this proves that the Maxwell field is
too: in this situation the Maxwell field inherits the symmetry. O
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Appendix A: The Newman-Penrose formalism and conformal
transformations in Einstein-Maxwell spacetimes

Al. Gravitational field

In the NP formalism, the spin coefficients are the Ricci rotation coefficients with
respect to a null tetrad {l, n, m} with the corresponding spin basis 04, t4; they encode
the connection. The twelve independent complex coefficients are defined by (see e.g.
[22], [14] for details)

k =m®Dl, = 02 Doy, 7 =m%Al, = 0% Aoy,
o =m%l, = 0A50A, p=m%l, = OASOA,

1 a —a A 1 a —a A
Eza[nDla—mDma]zL Doy, ﬁza[néla—méma]:L doa,

1 1 _ _ _ (Al)
T=3 [n®Al, — m*Amg] = Aoy, a= 3 [naéla — maéma] = 14504,
T =nDm, = LADLA, v=nAm, = LAALA,
A =n%%m, = 04, ©w=mnm, = 1A,

where D =V;, A=V, § =V,,. Acting on a scalar, the operators D, A, obey the
commutation relations:

DS — 6D =(m—-a—B)D—kA+(p—E+e)d+ 06,

AD — DA=(y+3) D+ (e+8)A - (T+m)d— (1+7)0,

- A2
A — 0A =D+ (a+B8—7)A+(y—5—u)d — A, (42)
8 — 306 =(u—p)D+(p—pA+(a—p)—(a—pB)o.
The Riemann tensor can be decomposed as follows:
Rapea = Cabcd
+ ®apcrp €arp €cp + Papcep €an €cip (A3)

+ A (eac €Bp + €Bc €AD) €arpr €c'pr
+ A (earcr €p'pr + €pror €arpr) €AB €CD-
The first part is the Weyl tensor whose spinor equivalent is the totally symmetric Weyl
spinor ¥ 4o p:
Cabed = Vapcp ean €c'pr + Varpcip €ap €cp. (A4)

The scalar A is related to the scalar curvature R by
1
A=—R. A5
51 (A5)

The symmetric Ricci spinor ® 4oy pr is equivalent to the trace-free part of the Ricci
tensor:

Rab:—2q)ABA/B/ + 6A€AB €EA'B’. (A6)
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The spinor equivalent of the Einstein tensor is
Gay = —2Puaparpr — 6AMNeapean, (AT)
and the spinor equivalent of Einstein’s equations is

Paparp =—3ANeapean + 47Tapap . (A8)

Taking the symmetric part or contracting them with e4? eAlB/, respectively, we obtain

two equations, equivalent to (AS8):

Papap = 47T (aBya'B) (A9)
A A
3 A = 7TTA A’
The five complex components of the Weyl spinor are
Uy = Capeal®mlI®mé =V agop OAOBOCOD,
Uy = Coupeal®nbl®m?® =V apop OAOBOCLD,
Uy = Coupeal®mPmn® = U agop OAOBLCLD, (A10)
Uy = Cabcdl“nbmcnd =VUuBcD OALBLCLD,
U, = Cabcdmanbmcnd =UuBcD LALBLCLD.
The traceless Ricci tensor has the following components (3 real and 3 complex):
]. ’7 ’7
Qg = *iRablalb =D pap0?oPot o,
]. _ /_ ’
Oy = *iRablamb =®apap oot P,
1 _ /_ !
Dy = *ERabmamb =D pa g0t
1 (A11)
by = _ZRab (la’nb + mamb) = (I)ABA/B/OALBéA B R
1 ! ’
(I)lg = —§Rabn“mb = (I)ABA’B’OALBZA ZB )

’ !
b B+A ZB )

1
Doy = —§Rabnan =®papttiBi

The three remaining components can be obtained via the condition ®;; = ®;;. Under
the conformal rescaling ga, = Q22§45 the covariant derivative acting on a 2-component
spinor transforms as

Vaakp =Vaakp + Q14 VpaQ (A12)

The NP quantities also transform. To find relations between the physical and
unphysical quantities we have to transform the null tetrad. We wish to keep
Ng = Mg = Oqv so the correct choice is

A 6A, A:Q—le,

o = v op = Qou, ta = IaA,
'y 9~ _ ~ _ = a
v =12, n® = Q720% m®* = Q'm*, m* = Q 'm (A13)
2"’ ~ ~ _ =
lo = Qg ng = Mg, me = QMg , Mq = QMyg,

from which the transformation of the spin-coefficients can be found.

