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Abstract.
Making use of a minimal action principle, in this work we derive the dynamics

of a test rigid body moving in a curved spacetime by means of a parametric
invariant lagrangian formalism. In doing so we complete a line of research
due to Bailey-Israel and Anandan-Dadhich-Singh. This is accomplished through
the following new contributions: by fixing the lagrangian of the system, the
elaboration of a complete variational procedure, the formulation of a rigidity
constraint and the derivation of conserved quantities, already found, but in a
very different form, in other approaches to the problem. The dynamics and the
equations obtained are also generalized to all orders in the metric expansion by
means of new mathematical tools. Besides, by a selection of an appropriate spatial
section of the body world-tube, we obtain the simple Papapetru expression of
the canonical momentum which, remaining unchanged to all orders, contributes
to some reductions of complexity of the dynamics. Finally, in the quadrupolar
approximation, applications of our results are presented in the form of useful
observables in the context of ideal tests in general relativity
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1. Introduction

The quest for a relativistic theory of extended bodies is a long-standing problem,
having important implications in general relativity and in astrophysics. In the
multipole extended body formalism - originally due to Mathisson[1], developed by
Papapetru[2], and Taub[3] and culminating in 1974 with the elegant Dixon theory[4]
- the dynamics are obtained by integrating the conservation equation ∇νT νµ = 0 on
the body world-tube and using multipolar expansions, with various ad-hoc choices
and settlements (for an historical conceptual review see Dixon[4] (1974)). In order to
reduce the mathematical complexity of the Dixon theory, a very different approach to
the problem was realized in 1980 by Bailey and Israel [5]. In that work the authors
studied, by an ’eccentric variational’ method, the equations of motion of a collection
of identical point-like charged sources, which, in the case of null charge, reduced to
a fluid of incoherent matter. Although the Bailey and Israel approach was more
simple than the Dixon one, generalizations of the work to other more interesting
non-charged matter configurations, having internal interactions, was not given by the
authors and, up to now, any realistic modelization of an extended body coming from
such an approach remains not carried out. This is due to the fact that the eccentric
variational method of Bailey and Israel was essentially an n-body problem, a non-
obvious coarse-graining procedure of average being required in order to obtain the
dynamics of the collective extended body variables.

On the other hand, a general reduction of complexity of the dynamics of an
extended body can be obtained by the notions of test body and rigidity. For
example in the Dixon works [4] (1970a and 1979), the interdependence between the
energy-momentum tensor and the gravitational self-field of a body involves many
complications, so that relevant simplifications descend from the use of the test body
approximation. Likewise, although no body can be actually considered as a rigid
object, owing to the underlying inertial stress caused by rotation and curvature, in
spite of its high abstract content, the notion of rigidity appears as another powerful
concept. In the past, different constraints were imposed in order to implement the
abstract idea of rigidity in general relativity (for a discussion see [4](1979) and [6]).
Nevertheless, in spite of the simplifications introduced by both the notions of test body
and rigidity, concrete applications of the Dixon theory have been scarcely studied (see
[7] and references therein), because, notwithstanding its elegance, it appears formally
intricate and, in some respects, too general.

In the restricted domain of the test body approximation, another attack to the
complex dynamics of an extended body was realized by a collection of studies based
on classical action principles (see Frenkel[8] and Barut[9] for the special relativistic
case of spinning particles in electromagnetic fields and Kunzle[10] and Souriau[11] in
Einstein-Maxwell fields). In all these works, the variational procedure was carried out
without specifying the functional lagrangian form. The most important result of this
approach appeared in 1975 and was again due to Bailey and Israel (BI)[12]. In that
work the body was abstractly modelized as a point-like object having a spin angular
momentum described by the gyration of an orthonormal tetrad ea

ν , defined on the
particle world-line, and experiencing an arbitrary unspecified multipole coupling with
the external gravitational field. The evolution of a spinning test body in a curved
spacetime was then obtained by means of a minimal action principle applied to a
parametric invariant lagrangian L, whose general functional form, also in this case,
was not specified, the resulting equations of motion being, as a consequence, only
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the general abstract dynamics obeyed by any model of a spinning multipole particle.
No explicit model of test body derived by a minimal action principle ’a la BI’ was
known until the recent publication of the Anandan, Dadhich and Singh (ADS) work
[13], which give some progress. In this paper appears, for the first time, the part of
the lagrangian coming from the external coupling to the spacetime. However, as in
the BI work, the explicit connection between the internal degrees of freedom of the
lagrangian was not identified so that, using a non complete variational approach, ADS
partially derived the equations of motion by a minimal action principle applied only
on trajectory variation but not on the rotational quantities variation. For clarity, let
us resume the main ADS formalism.

In the starting point ADS consider a general action of an extended body

S =
∫

∆

L
√
−gd4x, (1.1)

the integral being extended over a world tube ∆ in spacetime whose thickness Λ is
assumed small compared to the radius of curvature R. The lagrangian L nominally
encodes all the properties of a rigid body, vaguely defined as a body ”...subject only to
external gravitational forces and no other forces.”[13]. Besides, the multipole structure
of the body is expressed through the following definitions of 2n-multipole moments

tκ1...κnµν =
∫

δyκ1 ...δyκn
√
−gTµνwρdΣρ, (1.2)

with δyµ = xµ − γµ, the 4-velocity γ̇µ = dγµ/dλ = (1, 0, 0, 0) being the tangent
vector of the reference world line γ (λ) of the body. In this expression, the integral
domain is extended over an unspecified arbitrary space-like hypersurface identified by
the unit normal vector field wρ. The ADS multipole moments are thus defined by
means of normal coordinate systems related each others by linear transformations.
All the final results obtained by ADS in this class of coordinate systems are then
inductively extended to a general coordinate system. The progress obtained by the
ADS method relies on the identification of every coupling of the gravitational field
with the multipole moments (1.2), a question not answered in the BI work. In
fact, the core of the ADS method is based on the expansion, around the reference
world-line z, of the action (1.1) with respect to the first order metric variation,
δgµν = gµν,σ

∣∣
zδy

σ + 1
2gµν,σλ

∣∣
z
δyσδyλ+... and on the use of the canonical definition of

the energy-momentum tensor in order to obtain, from (1.2), the multipolar expansion
of the action. The final step of the ADS method consists to write down the resulting
multipolar expansion of the action in a BI-like formalism

S =
∫

γ

L [g, δg] dλ + O
[
(δg)2

]
, (1.3)

and to extremize this action (δS = 0) in order to derive the equations of motion.
In spite of this progress, the ADS strategy does not find L [g, δg] completely,

because two important quantities remain unrelated: the spin tensor and the Ricci
rotation coefficients. Furthermore, ADS do not use a parametric invariant formalism,
so that they define the canonical momentum up to a unknown term transversal to
the four velocity, while the minimal action principle is applied only to the trajectory
variation, the spin evolution being derived simply by induction from a corresponding
Newtonian scheme. In addition, the following inductive procedure adopted by ADS,
crucial in order to obtain a covariant generalization of the Newtonian multipole mo-
ments,
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g00,ij

∣∣
zI

ij = −2R0i0j

∣∣
z
Iij

→ g00,ij

∣∣
zt

ij00 = −2R0i0j

∣∣
z
Iij

→ gαβ,µν

∣∣
zt

µναβ = −2Rαµβν

∣∣
z
Iµνuαuβ , (1.4)

inevitably does not possess an univocal character, the definition Iij ≡ tij00 being not
used in the same way in all occurrences of Iij .

