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Abstract The goal of this study is the analysis of the dynamical properties of financial

data series from worldwide stock market indices. We analyze the Dow Jones Industrial

Average (∧DJI) and the NASDAQ Composite (∧IXIC) indexes at a daily time hori-

zon. The methods and algorithms that have been explored for description of physical

phenomena become an effective background, and even inspiration, for very productive

methods used in the analysis of economical data. We start by applying the classical

concepts of signal analysis, Fourier transform, and methods of fractional calculus. In a

second phase we adopt a pseudo phase plane approach.

Keywords Pseudo-Phase Plane. Fourier Transform. Power Law. Fractional Calculus.

1 Introduction

The study of fractional order systems has received considerable attention, due to the

fact that many physical systems are well characterized by fractional models. The im-

portance of fractional order mathematical models is that it can be used to make a more

accurate description and it can even give a deeper insight into the processes underlying

long range memory behavior [9, 11, 16]. It seems that there are many distinct analogies
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between the dynamics of complex physical and economical or even social systems. The

methods and algorithms that have been explored for description of physical phenomena

become an effective background and inspiration for very productive methods used in

the analysis of economical data [8, 18, 14, 17].

In this paper we study the Dow Jones and the NASDAQ indexes at a daily time

horizon at the closing.

People on Wall Street found it difficult to analyze the daily jumble of up-a-quarter

and down-an-eighth, or whether stocks generally were rising, falling or staying even.

Charles Dow a journalist, neither financier nor broker, devised his stock average to

make sense of this confusion. He began in 1884 with eleven stocks, most of them

railroads. Railroads were among the biggest and sturdiest companies in America at

that time, which is why they dominated Dow’s first average. Few stocks of industrial

companies were publicly traded, and those were considered highly speculative. On May

26, 1896, he introduced the industrial average. In October of that year, Dow’s original

average shed the last of its non-railroad stocks and became the twenty-stock railroad

average. To complete this line of history, the utilities average came along in 1929 and

the railroad average was renamed the transportation average in 1970. Nowadays, of

course, there are plenty of indicators to tell investors what the stock market is doing.

The Dow Jones Industrial Average is in sync with other major market barometers.

That is true despite the difference in computation methods; the Dow is unweighted

while almost all other indexes weight their stocks by market capitalization, which is

price times shares outstanding. It is also true despite the fewer number of stocks in the

Dow [1].

The NASDAQ (National Association of Securities Dealers Automated Quotation)

Stock Market, founded in 1971, was the world’s first electronic stock market. The pur-

pose of its founding was to popularize the OTC (over-the-counter) securities market

which, up to that point, had been relatively unknown and unused by many stock play-

ers. With its first day of trading on February 8, 1971, the NASDAQ system displayed

quotes for over 2,500 over-the-counter stocks. The NASDAQ stock market is full of

technology stocks of up-and-coming companies, some with expensive stock prices and

some for just pennies. It continues to be America’s most popular market in a day and

age when technology still seems to be the wave of the future [2].

Bearing these ideas in mind this paper is organized as follows: sections 2 and 3

present some fundamental concepts, and the dynamical analysis, respectively. The ex-

istence of a power law relationship typical of systems with fractional calculus is shown.

Finally, section 4 draws the main conclusions and addresses perspectives towards future

developments.

2 Fundamental concepts

In this section we present a review of fundamental concepts involved in the experiments.

The technique used to determine the fractional behavior of the Dow Jones [3] and

NASDAQ [4] index signals is based on the slope of their trendlines in the frequency

spectrum. Additionally, the pseudo phase space (PPS) is obtained using the method

of the time delays [7, 10].
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2.1 Fourier transforms

In order to examine the behavior of the signal spectrum, a power law trendline is

superimposed to the Fourier Transform (FT) signal. To study the signal spectrum, we

approximate the modulus of the FT amplitude through power functions

|F{x(t)}| ≈ p ωq, {p, q} ∈ IR (1)

where F is the Fourier operator, x(t) is the index and t is time, ω is the frequency, p

a positive constant that depends on the signal amplitude and q is the trendline slope

[12]. According to the values of q the signals can exhibit an integer or fractional order

behavior.