The geometrical meaning of the spin coefficients depends on the choice of the null
tetrad. With our choices, the vector [ is pointing into ZT, while n is tangent to ZT.
On Z— the role of these vectors is interchanged, n is pointing from Z— and [ is tangent
to it. To convert quantities from Z* to Z~ we have only to switch the spinors o and
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14 (and adjust some signs). The correspondence between the quantities on Z+ and
7~ is given in the following table:
K < v, T <,
o = A p =
€ <= 7, a < f, (A14)
U o Uyn, Py = Pe_pe—))-
The scalar curvature and the Ricci spinor transform according to the formulas
R=02R — 6000 + 12¢°° (V,.Q) (V,Q), (A15)
Daparn = Paparp +Q ' Vau Vs,
the NP components of the Weyl spinor as
¥, = Q"U,. (A16)
The Weyl spinor is conformally invariant with weight zero:
Vapep = Vagep - (A17)

Because the physical Weyl spinor vanishes on Z—, so does the unphysical one, and
assuming smoothness is therefore O(€2). Then we get

T, € 0OQ™ ). (A18)

The Ricci identities can be written in the spinor form as follows:
VA/(AVg/)gC = Uapcpt” — 20 a0,
VA(A/ng)ﬁc = dopaptl.

Substituting the basis spinors o4 and ¢4 for £4 and projecting the last equations onto
the spin basis we obtain the Ricci identities in the NP-formalism:

(A19)

Dp—5ﬁ=p2+(e+€)p—f£(3a+5—7r)—TR—i—U&—i—(I)OO, (
Do—-dk=(p+p+3—¢&o—(tr—7+a+30)k+ ¥, (
Dr—Ax=p(t+7)+0o(T+m) + (-7 —By+7)k+ ¥1 + Do, (A20c¢
Da —de = (p+&—2)a+ 6 — Be — kA — Ry + (e + p)m + P10, (

DB —de=(a+mo+(p—8)B—(u+7)k—(a@—T7)e+ Uy, (
Dy—Ae=(r+m)a+(F+m)B—(e+&)y— (y+F)e+7m — vk

+ Wy — A+ Py, (A20f)
DN—édn=(p—3e+EA+aou+ (m+a—F)7 — vk + P, (A209)
Dp—ér=p—-—c—e)p+or+ (1 —a+ )1 —vi+ Vs + 24, (A20h)
Dv—An=(m+7T)p+T+1)A+(y—3)1— Be +&)v+ Vs + P9y, (A209)
AN—0v=—(u+ia+3y—F)A+ Ba+f+r—7)v— Uy, (A20))
Ap—o0v=—(u+y+3)pu— I+ o7+ (a+38—7)v — g, (A20k)
AB—Sy=(a+B—T)y—pur+ov+ev+ (y—7—p)B —a\ — &, (A20])
Ac — 6T =—(u—3y+7)0 —Ap— (T + B —a)T + ki — Dpg, (A20m)
Ap—6T=(+7—[)p—0A+(B—a—7)T +vk— Uy —2A, (A20n)
Aa—dy=(p+e)v —(T+BA+ (T — ma+ (B —T)y — s, (A200)
5p— b0 = (a+B)p— (3a—PB)o+(p—p)T + (u— i)r — U1 + Pou, (A20p)

dae =63 = pp — Ao+ aa+ B —2a8 + (p — p)y + (n — p)e — Vo + A+ P11, (A20¢)
SN =op=(p—pv+ (p— @7+ (a+ B+ (a—35)A - Uz 4 gy. (
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The spinor form of the Bianchi identities is