The present paper is devoted to complete this BI-ADS works and to supply to
various inadequacies again existing. This is useful because, in concrete applications
of the test body dynamics, the BI-ADS approach is more simple and manageable
than the Dixon theory. Our new contributions are obtained primarily by finding the
explicit dependence of the lagrangian on all the observables and by the elaboration of a
complete variational procedure applied on all the variables introduced, successively by
the formulation of a mathematical well defined rigidity constraint and the derivation of
conserved quantities, similar to those already found, but in a very different formalism,
in other approaches to the problem[4][5]. The dynamics and the equations obtained
are also generalized to all orders in the metric expansion and this is made possible
thanks to a new covariant Taylor expansion of the metric field. Besides, by a space-
like section of the body world-tube, selected orthogonal to the reference world-line,
we obtain the simple first order Papapetru [2] expression of the canonical momentum
which, remaining unchanged to all orders in our work, contributes to some reductions
of complexity of the dynamics with respect to the other approaches (compare the
Dixon-Ehlers-Rudolph canonical momentum [4](1979)[6] with our expression (6.5)).
Finally, in the quadrupolar approximation, applications of our dynamics are presented
as typical examples of quantities relevant in the context of ideal tests in general
relativity.

The structure of the present work is the following. Without use of normal
coordinates of ADS, in Section 2 we give a new covariant expansion of all quantities
involved. This is necessary in order to adopt a clear and manageable BI parametric
invariant formalism and in view of generalizations. In Section 3 we re-define the
multipole moment tensors in a general coordinates system and, by a generalization
of the ADS method, we formally expand the lagrangian to all orders in the metric
variation. The abstract structure of the lagrangian is found in Section 4 by adding
to the system, as in the BI formalism, internal degrees of freedom represented by
the vectors of an orthonormal tetrad, co-rotating with the rigid body, the gyration of
which simulates the angular velocity observable. In Section 5, we find univocally the
explicit form of the parametric invariant lagrangian, which is formally equivalent to
a multipolar particle having the Lorentz subgroup of spatial rotation Lrot as internal
symmetry. Then, by the assumption of a rigidity constraint, in Section 6 we apply a
minimal action principle on a trajectory variation and on a tetrad variation, thus
obtaining the equations of motion to all orders and without the use of the ADS
Newtonian generalization (1.4). In Section 7 we derive the conserved quantities related
to cyclic variables of the lagrangian. Finally, in view of applications, in Section 8 we
give examples of these conserved quantities up to quadrupolar expansion, as well
explicit illustrations of useful classical-like observables, such as relativistic principal
axes of inertia and relativistic ellipsoid of inertia surface, both related to the relativistic
analogous of the Euler equations.

Throughout the text, unless otherwise specified, use has been made of natu-
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ral units: c = 1. The metric signature is +2, with determinant g. The dual of a
second-rank antisymmetric tensor Tαβ is defined as ∗Tαβ = 1

2ηαβµνTµν , where, in a
{xµ} coordinate system, the Levi-Civita tensor is ηµ1µ2µ3µ4 =

√
−gδµ1µ2µ3µ4 , with

δµ1µ2µ3µ4 = +1 (−1) for an even (odd) permutation of 0123. As usual εβµν will stand
for the contraction of the Levi-Civita tensor with the velocity, i.e. ηβµναuα.

2. Covariant expansion of the metric

In this Section we establish in a covariant way the expansion of a parametric
invariant lagrangian describing a small test body immersed in a curved space time.
Preliminarily, we covariantly expand the metric tensor gµν on the thin world tube ∆
of the body around a representative world line γ (λ) of the trajectory. While ADS
define all multipole moments over an unspecified space-like hypersurface, we chose it
orthogonally to γ (λ). To this end we introduce some mathematical tools.

Cover ∆ by a neighborhood W of γ constituted by the union of normal
neighborhoods of the points of γ[14]. Let us call Σ = Σ (λ) the space-like sections of
W ∩∆ spanned by all space-like geodesics σX (η) which stem from p = σX (0) = γ (λ)
in a direction X µ orthogonal to the vector γ̇ (λ). More precisely, X µ is the space-like
tangent vector to σX (η) at p whose size ‖X‖ is the measure of the proper length of
σX from p to q = σX (η)

‖X‖ =
∫ η

0

‖σ̇X ‖ dη, (2.1)

Denoting by X µ(q) the vector which satisfies (2.1) for the unique geodesic of Σ joining
p and q, then X µ(q) is a vector at p and a function on Σ 3 q which obeys the
orthogonality relation

X µ(q)γ̇µ (p) = 0. (2.2)

It is easy to show that

Xµp
= − ∂

∂xµp
Ω (p, q) , (2.3)

where Ω (p, q) is the world-function [14] and xµp = xµ (ηp) are local coordinates for
σX .

The first approach to a covariant Taylor expansion of the metric tensor around
xµp seems to tentatively give it over Σ. This is suggested by the fact that there exists
a unique tensor which reduces, at the pole p of any normal coordinate system {x′µ}
centered in p (normal coordinate systems naturally induced on Σ), to the n−fold
repeated partial derivative of the metric tensor[15] and because the vector X µ(q)
appears to play a role similar to that of a coordinate distances δx′µ between p and q.
Indicating this tensor at p as Gµpνpκ1p ...κnp

, in a normal coordinate system we have
Gµ′pν′pκ′1p

...κ′np
≡ gµ′pν′p,κ′1p

...κ′np
. In the following we will give the explicit form of this

tensors up to the desired order. Thus the hypothetical Taylor expansion of the metric
could be

gµqνq
(q) =

∞∑
n=0

1
n!
Gµpνpκ1p ...κnp

(p)X κ1p (q) ...X κnp (q) . (2.4)

On the other hand, at the l.h.s. of (2.4) we have a tensor at q, while the r.h.s. appears
as a scalar at q and a tensor at p. In order to recover consistency we introduce an
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operator able to ’transport’ a tensorial index from a point to another. We will call it
the basis connector.

Consider the bitensor

Xµpνq
= −∇νXµp

|x(ηq). (2.5)

A long calculation shows that this quantity can be expanded as follows (see [14] for
details)

Xµpνq = −gµpλpΓνq

λp + O (R ‖X‖Γ) , (2.6)

where O (R ‖X‖Γ) is a complicated integral expression of products of the Riemann
tensor, of ‖X‖ and Γ, the last being the connector Γνq

λp , the operator causing the
parallel transport along the geodesic σ a vector from p to q, i.e.

V̌µq
= Γµq

λpVλp
, (2.7)

V̌µq being the parallel to Vλp at q. But we are interested in the change of tensors from
a point to another caused uniquely by the transformation of the basis between the
points, not by curvature. Then, suppose that the chart defining the coordinate system
{x} contains a sufficiently wide region U of the body dynamics. Consider in U the
flat metric ḡµν satisfying the property ḡµν (p) = gµν (p) and ∂κḡµν (p) = ∂κgµν (p). So
we have Γ̄κ

µν (p) = Γκ
µν (p) but R̄µνρσ (q) = 0. The two metrics considered will have

by construction the same normal coordinate systems centered on p. By the use of the
connector operator Γ̄ λp

νq induced by ḡµν and using (2.6) we can define the following
basis connector two point tensor

Xµpνq = −gµpλp Γ̄ λp
νq

= −∇̄νXµp |x(ηq), (2.8)

which is an exact operator to all order in the coordinate {x} (X is defined as X
with the use of ḡ). Using (normal) cartesian coordinates {x′µ} centered on p we have

Γ̄
λ′p

ν′q
= δ

λ′p
ν′p

[14]. By construction, this operator accounts only for the change of tensors
caused by an arbitrary basis. This is also evident from the following interpretation of
the operator action. The scalar character of Xµp

(x) at x = x (ηq) and definition (2.5)
allow us to write Xµpνq

= ∂Xµp
/∂xνq . On the other hand, from the chain rule

Γ̄ µp
νq

= Γ̄ λrn
νq ...Γ̄ λr1

λr2
Γ̄ µp

λr1
, (2.9)

with ηp < ηr1 < ηr2 ... < ηn < ηq we have from (2.9), in the limit n →∞,

Xµp
νq =

∞∏
i=1

∂Xλi−1

∂xλi
, (2.10)

with λo = µp and λ∞ = νq. This relation can be regarded as an infinite product of
changes of coordinate operated from the infinitesimally near points ri−1 to ri of the
geodesic σ̄

X
in the active interpretation point of view. In fact, the variation ∂Xλi−1

of a connecting vector Xλi−1 of two points ri−1 and ri, on a geodesic straight line σ̄
X

