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Abstract:

Considering a linear system, we construct hybrid loops consisting in a (possibly non stabilizing)
given linear dynamic continuous-time controller with a jump rule when some conditions of the
state occur. This allows us to study the performance improvement problem. More precisely, we
firstly show the interest of an hybrid loop to maximize the decay rate when the gain of the
controller is limited. Secondly, we show how adding a hybrid loop can be useful to reduce the
overshoot of an output. The proposed approaches are illustrated on two examples.

Keywords: hybrid systems, performance, reset controllers, detectability

1. INTRODUCTION

Even for linear control systems which follow a purely
continuous dynamics, it may be useful to consider dynamic
controllers having a mixed discrete/continuous dynamics.
This leads to the class of hybrid control laws, and the
closed-loop system turns out to be a hybrid system. Such
controllers are now instrumental in many feedback control
designs, for their capability to provide asymptotic stability
of the closed-loop system (see e.g. Hespanha and Morse
(1999); Hespanha et al. (2004)). They are also interesting
for their capability to guarantee a robustness with respect
to small errors in the loop, which cannot be obtained using
classical (i.e. with a continuous dynamics) controllers (see
e.g. Prieur (2005); Goebel and Teel (2009)).

Hybrid controllers are also instrumental to improve the
performance for linear systems in presence of disturbances.
See Chen et al. (2001); Beker et al. (2004); Nesi¢ et al.
(2008), where reset controllers are used to decrease the
Lo-gain between perturbations and the output. Consider
also Aangenent et al. (2008) (resp. Witvoet et al. (2007))
where it is shown that reset controllers may be useful to
improve the £2 (resp. H?)-stability of linear systems. See
Loquen et al. (2007) for further results on reset systems
with saturation in the input.
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The aim of this paper is to design new hybrid strategies
to improve the performance of the closed-loop system.
More precisely, for linear control systems this hybrid
loop may be connected to the maximization problem of
the decay rate with a limited controller gain. Moreover
we show that adding hybrid loops yields a solution to
the reduction of the overshoot of an output, by solving
a convex optimization problem. This part of our work
is related to Haddad et al. (2001b) (see also Haddad
et al. (2001a), and Haddad et al. (2003) for Hamiltonian
systems) where Lyapunov conditions are designed for the
feedback interconnections of impulsive nonlinear systems.
However in our paper, an a priori Lyapunov-like function
is used for the designs of the hybrid controllers.

These performance results are based on the derivation
of a sufficient condition for the closed-loop system with
the hybrid loop to be asymptotically stable. This stability
analysis relies on a LaSalle invariance principle argument
and on a result of Prieur et al. (2010). In this latter work,
some a priori Lyapunov-like functions are used to design
hybrid loops that stabilize the whole state or the state
variable only.

The remaining part of the paper is organized as follows.
The problems under consideration in this paper are intro-
duced in Section 2. Some preliminaries are also given in
this section. In Section 3, we show how we can guarantee
the stability by adding a hybrid loop, this is our first
main result. Section 4 contains the two other main results,
namely the maximization of the decay rate with a limited
jumping gain (see Section 4.1), and the reduction of the
overshoot by the design of a hybrid loop (see Section 4.2).
Some numerical examples illustrate the latter two results.



Some concluding remarks and open questions are given in
Section 5. Due to space limitation, all proofs are omitted.

Notation. The Euclidian norm is denoted by | - | and the
scalar product by (,-). For positive real integers n and m,
I,, (resp. Oy, ) denotes the identity matrix (resp. the null
matrix) in R™*™ (resp. in R™*™). The subscripts may be
omitted when there is no ambiguity. Moreover, for a vector
x, the diagonal matrix defined by the entries of = is noted
diag(z), and for a matrix M, He(M) = M + M’, where
M’ denotes the transpose matrix of M. For any symmetric
matrix, x stands for a symmetric term.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following linear plant:

y = Cpap + Dyu, (1)
with z, € R", in feedback interconnection with a (not
necessarily stabilizing) linear dynamic controller:

Te = Acxce+ chv U= CC:EC:’_ Dcya (2)
with z. € R". Assuming that I — D,D,. is nonsingular,
the closed-loop is well posed and described by the following
linear system

Tp = flpxp + Bpu,

B. A

where z = (v, z;)" and Ay, By, A., and B, are matrices
of appropriate dimensions uniquely defined based on the
matrices in (1) and (2). In the reminder of the paper, we
consider directly (3) and we do not consider anymore from
which this linear system has been computed (in particular
(1) and (2) will not be used anymore).