, 3
Vi Vapep = Vi ®pcan + ecaVpypA — 3 €AB Veop A
(A21)
Projecting these equations onto the spin basis leads to the Bianchi identities in the

NP formalism:

DlI/l — S\IIO — DCI)Ql + 5(1)00 = (71' — 40&)\110 + 2(2p + E)\Ifl — 3[%‘112 + 2,"6(1)11

- - - - (A22a)
— (T —2a —28)Poo — 2010 — 2(p + €)Po1 + EPo2,
DUy — 60y + Adgy — §®g; + 2DA = AV + 2(1 — @)Uy + 3p¥, — 2603 (A220)
+2p®11 + P2 + (27 + 27 — 1) Poo — 2(a + T)Po1 — 27 P10,
DUz — §Uy — D®yy + §Bog — 20A = —2\U; + 370, + 2(p — &)Uz — kTy (A220)
F2ud1o — 27Dy — (20 + 7 — 20)Pag — 2(p — €) Doy + FPoo,
DUy — U3 + Adyy — §Pg; = —3AWs + 2(a + 27) U3 + (p — 4e) Uy + 20® (A224)
—2AP1; — (27 — 27 4 [1)P20 — 2(T — a)Pa1 + 7 P22,
AW — 31 + Doy — 8001 = (4y — 1) ¥o — 2(27 + H)¥1 + 300 (A230)
+(p+2e —28)Pp2 + 2011 — 26P12 — AP + 2(7 — ) Doy,
AUy — WUy — Adgy + 6Py — 26A = v + 2(y — u)\If_l — 370Uy + 2005 (A230)
—v®oo + 2(n —7)Po1 + 2o+ T — 20)Po2 + 27P11 — 2pP12,
AUy — W3 + DPyy — 5(1)21:}— 2AAN =200 — 3uTUy +2(6 — 7)¥3 + 0y (A230)
—2u®11 — ADoo + 27P15 + 2(6 + T) P21 + (§ — 26 — 28) Doo,
AUs — 60y — Adgy + P = 30Uy — 2(y + 2u) U3 + (48 — 1)Uy — 0Py, (A234)

—0®Pog + 2AP 15 + 2(y + 1) Doy + (T — 26 — 20) Pag,

D®y — 6®1g + Adgy — 0Pg1 +3DA = (2 + 25 — pp — i) Poo + (7 — 200 — 27) Py
+ (F—2a—27)P10 4+ 2(p+ p)P11 + P2 + 0Py — FP12 — kDo, (A24a)

D®ig — P11 + ADg; — 5@02 +30A = (27— p—20)Po1 + 0Py — 5\@10

~ A24b
+2(F—7)P11 + (T + 26— 20— T)Pg2 + (2p+ p— 28)P12 + 0Pa; — kDo, ( )

D(I)QQ — (5(1)21 + Aq)ll — 5@12 + 3AA = I/(I)()l + 17(1)10 — 2(M + ‘L_L)q)ll — )\@02 — 5\(1)20
+ (271 =T+ 2B)P12 + (28 — 7+ 27)Po1 + (p+ p — 26 — 28)Pos. (A24c)
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A2. Electromagnetic field

For the description of an electromagnetic field we use the electromagnetic field tensor
F,p and its spinor equivalent ¢4 p:

Fuy=dap ean + dap €ap. (A25)
The NP components of the Maxwell spinor are defined by

do=Fup1°m® = ¢ap ot oP
1
o1 = 5 Fab (197" — m*mP] = ¢ap o P (A26)
¢2 =Fgpm®n’ = ¢ap 1P
The conformal transformation of these quantities is given by
bap = Qoap, ¢ = Q¢ (A27)

Maxwell’s equations without sources are equivalent to the (conformally-invariant)
spin-1 zero-rest-mass equation

Vf‘m dap = 0. (A28)
Projecting this onto the spin basis we obtain Maxwell’s equations in the NP
formalism:

~ o~~~
= >

o N

o ©

> 8

S~— N

>
Do
e
&

Do — d¢o = (1 —2a)¢o + 2pp1 — K2,
D¢y — d¢1 = —Apo + 2w + (p — 2¢)¢o,
Apo — 0¢1 = (2v — p)po — 27¢1 + 0@,
Ay — ¢ =vgo — 2upr + (28 —7)pa.