(R̄µνρσ = 0), due to the (partial) change of the coordinate xλi−1 , is equivalent to the
effect of the change from the basis

{
eλi−1

}
to the basis {eλi

}, or equal to ∂x′λi , with

{x′} coordinates of
{

eλi
i

}
in the passive point of view. Thus in (2.10) we can use

∂Xλi−1

∂xλi
=

∂x′λi

∂xλi
, (2.11)

from which follows the interpretation. In conclusion, if V µp is a tensor at p, then
V νq = V µpX

νq
µp is the ”equivalent” vector at q corrected with the entire basis history
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change along the trajectory. The operator Xµpνq
will be used in the the right hand

side of (2.4) in order to obtain a tensor at q by saturation of both indexes at p.
Finally, taking into account (2.4), a final change is required, in order to

consistently use the Taylor theorem. In fact, in its genuine formulation, all expansions
and approximations depend rigorously on the variable increment δxµ (x) = xµ−xµ

o and
on the coordinate position x, not on an arbitrary function of the coordinate position,
like X µ (x). Thus, because of the tensorial character of our expansion, we must
substitute X µ (x) in (2.4) with Xµ (x), the only quantity which reduces, in cartesian
coordinates (and without ambiguous mixing of various order of approximation in
the performed metric expansions) to a coordinate increment in any point. This
problematic aspect appears also in the Dixon formalism but only after the introduction
of tensor-valued distributions. In fact, while we choose to Taylor expand directly on
the foliation Σ̄ induced on ∆ by X (x) (note that Xµ(q)γ̇µ (p) = 0), the Dixon approach
employs as a preliminary step a Taylor-like expansion on the tangent space Mp at p
using the vector X µ ∈ Mp but in a formulation that requires the introduction of a
tensor-valued distribution of the energy-momentum tensor T̂µν on Mp.

With the use of the above introduced tools the covariant expansion of the metric
is thus

gµν = ḡµν + (2.12)
∞∑

n=1

1
n!
Gρo λo κ1o ...κno

Xρo
µXλo

νXκ1o ...Xκno ,

where we have suppressed the subscript q and used the o instead of p. Note that, in a
normal coordinate system {x′} centered on p, this expansion reduces to the ordinary
Taylor expansion or

gµ′ν′ =
∞∑

n=0

1
n!

gµ′oν′o,κ′1o
...κ′no

δx′κ1o ...δx′κno . (2.13)

The use of the expansion (2.12) is a crucial point in order to have a clear and
manageable invariant variational formulation of the multipolar test body dynamics.

3. Covariant expansion of the lagrangian

In this section we expand the lagrangian in the action (1.1) following the ADS
approach, but in a full covariant way. This give the possibility to generalize ADS
approach to all order in the metric expansion.

In a general coordinate system let x = x (q) and xo = x (p) = γ (λ). Thus,
assuming that the lagrangian L depends on the field variables and on gµν , not on its
derivatives, as it happens for all known reasonable matter distributions, we have

S =
∫

∆

Lḡ

√
−ḡd4x

+
∫

∆

(
∂L
√
−g

∂gµν

)
ḡ

δgµνd4x

+
1
2

∫
∆

(
∂

∂gρσ

∂L
√
−g

∂gµν

)
ḡ

δgρσδgµνd4x... (3.1)

where δgµν (x) = gµν (x) − ḡµν (x) and L
ḡ

= L|
g(x)=ḡ(x) and so on. In (3.1), L

ḡ

cannot contains the Riemann tensor or its covariant derivative and so it encodes all
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special relativistic dynamics. The perturbed lagrangian, obtained by the repeated
application of the operator ∂

∂gµν
( )

ḡ
δgµν , describes, through the covariant expansion

of the metric, all general relativistic contribution to the dynamics at the order desired.
To write explicitly higher order term, we express (3.1) in a more useful form. By

construction Xµo
µ is a bitensor in the ḡ metric, thus we have

ḡµν = Xµo
µX

−1

νµo
= Xµo

µXµoν = ḡµoνo
Xµo

µXνo
ν . (3.2)

In posing δgµν = δgµoνo
Xµo

µXνo
ν with

δgµoνo
=

∞∑
n=1

1
n!
Gµoνoκ1o ...κno

Xκ1o ...Xκno , (3.3)

we have (
∂L
√
−g

∂gµν

)
ḡ

δgµν =
∂Lḡ

√
−ḡ

∂ḡµoνo

δgµoνo
(3.4)

and (
∂

∂gρσ

∂L
√
−g

∂gµν

)
ḡ

δgρσδgµν = (3.5)

∂

∂ḡρoσo

(
∂Lḡ

√
−ḡ

∂ḡµoνo

)
δgρoσo

δgµoνo

and similarly for higher order terms. We now express the measure in the integrals in
a way useful to obtain a parametric invariant action. Let Σ̄ be the space-like surface
section induced on ∆ by σ̄

X
. We can split the invariant proper volume as follows

√
−ḡd4x = ldλd3Σ̄. (3.6)

with l = lx (λ) = {−ḡµν [x (λ)] ẋµ (λ) ẋν (λ)}1/2 the length factor of a congruence
of time-like trajectories x (λ) orthogonal to Σ̄ (λ) at every point x ∈ Σ̄ ((∆, ḡ) is
globally flat), with xo (λ) ≡ γ (λ) parametrized in such a way to have lx = lxo

=
{−gµν [xo (λ)] ẋµ

o (λ) ẋν
o (λ)}1/2 constant in Σ̄. Thus, posing

ldλMκ1o ...κno (λ) = (3.7)

2
∫

Σ̄(λ)

L
ḡ
Xκ1o ...Xκno

√
−ḡd4x

we define all 2n-multipole moments as follows

Mµoνoκ1o ...κno (λ) = (3.8)
∂

∂ḡµoνo

Mκ1o ...κno (λ)

and, from them, other derived quantities, such as

Mρoσoµoνoκ1o ...κno (λ) = (3.9)
∂

∂ḡρoσo

Mµoνoκ1o ...κno (λ)

and so on for other quantities Mα1o ...αmo κ1o ...κno with m odd integer. Observe that

Mα1o ...αmo κ1o ...κno = (3.10)
M(α1o α2o )...(αm−1o αmo )(κ1o ...κno )
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and

Mα3o α4o ...αmo κ1o ...κno = (3.11)
ḡα1o α2o

Mα1o α2o α3o α4o ...αmo κ1o ...κno

and similarly for other contractions. By construction, all 2n-multipole moment tensors
(3.8) and all the other derived tensors, are space-like in the index κ1o

...κno
with respect

to the reference world-line γ (λ). Note that if L is linear in the metric, only the 2n-
multipole moment (3.8) will be employed in the expansion. Higher power dependences
of L on the metric will determine the use of the other quantities introduced.

Using this apparatus, turning back to (3.1) and (3.6) we have

S =
∫

γ

L (λ) dλ =
∫

γ

[Lg (λ) + L
δg

(λ) (3.12)

+ L
δg2 (λ) + ...]dλ,

where

L
g

= l

∫
Σ̄(λ)

L
ḡ
d3Σ̄ (3.13)

is the unperturbed lagrangian in Σ̄ (λ), whose physical content must reproduce the
special relativistic dynamics. Analogously,

L
δg

= l
∑

n

1
2n!

Mµoνoκ1o ...κno (3.14)

· Gµoνoκ1o ...κno
,

where n runs over the desired 2n multipolar order. L
δg

is the first order multipolar
expansion of the lagrangian, which encodes the influence of the gravitational field on
the dynamics. Here, l ≡ lγ (λ) = [−gµν γ̇µ (λ) γ̇ν (λ)]1/2 is the length factor along γ
which reduces to unity in the proper time parametrization. Using the definition of the
energy-momentum tensor in (3.8) we have

Mµoνoκ1o ...κno (λ) = (3.15)∫
Σ̄(λ)

Tµν
ḡ

Xµo
µXνo

νXκ1o ...Xκno d3Σ̄,

Higher order terms of the expansion are

Lδgm = l
∑
N

1
AN

Gα1 ...α
M

κ1 ...κ
N

(3.16)

· Mα1 ...α
M

κ1 ...κ
N ,

where m = M/2 is the order of the metric expansion, N = n + p + ... + q, while
AN = n!p!...q!. In (3.16) we have suppressed the subscript o and used the quantity

Gα1 ...α
M

κ1 ...κ
N

= Gα1α2κ1 ...κn
(3.17)

· Gα3α4κ
n+1 ...κ

n+p
...