The standard Fourier transform describing the data in the ’Fourier domain’ is

precise in frequency, but not in time. Small changes in the signal at one location cause

change in the Fourier domain globally. It is of interest to have transformed domains

that are simultaneously precise, both in time and frequency domains.

The Windowed Fourier transforms (WFT) are important in providing simultaneous

insight in time and frequency behavior of the signal. A window function is a function

that is zero-valued outside of some chosen interval. When a signal is multiplied by a

window function, the product is also zero-valued outside the interval: all that is left is

the ”view” through the window. In this paper, among the several window functions, we

adopt the Gaussian window for a sliding-window Fourier transform. The coefficients

of a Gaussian window are computed from the following equation:

W (t) = e
− 1

2 (α t
T/2 )2

(2)

where T is the window length, −T
2 ≤ t ≤ T

2 and α is the reciprocal of the standard

deviation. The width of the window is inversely related to the value of α: a larger value

of α produces a narrower window.

2.2 Pseudo Phase Plane

An essential problem in nonlinear time series analysis is to determine whether or not

a given time series is a deterministic signal from a low-dimensional dynamical system.

If it is, then further questions of interest are: what is the dimension of the phase

space supporting the data set? Is the data set chaotic? The key to answering these

questions is embodied in the method of phase space reconstruction, which has been

rigorously justified by the embedding theorems. Takens’ embedding theorem [5, 6]

asserts that if a time series is one component of an attractor that can be represented

by a smooth d-dimensional manifold (with d an integer) then the topological properties

of the signal are equivalent to the topological properties of the embedding formed by

the m-dimensional phase space vectors

y(t) = [s(t), s(t + τ ), s(t + 2τ ), · · · , s(t + (m − 1)τ )] (3)

whenever m > 2d+1. In equation (3) τ is called the delay time and d is the embedding

dimension. Different choices of t and m yield different reconstructed trajectories. The

vector y(t) can be plotted in a d-dimensional space forming a curve in the PPS. If

d = 2 we get a two-dimensional time delay space where the signal {s(t), s(t + τ )} is

related to the model {s(t), ṡ(t)}. In this case the PPS it is called pseudo phase plane
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(PPP). We expect, with the PPP of the signal, to draw conclusions about the system

dynamics [10].

There have been various proposals for choosing an optimal delay time, τ , for topo-

logical properties based on the behavior of the autocorrelation function. These include

the earliest time t at which the autocorrelation drops to a fraction of its initial value

or has a point of inflection. These definitions seek to find times where linear correla-

tions between different points in the time series are negligible, but they do not rule

out the possibility of more general correlations. Some argue that a better value for τ is

the value that corresponds to the first local minimum of the mutual information. The

mutual information is a measure of how much information can be predicted about one

time series point giving full information about the other. The values of τ at which the

mutual information has a local minimum are equivalent to the values of τ at which the

logarithm of the correlation sum has a local minimum. It is not clear which method,

if any, is superior for all topological properties. However, optimal values based on the

behavior of the autocorrelation function is the easiest to compute and is adopted in

our experiments [13].

3 Dynamics of financial indexes

In this section we study numerically the signals corresponding to the Dow Jones and

the NASDAQ indexes. For both signals we study the fractional behavior and the PPP

reconstruction.

Figures 1 and 2 depict the time evolution of the two indexes with the well-know

noisy of chaotic-like characteristics.

3.1 Fourier Analysis

Figure 3 shows the amplitude of the FT for the Dow Jones (|F{xD(t)}|) signal index.

A trendline is calculated and it is superimposed over the signal. For the Dow Jones

index the slope yields q = −0.79, revealing a fractional order behavior. Figure 4 shows

the amplitude of the FT for the NASDAQ |F{xN (t)}| signal index. A trendline is also

calculated and superimposed over the signal. For the NASDAQ index the slope yields

q = −0.83 and reveals, also, a fractional order behavior. In fact, in both cases we get

a fractional noise in between white and pink noise, corresponding to a considerable

volatility.