>
0
©
o

Appendix B: Conformal field equations

B1. FEinstein-Mazwell fields

The projections of the equation (17),

VanVee Q=0 ¢apdap —QPapap + (F+QA)eapeasp, (B1)
onto the null tetrad imply the following system of equations:

DSy + (e+&)So + ES1 + kS = DBodo — QPoo, (B2a)
DS, — @Sy + (6—¢)S1 + KkSo = Whod1 — QDo (B20)
680 — (@+B)So + pS1 + oS = Ppod1 — QPo1, (B2¢c)
851 — ASy + (@—pB)S1 + 05 = PBoods — QDgo, (B2d)
DSy — F — QA — 781 — 781 + (e +8)S2 = VP11 — Qbyy, (B2e)
681 + F +QA — uSo + (B—a)Sy + pSy = d1¢1 — QPyy, (B2f)
88y — uS1 — AS1 + (a+B)S, = Pp1ds — QPio, (B2g)
ASy — F — QA — (Y +73)So + 751 + 751 = Q®p1d1 — Qb4 (B2h)
ASy — Sy + (7 —7)S1 + 752 =Wp1dy — QP1o, (B24)
ASy — vS, — vS; + (v +7)S2 = Doy — QPoy. (B2))
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The projections of the equation (19),
VaarF = Q2¢§(E§:VBB/Q — (I)ABA/B/VBB,Q + AV 0, (B3)

give

DF = —8y®11 + S1 P10 + S1Po1 — S2Po0

+ O [So1 ¢1 — S16h1 do — S1bo d1 + Sacdo do] + A S, (B4a)
OF = —Sy®12 + S51®11 + S1Po2 — S2Pon

+ Q% [So¢1 d2 — S11 b1 — S1¢o ha + Sacho h1] + A S, (B4b)
AF = —Sy®os + S1Pa1 + S1 P12 — S2®1y

+ Q7 [Sogp2 d2 — S1p2 b1 — S161 h2 + S2b1 d1] + A S (B4c)

The conformal Bianchi identities (9) for the Einstein-Maxwell field projected onto the
spin basis imply the following system:

Dy — 6vpg = (1 — 4a)g + 2(e + 2p)h1 — 3kaby — 3S1¢0d0 + 3Sodod1
+Q 200100 — 2B¢odo + 2edod1 — 2kp1¢1 + doddo — ¢1 Deb),
Drpy — d1p1 = —Mthg + 2(m — )by + 2pthe — 2k1b3 — Sagodo — 2510100

+250p101 + S1¢0d1 + % Q[podp1 — p1Dp1 — (v + p)dodo
+7d100 + (@ + T)Pod1 + 0dado — pP1d1 — Kpadn] + %Q (oA — p1660] ,
Dips — 6vpa = —2\th1 + 3miha + 2(p — €)b3 — Kths — 28210 — S1¢2¢0 + Sopad1 + 25111

(B5a)

(B5b)

+§ Q[—veodo — pd1do + Abodr + (B + T)d2do + mhp1d1 — (€ + p)dad1 + doAdy — ¢1661]

+% Q [¢od¢2 — ¢p1 Do ,
Doy — bips = —3Ma + 2(a + 2m)1hs + (p — 4€) s — 3S22¢0 + 3510201
+Q [¢oAds — 1002 — 2vP1¢0 + 27Pado + 2AP11 — 20261 ]
Stp1 — Anpg = (u— 47)bo + 2(B + 27)1 — 3092 — 3S1¢0¢1 + 3Sododa
+Q [-2B¢0d1 + 20101 + 2edod2 — 2kp1¢2 — 2 Do + P18¢0],
Stha — Ay = —vipg + 2( — Y)Y1 + 3P — 2013 — Sadodr — 2519101 + 250191 + S1¢0P2