· Gα
M−1α

M
κ

N−q+1 ...κ
N

Finally, we use the energy-momentum conservation law to obtain the symmetry
properties of the multipole tensors. Consider the quantity ∇̄µ

(
Tµν

ḡ
Xνo

ν

)
. In

a particular global coordinate system in which Xν′o µ′ = δν′
µ′ it becomes

∇̄µ′

(
Tµ′ν′

ḡ
Xν′o ν′

)
= 0 because of the energy-momentum conservation law. Thus in
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any coordinate system we have ∇̄µ

(
Tµν

ḡ
Xνo

ν

)
= 0. Using (2.8), this relation enables

us to write

∇̄µ

(
Tµν

ḡ
Xνo

νXµoXκ1o ...Xκno

)
(3.18)

= − (n + 1) Xνo
νXµo

µT ν(µ
ḡ

Xκ1o ...Xκno ).

Integrating this equality over Σ̄ (λ) with the measure
√
−ḡd4x we obtain the symmetry

properties of the 2n-multipole moments

Mνo(µoκ1o ...κno ) = 0. (3.19)

These symmetries were not found by ADS, while they are formally identical to that
contained in the Dixon work. Because of the commutation of the operators ∇̄µ and

∂
∂ḡρoσo

this relation is easily generalized to the other higher multipolar quantities such
as (3.11)

Mα1 ...(α
M

κ1 ...κ
N

) = 0. (3.20)

Some brief comments are necessary now.
First, note that the expansion of the lagrangian is not limited to the first order

in the metric variation, which contributes to a more generality of our equations
than to those of ADS. A further observation concern the expression of the multipole
moments (3.15), which are only vaguely similar to those of Dixon. This is because in
some case Dixon defines multipole moments containing only higher-order information,
the monopole moment (n = 0) and the dipole moment (n = 1) being identically
vanishing [4](1979). A more important discrepancy lies on the fact that the Dixon
resulting expressions of the multipole moments [4](1974 and 1979) are obtained by
intergrations on a space-like hypersurface orthogonal to the momentum Pµ, while our
3−dimensional sections Σ̄ over which we define our quantities are orthogonal to the
reference world line γµ. This shows that the re-definition of the canonical momentum
operated by ADS [13] (up to an unknown term transversal to the four velocity) in
order to obtain formally the same dynamical equations of Dixon, is not necessary
and is simply conventional, also because ADS use the Pirani Sµνuν = 0 condition[16]
instead of the Tulczyjew-Dixon condition[4][17] SµνPν = 0. As the techniques and
the definitions used are different, the present method and the Dixon theory give rise
- even though formally identical - only to similar dynamical equations (Section 6).
The present multipolar method seems to be more simple and manageable compared
to that of Dixon, because of the more simple mathematical tools used, thanks of the
cited orthogonality and to a simpler calculability of multipole tensors by virtue of the
use of a flat metric ḡ. Besides, by the introduction of the sections Σ̄ we will obtain
in Section 6 the simple Papapetru expression of the canonical momentum which,
remaining unchanged to all orders, contributes to some reductions of complexity of
the dynamics.

In the next Section we will give the explicit form of L up to the desired order.

4. The lagrangian structure

The purpose to find the lagrangian functional requires some care about on the order
of expansions we will use in the next.

The hypothesis of a weak metric variation within the spatial body extension force
us to define consistently the spatial size Λ of the body. We designate this quantity as
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the maximum of ‖Xσ‖ in ∆. Thus, for a body moving in a spacetime having radius
of curvature R, we adopt the ADS assumption that the spatial size Λ of the body
be small compared to R, or Λ/R ≈ O (1). The ADS method is based on a generic
assumption about the weakness of the metric but, to our purposes, it is sufficient to
assume a Dixon-like criterion, requiring that the induced metric hµν in Σ̄ be weak.
Thus Λ/R ≈ O (1) means exactly that the variation of the gravitational field must be
small on Σ̄ (what is, actually, the Dixon criterion[4](1979) p.190 and p.196).

The notion of spatial size Λ enables us to define another parameter in the
expansion, which accounts for the ’surface velocity’ vs of the body, interpreted as
the spatial velocity of the points of ∂Σ̄ as measured by a Fermi-Walker observer on γ̇.
We adopt the constraint that the Fermi-Walker observer will not experience a surface
horizon on the region occupied by the body. Being vs ≈ ΛΩ with Ω angular velocity
of the body (see the next Section), this condition is equivalent to make all expansions
up to the standard (vs/c)2, or to consider negligible all quantities of order O

[
(ΛΩ)3

]
.

Thus, our goal is to find the explicit form of the lagrangian up to this order.
Finally, because we wish to carry out exemplifications up to the quadrupole

moments of the body, it is sufficient to use
∑2

n=1 (see [13] for details) in the multipole
expansion (3.14). Thus m = 1 and n = 1, 2 in (3.16). In this case we will consider
negligible all the quantities of order O

[
(δg)2 , (ΛΩ)3 , (Λ/R)3

]
.

The first step amounts to define in a standard way the above mentioned angular
velocity Ω. To this end we use an orthonormal tetrad field ea(λ) defined on the
representative world-line of the body γ(λ):

ηabe
a
µ(λ)eb

ν(λ) = gµν(λ). (4.1)

Consider the tensor

Ωµν ≡ ėaµea
ν − 2eo[µėoν] = ωµν − 2u[µu̇ν] (4.2)

with eµ
a dual of the tetrad field and ωµν = ω[µν], having defined the normalized four

velocity as

uµ =
γ̇µ

l
. (4.3)

We have

Ωµ
νuν = 0. (4.4)

The tensor components of Ωµ
ν are the Fermi rotation coefficients and represent the

spatial angular velocity tensor of the body, while ωµν is the corresponding spacetime
generalization. The spatial angular velocity vector is

Ωµ ≡ ∗Ωκµuκ. (4.5)

Note that Ωµ
ν fulfills a crucial property: because of the spatial summation on the

Lorentz indices

Ωµν = ėα[µeα
ν] − u[µu̇ν], α = 1, 2, 3 (4.6)

then Ωµ
ν is invariant with respect to the Lorentz subgroup Lrot of spatial rotation

transformations e′aν = Λa
rotb

eb
ν , provided that the Lorentz spatial rotation matrix

Λa
rotb

is constant along the trajectory(
Λa

rotb

)
˙= 0. (4.7)
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Our main purpose is to derive all the equations of motion, for the trajectory
and for the spin of a test body, by means of a parametric invariant action principle
δ
∫

γ
L (λ) dλ = 0, for a total variations of the trajectory γµ(λ) and of the tetrad field

ea(λ) with fixed endpoints. This is just the BI formalism [12]. Thus we write the
unperturbed Lagrange functional as

Lḡ ≡ Lḡ [l (λ) , g (λ) , γ̇(λ), e(λ), ė(λ),M(λ)] , (4.8)

the dot meaning the convective covariant derivative along the world-line. L
ḡ

must
necessarily depend only on quantities defined on the reference trajectory as, e.g., on
the multipole moments Mµνκ1...κn(λ). As we pointed out, L

ḡ
does not depend on

derivatives of the metric tensor and must reproduce, in the non relativistic limit, the
classical physics of a body in a constant gravitational field or in a free falling reference
frame.