We now adopt the windowed Fourier transform and we consider α = 2.5, T = 366

days (one year) and that two consecutive windows are superimposed over a range of

window length of β = 50%.

For the Dow Jones index we considerer a total of the 110 windows centered at

t = 183λD days for λD = 1, 2, · · · , 110 and for the NASDAQ index we adopt a total

of 51 windows centered at t = 183λN days for λN = 1, 2, · · · , 51.

Figure 5 depicts the amplitude of a sliding-window Fourier Transform, |Fw{xD(t)}|,
centered at t = 183λD for λD = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, for the Dow

Jones index, while figure 6 shows the amplitude of a sliding-window Fourier Transform,

|Fw{xN (t)}|, centered at t = 183λN for λN = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}.
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Fig. 1 The temporal evolution of the daily closing value of Dow Jones index, from Oct, 1928
to Jun, 2009.

Fig. 2 The temporal evolution of the daily closing value of NASDAQ index, from Feb, 1971
to Jun, 2009.

Fig. 3 |F{xD(t)}| and the trendline for the Dow Jones signal index.
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For each of the above FT a power trendline is calculated and superimposed over

the signal. Table 1 shows the values of the slope q for both indexes where a fractional

order behavior is clearly observed.

We know that the lower the negative slope the higher the attenuation of the high

frequencies and, consequently the smoother the time evolution of signal. Therefore, the

Fourier transform analysis suggests that the NASDAQ index is more volatile than the

Dow Jones index. This is in accordance with reality. In fact, the NASDAQ index tends

to have a more variable quotation - it usually outpaces the Dow Jones index both to

the upside and the downside. This is because the NASDAQ index is heavily weighted to

technology stocks, containing more speculative (i.e., high risk/high reward) companies

than the Dow Jones index, which is constituted by large and stable companies. It

is interesting to note, in the window Fourier transform, that the NASDAQ volatility

has been increasing in the last years. However, this is not surprising if we have two

aspects in mind: i) volatility is normally seen in the market as a proxy for the investors’

emotions and fears, and ii) in the last decade we have witnessed two major crisis and,

therefore, investors have been quite anxious.

Peaks in the Fourier transforms’ charts for both indexes are easily identifiable.

They occur to the frequencies corresponding to 1 day (ω1 = 7.27E − 5rad/sec), 1.5

days (ω2 = 4.85E − 5rad/sec) and 3 days (ω3 = 2.42E − 5rad/sec). This suggests

the existence of a short-range periodicity in the stock market. In fact, ω3 corresponds

simply to the sampling frequency and ω2, a cross-effect between ω1 and ω3. However,

ω3 reveals that we have an half-week period limit cycle.

3.2 Pseudo Phase Plane Analysis

In order to study the PPP properties of the indexes xD(t) and xN (t), we adopt the

earliest time t at which the autocorrelation ρ has a point of inflection. This value is

the delay time, τ , used for the PPP construction [15].

Figures 7 and 8 depict the autocorrelation ρ versus τ , for the Dow Jones and

NASDAQ indexes, respectively. For the Dow Jones index the first local minimum occurs

for the time lag τD = 2330 days, while for the NASDAQ index it occurs for τN = 2174

days.

Figures 9 and 10 depict the PPP values for the Dow Jones and NASDAQ indexes,

for the chosen time lag. The PPP charts reveal that we can subdivide them into several

different partitions. Based on a visual analysis of the pattern of the Dow Jones PPP

chart we decided to consider five partitions as illustrated in Figure 11. For the NASDAQ

index’s PPP chart we consider six partitions as shown in Figure 12.

For each of these partitions, power law x(t) = ax(t− τ )b and linear x(t) = mx(t−
τ ) + n trendlines are calculated. Tables 3 and 4 depict the values of the trendlines

parameters {a, b} and {m, n} for both indexes.