&= Az = [APB’c’]sm 3)

By exploiting the properties of Lyapunov functions, the
aim of this paper is to construct a hybrid closed-loop
system which follows the flow dynamics (3) when the state
is in a set (called the flow set) and follows a suitable
discrete dynamics when the state is in an other set (called
the jump set). These flow and jump sets, together with the
discrete dynamics, define a hybrid system and have to be
designed to guarantee some performance properties of the
closed-loop state = and of the plant state zp,.

More precisely, we will address the following two problems.
The first problem is an optimization of the decay rate of
the variable x, by adding a hybrid loop to the system (3).

Problem 1. Consider the closed-loop system (3). Given a
limitation on the amplitude of the gain K, design a hybrid
system which follows the dynamics (3) when flowing,
follows the dynamics

rt =Kz
when jumping, and is such that the x,-variable have the
best decay rate of the x,-variable as possible.

The second problem is related to the reduction of the
overshoot of the output y of (1) by means of a hybrid
loop.

Problem 2. Consider the closed-loop system (3). Design
a hybrid system which follows the dynamics (3) when
flowing and the output y of (1) converges to zero and is
non-increasing along solutions.

Both problems are solved in Theorems 2 and 3 respectively.
Note that Problem 2 is solved indirectly. More precisely, to

solve it, we introduce a function V, : R"» — R>(, and we
design a hybrid loop such that V}, is non-increasing along
the solutions of the hybrid system, and V,(x,) is close (in
a certain manner) to |y|?. See Theorem 3 for more details.

Let us shortly describe the framework of the hybrid sys-
tems that is considered in this paper. For an introduction,
see e.g. the recent survey Goebel et al. (2009). Such a
system combines a continuous dynamics in a set F' (called
flow set) and discrete dynamics in a set J (called jump
set), and it is formally written as
t=Axifx e F 4
st =Kzxifzed, (4)

where = = (z},,x,)" € R", n = n, +n., A and K are two
matrices of appropriate dimensions. We recall some basic
ingredients on hybrid system theory, and solutions of (4).
Due to mixed discrete/continuous dynamics, a solution
of (4) will be defined on a mixed discrete/continuous
time domain. More precisely, a set F is a hybrid time
domain if for all (Ty, Jo) € E, E N ([0,Tp] x {0,1,...Jp})
is a compact hybrid time domain, i.e. it can be written
as Uj;ol ([tjstj4+1],4), for some finite sequence of times
0=ty <ty... <ty. A solution = to (4) consists of a
hybrid time domain dom = and a function = : dom x — R"™
such that x(¢, ) is absolutely continuous in ¢ for a fixed j
and (¢,7) € dom x satisfying

(S1) for all j € N and almost all ¢ such that (¢,7) €
dom z,

(S2) For all (¢, ) € domx such that (¢,j+1) € domz,
x(t,j) € J, x(t,j+1) = Kx(t,j) -

Then, the state solution z is parameterized by (¢, j) where
t is the ordinary time and j is an independent variable
that corresponds to the number of jumps of the solution.
When the state x(¢,j) belongs to the intersection of the
flow set and of the jump set, then the solution can either
flow or jump. This parameterization may be omitted when
there is no ambiguity.

A solution z to (4) is said to be complete if domx is
unbounded, Zeno if it is complete but the projection of
domz onto R is bounded, and mazimal if there does
not exist an other solution x of (4) such that z is a
truncation of x to some proper subset of dom x. Hereafter,
only maximal solutions will be considered. For more details
about this hybrid systems framework, we refer the reader
to Goebel et al. (2009) or Prieur et al. (2007).

Definition 1. The hybrid system (4) is said to be

e stable: if for each € > 0 there exists 6 > 0 such
that each solution x to (4) with |x(0,0)| < satisfies
|z(t, )| < € for all (t,7) € domx;

e attractive: if every solution x to (4) is complete and
satisfies limgy ;o0 |2(t,7)| = 0;

e globally asymptotically stable: if it is both stable and
attractive.

3. GUARANTEEING ASYMPTOTIC STABILITY

Before solving Problems 1 and 2, we first state a result
suggesting a sufficient condition for the hybrid system (4)
to be globally asymptotically stable. To do that, some



Lyapunov functions are used and since the closed-loop
system (3) is linear, we restrict to the class of quadratic
functions, and to sets F' and J depending on the sign of a
quadratic function of the state.

Moreover since the x,-variable is the state of the plant, it
is natural to impose the following structure on the gain
K defining the discrete dynamics in (4): K = {II(’" 8},

P
where K, is a given matrix in R"™*"» |

More precisely given a symmetric positive definite matrix
P, in R™*", a matrix NV in R™*" a matrix K, in R"*"»,
and a positive value &, we will consider the following
structure for the hybrid system (4):
T = Ax ifxeF, 5
(z),ad) = (xp, Kpxyp) if € J (5)
where F' C R™ and J C R™ are the closed subsets of R"
defined by
F ={zeR", 2’Nz < —ax,P,x,} , (©)
J={zeR", a'Nx > —ax,P,r,} ,

where N, &, P, will be specified in the sequel.