Now we assume a dependence of the lagrangian on the tetrad field eµ
a and ėµ

a is
accomplished through the angular velocity tensor Ωµν

Lḡ = Lḡ [l (λ) , γ̇ (λ) ,Ω(λ),M(λ)] . (4.9)

With this choice L
ḡ

will be invariant under the internal Lorentz subgroup of spatial
rotation constant along the trajectory, the physical meaning being immediate: the
spatial angular velocity tensor Ωµ

ν and the spatial angular velocity vector Ωµ will be
obviously unchanged no matter the tetrad ea

ν is linked to the body.
Another important symmetry is required: the action S =

∫
γ
L (λ) dλ must

be parametrically invariant. This is accomplished provided that L is a 1st-degree
functional polynomial in the γ̇µ’s, or

L ≡ ∂L
∂γ̇µ

γ̇µ. (4.10)

Thus, the symmetries described will give the constraints required to construct
the covariant model up to the order desired.

5. The model

First, let us search for the explicit form of the unperturbed lagrangian reproducing, in
the non relativistic limit, the dynamical evolution in a constant gravitational field or
in a free falling reference frame. Note that in the ADS work the part of the lagrangian
corresponding to our L

ḡ
remains unknown because the internal degrees of freedom are

uncorrelated.
We start by decomposing the unperturbed lagrangian as

L
ḡ

= LM + L
S
, (5.1)

where

LM = −lM, (5.2)

is the O
[
(ΛΩ)0

]
contribution to the lagrangian, M≡Mµ

µ being obtained from (3.15)
with n = 0. This lagrangian term manifestly satisfies (4.10). LM is easily interpreted
as the mass lagrangian of the body.

For the other coupling we use as a guide the Newtonian analogy. We observe that
the O

[
(ΛΩ)1

]
contribution to the lagrangian obtained by means of the geometrical

object Mµκ1
µ is absent by dimensionality. Thus a condition on this tensor will result
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as a gauge. If we assume the most simple gauge Mµκ1
µ = 0, we obtain the usual

condition which states that the reference world line γ will be the center of mass of
the system as regards to which the subspace Σ̄ is defined and the quadrupolar tensor
is referred.

The last task is to find the O
[
(ΛΩ)2

]
spin lagrangian contribution L

S
, which

describes the spin of the body.
First, we introduce a natural definition of the antisymmetric spin tensor as

Sµν ≡ 2Mκ
[νΩµ]κ, (5.3)

with the spin vector being

Sµ ≡ ∗Sκµuκ. (5.4)

Here,

Mκ1κ2 ≡Mµ
µκ1κ2 (5.5)

and from the spatial character of the multipole moments we have the property

Mµ
ν γ̇ν = 0 (5.6)

and consequently both the spin tensor Sµν and the spin vector Sµ, like Ωµν and Ωµ,
will have spatial character

Sµ
νuν = 0. (5.7)

Thus the spin tensor satisfies the Pirani condition [14].
Finally, the exact form of the rotational energy L

S
must reproduce the Newtonian

limit. Thus we assume

L
S

= −1
4
lSµνΩµν . (5.8)

Note that L
S

can be written also as

L
S

=
1
2
lΩσκMκλΩλ

σ (5.9)

and therefore it turns out to be the most simple scalar built out with two tensors,
symmetric and antisymmetric, defined along a world line γ. It is easy to see that any
other coupling constructed by means of the multipolar tensors and the other variables
must be of higher order than O

[
(ΛΩ)2

]
or must violate the dimensionality.

Thus, collecting all the definitions, the explicit parametric invariant lagrangian
satisfying the imposed symmetries is

L = − l

(
M+

1
4
SµνΩµν

)
(5.10)

+ l
∑
M,N

1
AN

Gα1 ...α
M

κ1 ...κ
N
Mα1 ...α

M
κ1 ...κ

N .

If we limit ourself to study the quadrupolar expansion, we must restrict to the
O

[
(δg)2 , (ΛΩ)3 , (Λ/R)3

]
approximation. Thus, using the relations [15]

Gµνρ ≡ 0 (5.11)

Gµνρσ ≡ − 2
3
Rµ(ρσ)ν ,
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we get

L
δḡ

= −1
6
lMµνρσRµρσν (λ) , (5.12)

having used the symmetry property of the quadrupolar tensor. To this order (5.10)
becomes

L = − lM− 1
4
lSµνΩµν (5.13)

− 1
6
lMµνρσRµρσν .

Because the tensor ωµν = ėµ
aeaν depends only on the free tetrad lagrangian

variables eµ
α and ėµ

α (α = 1, 2, 3) and on eµ
0 = uµ, then from (4.3) it is a zero degree

polynomial in γ̇µ. From (5.3) and (4.2), also Sµν is of the same degree, while l is of
order one. Thus, from (5.13) we easily verify that the total lagrangian L is of order
one and that it satisfies (4.10), as required.

In conclusion we have found the explicit form of the lagrangian of a test tiny body
in a curved space time. In the next Section we will impose an analytical constraint on
the structure of the multipole moments in order to give rigidity to the body. All the
equations of motion will be then derived through a minimal action principle applied
on the variation of the trajectory γµ and on the variation of the rotational variable
ea

µ.

6. The Minimal Action Principle

In order to apply the variational procedure to the lagrangian functional (5.10), we
consider the covariant variation of the trajectory carried out by the operator

δγ ≡ δγκ∇κ. (6.1)

Contrarily to the BI approach, we do not assume that the operator δγ holds the tetrad
fixed by parallel propagation, but that it is extended by Fermi-Walker transport in
order to preserve its character. Thus δγea

µ 6= 0. Indicating by δe the operator which
acts on the internal lagrangian variables ea

µ, the total variation will be described by

δ = δγ + δe. (6.2)

• Variations

Applying the total variation to the lagrangian we have

δL =
∂L
∂γ̇µ

δγ̇µ +
∂L

∂ωµν
δωµν +

∂L
∂M

δM (6.3)

+
∂L

∂Mµν
δMµν +

∑
M,N

∂L
∂Mα1 ..α

M
κ1 ...κ

N
δMα1 ...α

M
κ1 ...κ

N

+
∑
M,N

∂L
∂Gα1 ...α

M
κ1 ...κ

N
δGα1 ...α

M
κ1 ...κ

N ,

with

Pµ =
∂L
∂γ̇µ

(6.4)

the canonical momentum of the system. In (6.3) we have used the obvious covariant
variation δγgµν = 0 and assumed the condition δegµν = δeḡµν = 0 because the
geometry is kept fixed (observe that gµν (λ) = ḡµν (λ)).
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As a first step, we derive the analytical expression of Pµ. From (5.10) we have

Pµ = −Luµ + Ṡνµuν . (6.5)

This expression coincides with the simple Papapetru[2] but here it holds to all order.
Thanks to our formalism, this Papapetru relation between the moment and the other
quantities is simpler than the corresponding non-linear Dixon-Ehlers-Rudolph one (see
[4](1979) and [6]).

We consider now the second term in (6.3). A direct calculation yields

∂L
∂ωµν

= − l

2
Sµν . (6.6)

Note that (6.6) would have been equivalent to a definition of the spin tensor if
its explicit form (5.3) were unknown. This happened in the BI approach, where
the abstract definition of the spin tensor was indeed performed without any model
specification [12]. When applied to our explicit lagrangian, but with an (l)−1 factor
in front, the BI like definition correctly gives the spin tensor,

Sµν = (l)−1

(
2ea[µ

∂L
∂ė

ν]
a

)
=

2
l
ea[µ

∂L
∂ωκλ

∂ωκλ

∂ė
ν]
a

= −2
l

∂L
∂ωµν

. (6.7)

Then, with the use of the proper time parametrization λ = τ , the length factor
disappears and the two definitions become coincident.