For all of the PPP partitions we superimpose (Figures 11 and 12), over the temporal

data, the corresponding values of the power law and the linear trendlines mappings over

the original data. Moreover, the corresponding errors, eP (t) = x(t)− a[x(t− τ )]b, and

eL(t) = x(t) − mx(t − τ ) − n and histograms are obtained and, for the each error

type, the corresponding values for the arithmetic mean and the standard deviation are

calculated. Tables 5 and 6 show the values of the arithmetic mean and the standard

deviation {μ, σ} of the errors eP and eL, for the Dow Jones and NASDAQ indexes,

respectively.
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Fig. 4 |F{xN (t)}| and the trendline for the NASDAQ signal index.

Dow Jones NASDAQ
λD q λN q
10 -1.306 5 -1.170
20 -1.374 10 -1.139
30 -1.339 15 -1.108
40 -1.374 20 -1.157
50 -1.444 25 -1.131
60 -1.263 30 -1.138
70 -1.304 35 -1.103
80 -1.128 40 -0.968
90 -1.332 45 -1.076
100 -1.269 50 -1.029

Table 1 Slope q for the windowed Fourier transform, for the NASDAQ and the Dow Jones
indexes.

Fig. 5 Windowed Fourier transform |Fw{xD(t)}| for Dow Jones index for α = 2.5, T = 366
days and β = 50% centered at t = 183λD for λD = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
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Fig. 6 Windowed Fourier transform |Fw{xN (t)}| for NASDAQ index for α = 2.5, T = 366
days and β = 50%, centered at t = 183λN for λN = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}.

Fig. 7 Autocorrelation ρ vs time lag τ , for the Dow Jones index.

Fig. 8 Autocorrelation ρ vs time lag τ , for the NASDAQ index.
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Fig. 9 Pseudo phase plane for Dow Jones index and τD = 2330.

Fig. 10 Pseudo phase plane for Nasdaq index and τN = 2174.

Dow Jones NASDAQ
Partition Begin End Begin End

1 21/12/1932 15/09/1976 13/08/1971 29/11/1990
2 20/09/1976 10/09/1987 30/11/1990 02/08/1991
3 20/10/1987 16/03/1994 05/08/1991 21/04/1995
4 17/03/1994 13/05/1998 24/04/1995 05/04/1999
5 26/01/1988 13/03/2000 04/02/2000 13/07/2000
6 22/04/1999 03/02/2000

Table 2 Date of the Begin and the End time instants in each PPP partition, for the NASDAQ
and the Dow Jones indexes.

Dow Jones NASDAQ
Partition a b a b

1 22.0338 0.5627 0.2823 1.415
2 6.2494 0.8838 0.7073 1.384
3 1308.2781 0.2482 8579377001 -2.342
4 691.1133 0.3202 171.6524 0.3527
5 3100.4451 0.1421 191.0417 0.2529
6 6156.9266 -0.1193

Table 3 Parameters {a, b} of the power law trendline for the PPP partitions, for the NASDAQ
and the Dow Jones indexes.



NODY9680_source.tex; 24/02/2010; 10:54 p. 10

10

0 200 400 600 800 1000 1200
0

500

1000

1500

x(t−τ
D

)

x(
t)

 

 

x(t)

a*x(t−τ
D
)b

m*x(t−τ
D
)+n

500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

x(t−τ
D

)

x(
t)

 

 

x(t)

a*x(t−τ
D
)b

m*x(t−τ
D
)+n

Partition 1 Partition 2

1500 2000 2500 3000 3500 4000
6000

7000

8000

9000

10000

11000

12000

x(t−τ
D

)

x(
t)

 

 

x(t)

a*x(t−τ
D
)b

m*x(t−τ
D
)+n

3000 4000 5000 6000 7000 8000 9000 10000
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

4

x(t−τ
D

)

x(
t)

 

 

x(t)

a*x(t−τ
D
)b

m*x(t−τ
D
)+n

Partition 3 Partition 4

0 2000 4000 6000 8000 10000 12000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

4

x(t−τ
D

)

x(
t)

 

 

x(t)

a*x(t−τ
D
)b

m*x(t−τ
D
)+n

Partition 5

Fig. 11 The five partitions and corresponding power law and linear law trendlines for the
Dow Jones index’s PPP.