+§ Q[ (v + p1)pod1 + o161 + 0pad1 + (T + @)oo — pd1d2 — Kpads

+610¢1 — pa D] + % Q [¢18¢0 — ¢20¢] ,
5thg — Ay = =201y + s + 2(7 — B)hs — oPs — 25211 — S1dadr + Soaga + 251h1h2

(B5¢)

(B5d)

(B5e)

(B5/)

‘% Q—vdod1 — pd1d1 + (B+ 7)d2¢1 + Ao + Th102 — (€ + p)pad2 + d1AG1 — P20¢1]

+% Q [p16¢2 — 2 Do,
6thy — Aps = —=3uthy + 2(2y + 2u)hs + (T — 48)1bs — 3520201 + 3516102
+Q [2v¢101 + 270201 + 2XP1d2 — 2ad202 + P1 APy — G202 .

(B59)

(B5h)
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Appendix C: Reissner-Nordstrom spacetime

To justify our choice of gauge and show that the choice made by [10] is too restrictive
we shall show here how a simple space-time, namely, the Reissner-Nordstrom solution,
appears in our gauge. The physical metric is

2 2 2 2\
ds? = (1 - = %) dt® — (1 - = f—) i — 7 A2, (C1)

where @ is the charge and dX? = df? + sin?6d¢?. In the standard conformal
compactification of the Reissner-Nordstrom spacetime one introduces the “tortoise
coordinate” r* and the advanced time v by

T 72 (C2)
v=t + r*.
In these coordinates the physical metric acquires the form
22 2m  Q? 2 * =2 132
ds (17+F_2) (dv*® — 2dvdr*) — 72 d%?, (C3)
We compactify it by defining the coordinate
r=7! (C4)
and the conformal factor
Q=r. (C5)
The unphysical metric then reads
ds®* =r* (1—-2mr+Q*r®) dv® + 2dvdr — d* (C6)
Comparing this with (31)-(34) we find the metric functions to be
H = %7‘2 — mr® + %Q27‘4,
ch=o,
pe_ L (c)
ok
3 i

N V2 sin@’
From the metric the other geometrical quantities follow. The spin coefficients are all
zero, except for

€ = f§r+ ;mTQ Q?r3,
. (C8)
a=—0F=— m cot 6
The non-zero components of the Weyl and Ricci tensor read
Yo =m—Q%r,
@11:1—gmr+;Q2r2, (C9)

2
1 1
A :§mrf§Q2r2.



No periodic asymptotically flat solutions of the Finstein-Maxwell equations. 24

The electromagnetic 4-potential and corresponding electromagnetic tensor in these
coordinates are

Au = (QT705070)5
Fp,l/ = 7Q€p‘1/23~

The only non-vanishing NP component of F),,, is

o1 = Q, (C11)

as one would expect. All these results are in accordance with results obtained in the
text. On the other hand, the gauge condition A = 0 everywhere, imposed in [10], leads
to a periodic unphysical metric only if m = 0, i.e. flat spacetime. This can be seen as
follows: we need to rescale the metric (C6) say to

(C10)

gab = 6_29ab
so that, by (A15),

A 1
A=o7*©OA+,06) =0,

where the boundary conditions on © are that © = 1 on r = 0 and, say, v = 0 (in
order to preserve the conditions that p =0onr =0,y =0o0onv =0and ©® =1 on
v =r =0). With the metric (C6) this wave equation on © becomes

20,0,0 = 0,(A9,0) — L?© — 2(mr — Qr?)0, (C12)
with A = r%(1 — 2mr + Q?r?) and
1 0 (00 1 0%0
1’6 = sin 90 <%) * sin2f 962
Now from (C12) evaluated at = 0 we calculate 9,0,0 = 0 so that 9,0 is constant
on Z~, but it vanishes at v = 0 so it is zero for all v. Then from (C12) again at Z—,
87183@ = —m.

Thus © cannot be periodic in v unless m = 0, in which case the physical metric is
flat.
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