The third step will amount to evaluate the dependence on the quadrupolar
moments in (6.3). It is easily derived as

∂L
∂Mµν

=
1
2
Ωµ

κΩκν l =
1
2

(
ΩµΩν − Ω2hµν

)
l (6.8)

and so on for other higher order variations.
Finally, to perform the total variational procedure, we display the explicit form

of the variations δẋµ, δωµν , δMµν , δMµνρσ, etc. Using (6.1) and (6.2), the variation
of the unnormalized four-velocity yields

δγ̇µ ≡ δγ γ̇µ = δγκ (∂κγ̇µ + Γµ
κν γ̇ν) = (δγµ)˙ (6.9)

where we have made use of the first order relations

δγκ∂κγ̇µ = γ̇µ (x′)− γ̇µ (x) ≈ dδγµ

dλ
= γ̇κ∂κδγµ. (6.10)

The variation of the spacetime angular velocity tensor gives

δωµν = δėµ
aeaν + ėµ

aδeaν = (δeµ
a) ėaν

+ωµκeaκδeaν + Rµν
κλδγκγ̇λ, (6.11)

having employed the double derivative relation

δγ ėµ
a = (δγeµ

a)˙+ Rµν
κλeaνδγκγ̇λ (6.12)

and the commutation equation

δeė
µ
a = (δee

µ
a)˙ (6.13)

between the covariant convective operator γ̇µ∇µ and the variational derivative
operator δe. In fact, using δee

µ
o ≡ 0, we have

δeė
µ
a = δe (eκ

o l)∇κeµ
a + (δee

µ
a)˙= (δee

µ
a) .̇ (6.14)
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The variations of the multipolar tensors are obviously at the core of the rigidity
condition. Applying the total variation we have

δMµν = δ
(
eµ
aeν

bMab
)

(6.15)

= 2Mκ(µδλ
ν)eaκδeaλ + eµ

aeν
b δMab.

For higher order term, using the symmetries properties (3.10), we have

δMα1 ...α
M

κ1 ...κ
N =

M∑
l=1

δeαl
al
Mα1 ...al...αM

κ1 ...κ
N (6.16)

+NδeκN

b Mα1 ...α
M

κ1 ...κ
N−1b

+eα1
a1

...eαM
aM

eκ1
b1

...eκN

bN
δMa1 ...a

M
b1 ...b

N .

But what about δMab or δMa1 ...a
M

b1 ...b
N , the variations of the multipolar tensor

in the body reference frame, induced by the variation of the trajectory?

• Relativistic Rigidity Condition

Let γµ (λ, ε) be a 1-parameter family of time-like curves with both definitions,
of the orthonormal tetrad field eaν (λ, ε) and of the multipolar tensor field
Mα1 ...α

M
κ1 ...κ

N (λ, ε), extended on them, ε being an infinitesimal parameter. Then
eaν (λ, ε) is the Fermi-Walker transported of eaν (λ, 0) along γµ (λ, ε). A slightly varied
curve γ′µ (λ) with respect to the reference trajectory γµ (λ) ≡ γµ (λ, ε = 0) with end-
fixed points is given by the smooth arbitrary function of re-parametrization ε (λ),
such that γ′µ (λ) ≡ γµ [λ, ε (λ)]. Consider an arbitrary variation of the reference curve
γµ (λ)

δγµ ≡ γ′µ (λ)− γµ (λ) =
∂γ′µ

∂ε
δε. (6.17)

Then

δγMa1 ...a
M

b1 ...b
N =

∂γ′µ

∂ε
∇µMa1 ...b

N δε =[(
∂γ′µ

∂λ
+

∂γ′µ

∂ε

dε

dλ

)
− dγµ

dλ

]
∇µMa1 ...a

M
b1 ...b

N δλ (6.18)[(
Ma1 ...a

M
b1 ...b

N

)
γ̇′µ −

(
Ma1 ...a

M
b1 ...b

N

)
γ̇µ

]
δλ,

where we have used ∂γ′µ/∂λ ≡ dγµ/dλ and the subscript in the dot derivative denotes
along which curve the covariant convective derivative is computed.

The last relation suggests to assume(
Ma1 ...a

M
b1 ...b

N

)
γ̇′µ(λ) = 0, ∀γ′µ (λ) , (6.19)

or

δγMa1 ...a
M

b1 ...b
N = 0. (6.20)

which is equivalent to the total variational condition

δMa1 ...a
M

b1 ...b
N = 0 (6.21)

in (6.16), because of eµ
aδee

aν = 0. All this relations can be obtained from the following
relativistic rigidity condition on the 2n-multipole moments

δMa1a2b1 ...b
N = 0. (6.22)
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or (
Ma1a2b1 ...b

N

)
˙= 0. (6.23)

In fact (6.21) can be easily obtained from (6.23) using (3.11) and the relations
δeḡa

i
a

j
= δγ ḡa

i
a

j
= 0. Formally our relativistic rigidity conditions on the multipole

moments coincide with that of Dixon [4]. Contracting (6.21) we have also δMab = 0
and the condition of the constance of the ’rest mass’ δM = 0. The interpretation
is straightforward: because of rigidity, in the body reference frame every non inertial
stress caused by rotation, or curvature, leaves unchanged all tensors Ma1 ...b

N . This
considerably simplifies the variational procedure. On the contrary, in the case of a non
rigid body, it will be necessary to specify an equation of state describing the internal
structure of the body and the evolution of the energy momentum tensor along the
trajectory.

• Equations of motion

Applying the action principle to the lagrangian, and using the equations obtained
in the previous subsection, after a tedious calculation we have

δL = Xµδγµ + Eµaδeaµ + S (6.24)

with

Xµ = −
(

∂L
∂γ̇µ

).
+

∂L
∂ωκν

Rκν
µλγ̇λ

+ l
∑
M,N

1
AN

Mα1 ...κ
N∇µGα1 ...κ

N
(6.25)

and

Eµν = −
(

∂L
∂ωµν

).
+ 2

∂L
∂ωκ[µ

ωκ
ν] + (6.26)

2
∂L

∂Mκ[µ
Mκ

ν] + l
∑
M,N

1
AN

∑
cp

(
G[µ|α2 ...κ

N
|M

· α2 ...κ
N

ν]

)
+ l

∑
M,N

N

AN
Gα1 ...κ

N−1 [µM
α1 ...κ

N−1 ·
ν]

S being a surface term. In (6.26)
∑

cp means the sum over the cyclic permutation
of the position of the indexes of the tensors included in the sum (for example∑

cp Aµ
νσBρκλ = Aµ

νσBρκλ + Aνσ
µBκλρ + Aσ

µ
νBλρκ).

Because of the independence of the variations δγµ and δeaµ the minimal action
principle gives

Xµ = 0, Eµν = 0. (6.27)

On the other hand, using in what follows an affine parametrization, from (6.6), (6.8),
(4.4) and (6.5) we have

2
∂L

∂ωκ[µ
ωκ

ν] + 2
∂L

∂Mκ[µ
Mκ

ν] (6.28)

= Ṡκ[νuµ]u
κ = P[νuµ].
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Thus, with the aid of (6.4) and (6.6) and the previous equations, in an affine
parametrization the constraints (6.27) become the equations of motion to all order

Ṗµ =
1
2
RκνσµSκνuσ +

∑
M,N

1
AN

Mα1 ...κ
N∇µGα1 ...κ

N
(6.29)

and

Ṡµν = 2P [µuν] + (6.30)

2
∑
M,N

1
AN

∑
cp

(
G[ν
· α2 ...κ

N
Mµ]α2 ...κ

N

)
+ 2

∑
M,N

N

AN
G [ν

α1 ...κ
N−1 ·

M|α1 ...κ
N−1 |µ].

By defining, similarly to Dixon [4], the following tensor

Jκ
ρν

σ = M[κ
[νρ]

σ] (6.31)

and using M = 1 and N = 2 we have

2
∂L

∂M[µ|κρσ|M
ν]κρσ + 2

∂L
∂Mκρσ[µ

M|κρσ|ν] =

−2
3
R[µ|ρσκ|J |κρ|ν]σ, (6.32)

so, in the quadrupolar approximation, the general equations (6.29) and (6.30) become

Ṗµ =
1
2
Rκνσ

µSκνuσ +
1
6
J κρσν∇µRνκρσ (6.33)

and

Ṡµν = 2P [µuν] +
4
3
R[µ

ρσκJ ν]σκρ. (6.34)

As previously stated, equations (6.33) and (6.34) formally coincide with those of Dixon
(apart from a sign convention and the metric signature). The present formalism is
suitable in searching for interesting implications when we have to deal with cyclic
variables.

7. Conserved quantities

In this Section we derive the expressions of the conserved quantities coming from the
existence to cyclic variables in the lagrangian. We obtain this result to all order in
the expansion of the lagrangian.