Our first main result is based on the following proposition
which gives a convergence property of the z,-variable only:
Proposition 1. [Prieur et al. (2010)] Consider the closed-
loop system (8) and a symmetric positive definite matriz

P = {ip Jijc in RUwtne)x(mptne) gych that the matriz
P, := P, — P,.P.' P}, satisfies

He(P,(Ap + BpK,)) < —aPy , (7)
for some a > 0 and for K, := —Pc_lngc. Then, letting

P,A, P,B

N::He([ pop pop}). (8)
the hybrid system (5), (6) is such that the plant state x)
converges to zero, and x, w Vp(xp) := x,Ppx), is non-

increasing along solutions.

With Proposition 1, there is no guarantee that the state
of the controller will converge to zero. It turns out to be
sufficient that the controller dynamics is detectable from
the output matrix B,,. Intuitively, this requirement corre-
sponds to asking that any nonzero controller evolution will
be detected by the plant states so that a LaSalle result can
be applied to show convergence. This is the basic tool to
prove the following theorem.

Theorem 1. Consider any state stabilizing gain K, such
that A, + BpK, is Hurwitz and a pair P,, o satisfying
(7). Consider now any & < « and the flow and jump sets
in (6). If the pair (Bp, Ac) is detectable, then the hybrid
system (5) is globally exponentially stable.

4. IMPROVING THE PERFORMANCE

In this section, we rely on the results of Theorem 1 to
propose a suitable jump rule to be incorporated in a linear
continuous-time control system to maximize the decay rate
or to reduce the plant output overshoot (see respectively
Sections 4.1 and 4.2 below). This will solve Problems 1
and 2.

4.1 Mazimizing the decay rate

Consider equation (7) and note that it resembles the clas-
sical state-feedback stabilization problem with guaranteed
convergence rate, which is well known to be solvable via a
generalized eigenvalue problem. Given a plant, a possible
way to address the search for P,, K, and « satisfying (7)
is to impose a bound ks on the size of K, and compute
the maximum « satisfying (7) (or a conservative estimate
of it) while guaranteeing |K,| < kps. This type of goal
is achieved by solving the following generalized eigenvalue
problem:

Find a symmetric positive matriz QQp in R™*"» o matriz
X in R™*™ and a positive value o solution of

_ max a, s.t.
Qp=Q4,, X
Qp > 1
o< [Ful X (9)
- X/ I{,MI

—aQ, > He(A,Q, + B,X),

where ks > 0 is given. The optimal solution to (9) will
lead to the gain K, = XQ, ' and to P, = Q! satisfying
(7) and such that | K| < |X|[|Q, '] < ki because the first
constraint imposes |@Q,'| < 1 and the second constraint
imposes | X| < kjps. Using this gain, we may solve Problem
1 and the following theorem holds

Theorem 2. Consider a symmetric positive matriz Qp m
R™ " a matriz X in R"*" and a positive value «
satisfying (9). Let K, = XQ;l and P, = szl, For any
selection of 0 < & < « and the flow and jump sets in (6),
then

1. for a suitable k > 0, the plant state response satisfies
the following exponential bound for all (t,7) € domx:

. a
[ap(t,)] < kexp (=5t 2, (0,0)]

2. if the pair (Bp, A.) is detectable, then the hybrid
closed-loop is globally exponentially stable.

The optimization problem in (9) can be used to build a
curve providing the maximum decay o« achievable with a
certain bound s s on the gain Kj,. Then in many practical
cases, it might well be that the optimal o grows unbounded
as the bound kj; becomes arbitrarily large. This fact is
illustrated in the next example study.

Example 1. Consider a one-dimensional linear plant con-
nected in negative feedback with a one-dimensional linear
controller:

Tp = apTp + bpx,

Te=0cTe — Tp,

where we assume b, > 0.

For this example, the solution to (9) can be computed
explicitly as a function of kj;; and corresponds to K, =
—#Kr, while the optimal performance is o« = —2a,+2b,k7,
achieved with Q, = 1 and X = —kyy. It is instructive to
study the shape of the jump and flow sets F' and J defined
in (6), which are symmetric cones in the plane (z,,x.).
Using, for example, @ = § = —a, + by, the sets in (6)
become
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Fig. 1. Shapes of the flow and jump sets of Example 1
using ks = 1 (upper left) and kp = 2 (upper right).
The lower plots show the time histories of the two
trajectories shown on the state space planes.