Dow Jones NASDAQ
Partition m n m n

1 0.8878 235.13 3.6635 -152.48
2 2.3964 389.03 9.8351 -1080.1
3 0.7549 7235.3 -7.7537 7417.8
4 0.618 7400.4 0.5304 1449.4
5 0.2465 8985 0.0969 1167.0
6 -0.0875 2636

Table 4 Parameters {m, n} of the linear law trendline for the PPP partitions, for the NAS-
DAQ and the Dow Jones indexes.
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Power law, eP Linear law, eL

Partition μ σ μ σ
1 -6.2484 156.8542 -0.0031 175.3228
2 -4.0265 407.8812 -0.0087 412.9503
3 -1.1110 1197.4871 -0.06688 1223.0052
4 -0.9997 489.4155 -0.19709 445.3473
5 -0.9680 1347.4192 0.1813 1398.3492

Table 5 Arithmetic mean and standard deviation {μ, σ} of the error histograms for the Dow
Jones index: eP (t) = x(t) − a[x(t − τ)]b and eL(t) = x(t) − mx(t − τ) − n.

Power law, eP Linear law, eL

Partition μ σ μ σ
1 17.5949 265.2153 -0.0117 276.8396
2 1.5065 506.9526 -0.0164 509.4117
3 3.6146 517.0247 0.0118 555.1289
4 0.1030 115.6174 0.0379 113.8387
5 0.0052 143.5438 0.1396 143.4068
6 -0.0002 110.92 -0.0202 110.9426

Table 6 Arithmetic mean and standard deviation {μ, σ} of the error histograms for the
NASDAQ index: eP (t) = x(t) − a[x(t − τ)]b and eL(t) = x(t) − mx(t − τ) − n.

Figures 13 and 14 depict the PPP partitions and the trendlines approximation for

the Dow Jones and the NASDAQ indexes, respectively, for both types of trendline

mappings. Figures 15 and 16 depict the relative error’s charts for the Dow Jones and

the NASDAQ indexes, respectively.

These charts demonstrate that we have relationships between distinct time peri-

ods. This observation is consistent with the fractional order long-range memory effect

depicted by the Fourier transform. At the present time it is neither clear what is the

required number of partition to characterize completely the PPP, nor the relations

between the trendline parameters and the Fourier transform details. Moreover, further

research towards having the ”best” trendline is needed. Nevertheless, it is clear that

long term memory relations exist and that more research efforts are still needed.

4 Conclusions

The Dow Jones and The NASDAQ indices were studied using several techniques usually

adopted in dynamical systems. The Fourier spectrum of the Dow Jones and NASDAQ

indexes was approximated by trendlines. Based on the slope of the trendlines the

fractional order behavior was evidenced. To provide simultaneous insight in time and

frequency behavior of the signal we study the spectrum signals using a sliding-window

gaussian Fourier transform.

For the PPP reconstruction an alternative technique based on the time series was

also adopted. It was calculated the time lag for each index signal using the first mini-

mum value of the autocorrelation. The tests suggest that the time lag obtained for the

minimum autocorrelation values leads to patterns of relationship between several time

partitions.
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Fig. 12 The six partitions and corresponding power law and linear law trendlines for the
NASDAQ index’s PPP.
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Fig. 13 Temporal data and corresponding power law and linear law mapping for the Dow
Jones index.
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Fig. 14 Temporal data and corresponding power law and linear law mapping for the NASDAQ
index.
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Fig. 15 Error’s histograms for the Dow Jones index: eP (t) = x(t) − a[x(t − τ)]b and eL(t) =
x(t) − mx(t − τ) − n.
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Fig. 16 Error’s histograms for the NASDAQ index: eP (t) = x(t) − a[x(t − τ)]b and eL(t) =
x(t) − mx(t − τ) − n.