Let xc be a cyclic variable of the metric. Thus

∂cgµν = 0

Γλ
cσAσ

λ = Γλ
cσA[σ

λ]. (7.1)

Consider the first term in the right hand side of the equation of motion (6.29)
having posed µ = c. We have

1
2
Rκ

νσcSκ
νuσ =

1
2

(
∂σΓκ

cν + Γκ
ρσΓρ

cν − Γκ
ρcΓ

ρ
νσ

)
Sκ

νuσ

=
1
2

d

dλ
Γκ

cνSκ
ν +

1
2
Γρ

cν

(
Γκ

ρσSκ
νuσ − Γν

κσSρ
κuσ

)
=

1
2

d

dλ
(Γκ

cνSκ
ν)− 1

2
Γκ

cν

D

Dλ
Sκ

ν . (7.2)
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Using the last term and the equation of motions (6.30) and the last of (7.2) we obtain

1
2
Γκ

cν

D

Dλ
Sκ

ν = Γκ
cνPκuν

−
∑
M,N

1
AN

Γκ
cνΣM

l=1

(
δ

α
l

κ Gα1 ...α
l
...κ

N

) (
δν
α

l
Mα1 ...α

l
...κ

N

)
−

∑
M,N

N

AN
Γκ

cνGα1 ...κ
N−1κMα1 ...κ

N−1ν , (7.3)

α
l

being summed within the same round brackets. On the other hand the last term
in (6.29), in the case of the cyclic component, becomes∑

M,N

1
AN

Mα1 ...κ
N∇cGα1 ...κ

N
=

−
∑
M,N

1
AN

ΣM
l=1

(
Mα1 ...α

l
...κ

N δν
α

l

) (
Γ

α
l

cνGα1 ...α
l
..κ

N

)
−

∑
M,N

N

AN
Mα1 ...κ

N Γκ
cκ1
Gα1 ...κκ2 ...κ

N
. (7.4)

Collecting (7.2) and (7.3), the equations of motion (6.29) give

D

Dλ
Pc =

1
2

d

dλ
(Γκ

cνSκ
ν)− Γκ

cνPκuν (7.5)

or
d

dλ

(
Pc +

1
2
Γκ

cνSκ
ν

)
= 0 (7.6)

by which we obtain the conserved quantities along the trajectory of the rigid test body
corresponding to the cyclic coordinate xc

Qc = Pc +
1
2
Γκ

cνSκ
ν (7.7)

that, using (6.5), explicitly are

Qc = −Luc + Sc
κu̇κ +

1
2
Γκ

cνSκ
ν . (7.8)

Note that these conserved quantities, not found by BI-ADS, hold to all order in the
multipolar expansion.

In order to give concrete examples of our results useful in applications, in the
next Section we will investigate some conserved quantities and some properties of the
relativistic moment of inertia tensor by the introduction of the principal axes of inertia
and of the axial moment of inertia of a rigid test body.

8. Relativistic dynamics of a spinning rigid test body

In what follows we give some examples of the dynamical evolution of a test rigid body
in the quadrupolar approximation.

• Conserved quantities
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As an example of (7.8) we consider the conserved quantity E = − 1
2cQt associated to

the cyclic temporal coordinate xt in the Schwarzschild metric in the polar coordinates.
In standard units, using c as the speed of light, we have

E = −1
2
cQt = E

M
+ E

T
+ E

SO
, (8.1)

with

E
M

= cLut (8.2)
E

T
= − cSt

κu̇κ

E
SO

= − 1
2
cSκλ∂κgtλ.

Consider the field k = (−gtt)
− 1

2 ∂t of static observers in the space time outside the
horizon. It will use the tetrad

∂t̂ = (−gtt)
− 1

2 ∂t (8.3)

∂r̂ = (grr)
− 1

2 ∂r

∂θ̂ = (gθθ)
− 1

2 ∂θ

∂φ̂ = (gφφ)−
1
2 ∂φ.

Thus we have

ut = −
(

1− v2

c2

)− 1
2

(
1− 2m

r

) 1
2

c (8.4)

where v is interpreted as the local velocity of the body as measured by k. Using the
quadrupolar expansion (5.13) of the lagrangian, in the weak gravitational region of
space-time where r >> 2m = 2GM�

c2 , neglecting the term of O
(
v3/c3

)
, the first term

in (8.2) becomes

E
M

= Mc2 +
1
2
Mv2 −G

M�M
r

(8.5)

+
1
4
SµνΩµν +

1
6
MµνρσRµρσνc2

having used the standard units redefinitions Sµν → cSµν and Ωµν → cΩµν . In the
r.h.s. of (8.5), the first three terms are the barycentric energy contribution of the
rigid body. The remaining terms encode effects coming from the internal structure of
the body: the spin rotational energy and the gravitational energy due to quadrupolar
distribution of the ”internal masses” within the small space-like region Σ̄ (τ) occupied
by the body and comoving with it. Thus E

M
is the mechanical energy.

The origin of E
T

in (8.2) is equally well justified: it is the Thomas precession
energy contribution of the spin caused by the non inertial motion of the body.

The last term seems more obscure but it can be rapidly calculated. Using the
Schwarzschild metric, equation (5.4) and the tetrad (8.3), we have

E
SO

= − 1
2c

√
−gδtrρσuρSσ∂rgtt (8.6)

= csinθ
(
uθSφ − uφSθ

)
= −m

r

(
ωθ̂S θ̂ + ωφ̂Sφ̂

)
where we have defined the local angular orbital velocity ωθ̂ = −cθ̇ and ωφ̂ = cφ̇sinθ.
By defining the spatial angular momentum vector measured by the observer K at
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infinity as ~l = Mr2~ω and the zero order geodesic potential V = −GM�M
r we finally

have

E
SO

=
1

M2c2

1
r

∂V

∂r
~S ·~l. (8.7)

It is the spin-orbital coupling of gravitational origin: the right hand of equation (8.7)
is formally double of the analog quantity in the special relativistic case of an atom
immersed in a magnetic field, the factor 2 being of general relativistic origin. Summing
all the terms the we have a complete description of the conserved total energy.

Analogous examples could be derivable from the angular conserved quantity com-
ing from the cyclic variable xφ in the Schwarschild metric.

• Spin dynamics

Now we briefly study the intrinsic rotational dynamics of the body. In a proper time
parametrization, (4.5) and (5.3)-(5.6) give

Sµ = (Mκ
κδµ

ν −Mµ
ν) Ων . (8.8)

The quantity in round brackets is formally identical to the Newtonian expression of
the moment of inertia tensor in cartesian coordinates[18]. This suggests the following
definition of the relativistic moment of inertia tensor Iµν

Iµν ≡ (Mκ
κgµν −Mµν) . (8.9)

By the use of this quantity, the spin vector has the form

Sµ = Iµ
νΩν . (8.10)

In a general coordinate system and in completely relativistic domain, the rigidity
condition (6.19) holds as

İµν = 2Iκ
(µων)κ, (8.11)

which is formally similar to the classical one [18], apart from the use of a covariant
convective derivative and the occurrence of the spacetime angular velocity tensor
ωνκ instead of the space angular velocity tensor Ωνκ. The simple use of the fluid
Tµν = ρuµuν in the definition of multipolar tensors would tell us that (8.9) is indeed
a good definition.

In order to go on and to introduce the principal axis and axial moments of inertia
of the body, we specialize our quantities in a tetrad. Mµν it is a real symmetric
tensor, then it is an orthogonal matrix and consequently diagonalizable. It has 10
independent components or degrees of freedom. Consider the tetrad tµa and the
decomposition Mµν = Mabtµatνb . Mab is diagonalizable too. Using the Lrot symmetry
of the model, we operate the ordinary diagonalization procedure with a change of
the tetrads tµa → eµ

a , where the use of the symbol eµ
a is in order to assign a special

character to this tetrad: eµ
a is the tetrad which diagonalizes the Lorentz mass tensor

Mab and therefore the Lorentz moment of inertia tensor Iab. Thus we have

Mµν =
3∑

a=0

Maeµ
aeν

a, (8.12)

with Ma a Lorentz vector, with 4 degrees of freedom. Because the four bivectors
eµ
aeν

a are constructed with the use of a tetrad eν
a, they possess 6 degree of freedom:

16 degrees belonging from the vectors components of the tetrad, reduced to 6 by the
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imposition of the 10 orthonormal conditions (4.1). Thus the decomposition (8.12)
contains the 10 exact degrees of freedom of a symmetric tensor.

But what are the principal axes? It is easy to show that, being identicallyM0 = 0,
the transformation

Ma ≡ 1
2

(
Ia+1 + Ia+2 − Ia

)
(8.13)

a + i = 1, 2, 3 mod (3)

realizes the diagonalization of the moment of inertia tensor

Iµν ≡
3∑

a=1

Iaeµ
aeν

a −
1
2

3∑
a=1

Iauµuν . (8.14)

Notice the separation between the spatial and the temporal components. The form
of (8.14) suggests that the triad eaµ (a = 1, 2, 3), is the triad of the principal axis of
inertia. The diagonal form of (8.14) shows also that (8.13) implicitly defines the axial
moments of inertia Ia, which behave as a Lorentz spatial vector in the tetrad utilized.
Using (1.2) we can invert (8.14) obtaining

Ia =
∫

Σ(λ)

Tκ
ḡκ

[(
Xa+1

)2
+

(
Xa+2

)2
]
d3Σ (8.15)

a + i = 1, 2, 3 mod (3) ,

from which we easily recover the well known Newtonian expression in the non
relativistic limit. Besides, the use of the rigidity condition (8.11) gives, after a short
manipulation, the rigidity property of the axial moment of inertia vector

(Ia)˙= 0. (8.16)
With the aid of (8.14) the spatial spin vector, (8.10) takes the form

Sµ =
3∑

a=1

Iaeµ
aeν

aΩν . (8.17)

In the case of the most simple model of a rigid body, the spherical rigid body, it is
obvious to define it by imposing

I1 = I2 = I3 ≡ I (8.18)

In this case, being
∑3

a=1 eµ
aeν

a = hµν , (8.17) becomes
Sµ = IΩµ. (8.19)

showing that in the case of a spherical body, the spatial spin vector Sµ and the spatial
angular velocity vector Ωµ are aligned, as expected.

We now focus our attention to the spin vector evolution. Using (5.4) and (6.34)
it is easy to prove that

Ṡµ = Sκu̇κuµ +
2
3
Rλ

ρσκJ κρνσεµ
λν (8.20)

or that the usual special relativistic Fermi-Wolker transport of the spin is broken by
the curvature term. From this evolution equation, using the spin expression (8.10)
and the rigidity condition (8.11) after a short calculation we have also

Iµν
(
Ω̇ν − Ωκu̇κuν

)
= (8.21)

εκµσ

(
Iσ

νΩνΩκ +
2
3
Rρ

κλνJ ν
ρσ

λ

)
.
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These are the equations of spin evolution in the language of the moment of inertia
tensor. We now translate this equation in a form containing the axial moment of
inertia vector. Employing (8.14), (6.31) and saturating the previous equation with
the principal axis of inertia eaµ we have (Latin repeated index are not summed)

Ia (Ωa)˙− ΩbΩc (Ib − Ic)−
2
3
Rb

αβγMγ[cα]β = 0, (8.22)

c = b + 1 mod (3) = a + 2 mod (3) , a = 1, 2, 3.

We call (8.22) the Relativistic Euler Equations because they are formally identical to
the classical Newtonian ones in the case of flat spacetime[18].

Finally, consider the rotational energy −L
S

−L
S

= −1
2

(
ΩµΩν − Ω2hµν

)
Mµν . (8.23)

Solving (8.9) with respect to the mass tensor,

Mµν =
[
1
2

(
hκλIκλ

)
gµν − Iµν

]
(8.24)

and using (8.14), after a straightforward calculation (8.23) takes the form

−L
S

=
1
2

3∑
a=1

IaΩ2
a. (8.25)

Projecting the spin vector (8.17) along the principal axes,

Sa = IaΩa, (8.26)

(repeated index are not summed) and collecting (8.25) and (8.26), we obtain
3∑

a=1

S2
a

2Ia (−L
S
)

= 1. (8.27)

On the other hand, for the spin vector in the tetrad components we can write
3∑

a=1

S2
a

S2
= 1. (8.28)

Let us now consider the constraint (4.10) of parametric invariance, or L = Pµuµ.
Using (6.5) and (5.7) and the equation of motion (6.34) we have

L̇ =
1
6
J κρσνṘνκρσ. (8.29)

From (5.13) and the rigidity condition (6.23), equation (8.29) gives

L̇
S

=
1
6
J̇ κρσνRνκρσ. (8.30)

On the other hand, from (8.20) we have(
S2

) ˙ =
4
3
Rλ

ρσκJ κρνσεµ
λνSµ (8.31)

Thus, in the trivial case of flat spacetime, we have Ṡ = L̇
S

= 0 and using the rigidity
condition İa = 0, equation (8.27) describes the Relativistic Binet ellipsoid in the
variables Sa. Intersecting this ellipsoid with the spherical surface of the constant
modulus of the spin, equation (8.28), we obtain the complete trajectory of the spin
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spatial vector in the principal axis system of reference, provided we have an initial
condition to assign.

The outcome of the naive case of zero curvature tensor everywhere can be
extended if the spacetime is maximally symmetric, i.e., in the constant scalar curvature
case, namely when

Rµνρσ =
R

12
(gµρgνσ − gµσgνρ) . (8.32)

Employing (8.30) we have in fact

L̇
S

=
R

72

(
J̇ κλ

κλ − J̇ κ λ
κ λ

)
=

R

36
J̇ ab

ab = 0. (8.33)

having used the symmetry properties in (6.31) and the rigidity condition. Similarly,
from (8.31) we have(

S2
) ˙ =

R

9

(
J̇ κ νλ

κ − J̇ λ νκ
κ

)
εµ

λνSµ (8.34)

=
2
9
RJ̇ κ νλ

κ εµ
λνSµ

Using (6.31) we finally have(
S2

) ˙ =
4
9
RṀ(ν λ)κ

κ εµ
νλSµ = 0 (8.35)

thus obtaining the same conclusion on the trajectory of the spin previously deduced
in the flat manifold.

Finally, we can ask whether the most general case in which we can infer the same
result is that of a rigid body with hight degree of symmetry or of a body for which

M[κ
[νρ]

σ] = Jκ
ρν

σ = 0. (8.36)

But we have also M[κ
(νρ)

σ] = 0 because of (3.19) and therefore M[κ
νρ

σ] = 0.
Saturating the first two indexes we have Mκ

κρσ = Mκ
(ρ|κ|σ). On the other

hand, saturating the first two indexes in (3.19) we have Mκ
κρσ = −2Mκ

(ρ|κ|σ) or
Mκ

κρσ = 0. Then (5.5) and (8.9)-(8.10) give Iµν = 0 and Sµ = 0 and therefore a
trivial case. Inversely, the weaker condition Mκ

κρσ = 0 or Iµν = 0 and Sµ = 0 cannot
give (8.36); however, for ordinary matter, such as Tµν = ρẋµẋν , ẋµ a congruence on
∆, it is easy to see that (8.36) will be also true.

9. Conclusions

Applying a minimal action principle, in this work we have completed a line of
research due to Bailey-Israel and Anandan-Dadhich-Singh concerning the variational
formulation of the dynamics of a test rigid body immersed in a curved spacetime. In
particular we have found the dependence of the lagrangian from the internal degrees
of freedom and, employing a rigidity constraint, we have derived, by a complete
variational procedure, the equations of motion to all orders as well as conserved
quantities coming from cyclic variables. The equations obtained give rise to some
simplifications on the dynamics of an extended rigid test body in general relativity
with respect to the Dixon theory. Finally, in view of applications, we have found
explicit expressions of these conserved quantities, of relativistic Euler equations and
of some other classical-like observables implied in the dynamics up to quadrupolar
order.
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