F= {m,mc) L[] [“P * Dpriar H (2] < 0},(10)
P
while J is the closure of the complement of F.
According to the results in Theorem 2 the hybrid closed-
loop system given by

Tp = apTp + by,

P ifxeF,
LTe = QcTe — Tp,

+
X = X .

A P ifeeJ
T, = —KMZTp,

is globally exponentially stable.

The flow set in (10) defines a symmetric cone in the (x,, )
plane whose boundaries correspond to the two subspaces
{(zp,xc) : x, = 0}, namely the vertical axis, and
{(xp,zc) + 2bpxe = —(ap +bpkar)xy}, namely (by the fact
that b, > 0 and kas > 0), a line which rotates clockwise as
ky (and, consequently, the guaranteed convergence rate
& = —ay, + bpk) increases. An example corresponding to
ap = —1, b, = 1 and Ky = 1 is shown in the top left
plane of Figure 1. In this case, the flow set (striped area)
corresponds to the second and fourth quadrants and the
set v, = Kpr, = —KpmTp = —Tp, where the controller
state is reset, (depicted as a bold dashed line) corresponds
to the bisector of the second and fourth quadrant. The top
right plane in the same figure shows how these sets change
when increasing the gain to Ky = 2.

Some trajectories are also reported in Figure 1, corre-
sponding to the case a. = 0 which, in the case xky; = 1
corresponds to a generalized version of the behavior of
the so-called Clegg integrator (see Clegg (1958); Zaccarian
et al. (2005)) in negative feedback interconnection with
the plant P(s) = Sil. The generalization consists in
resetting the Clegg integrator state to the value of the

input rather than to zero but essentially coincides with the
original resetting rule where the integrator was supposed
to be reset only at zero crossings of the integrator input
(see Clegg (1958); Zaccarian et al. (2005) for details).
Note that in the case kjp; = 2 reported to the rigth of
Figure 1, the horizontal boundary of the flow set is tilted,
reducing the size of the flow set, and the reset manifold
z. = Kpx, is tilted as well, to speed up the state decay
rate. Nevertheless, the vertical boundary corresponding to
{(zp,z) : x, = 0}, remains unchanged thus preserving
the peculiarity that the response exhibits no overshoot.
This property arises from the fact that the function z, —
:1:127 is nonincreasing along the solutions. This fact is further
illustrated by a few simulations starting from the initial
conditions (x,(0,0),z.(0,0)) = (—1,0), reported at the
bottom plot of Figure 1. In both simulations, the controller
state is first reset to the reset manifold and then exhibits a
flow interval until the state reaches the vertical axis, where
the solution is finally reset to zero. *

4.2 Owershoot reduction

Perhaps the first example study where hybrid control
systems were shown to overcome intrinsic limitations of
classical linear control was the one in Beker et al. (2001),
were a reset controller was shown to improve upon linear
control in terms of overshoot reduction. If the plant (1)
is strictly proper (namely, D, = 0), a possible way to
mathematically formalize the requirement of overshoot
reduction in terms of the Lyapunov functions introduced
here is to construct a quadratic function x, — V,(z,) :=
xéppxp and the stabilizing gain K, in such a way that, to a

certain extent, V,(z,) & |y|?. Then achieving non-increase
of V, via the hybrid loops of this paper will induce (almost)
no overshoot, namely |y(¢)| is (almost) non-increasing
along trajectories. Let us make more explicit this informal
discussion.

Finding the above discussed pair (V,,K,) can be done,
for example, by writing the dynamics (1) in observability
canonical form, so that =, = (2}, y)’ and solving the fol-
lowing LMI eigenvalue problem: Find a symmetric positive
matriz Qp in R > q matriz X in R™*™ and positive
value o, p,, and p, solution of

min

] Py, 8.t
Qp:Qéjapmvpva

Qp - -;212 (illyy:| >1
0 < KM/I X :|
| X mld (11)
0 > He(4,Qp + B X)
pz 1
0= L 1 py
Pz < Ql
qy < 1+ py,

where kj; > 0 is given. Similar to the case addressed in
Section 4.1, the optimal solution to (11) will lead to the
gain K, = XQ;1 and to P, = Q;l satisfying (7) with
a small enough a and such that |K,| < |X[|Q,"| < k.
Moreover, the bounds given by the last three constraints
can be shown to imply that smaller values of p, will lead
to a function Vj,(z,) = 2,Q, 'z, closer to |y|*. This fact,



together with desirable stability properties of the hybrid
closed-loop, helps us to solve Problem 2 and to establish
in the following theorem.

Theorem 3. Consider a sequence of solutions
(QF, pk, pk, X*)ren to the constraints (11) such that Pl —

0 as k — oo. Then, defining V() = ), (Qk) Tp, we
have, for each x, in R"»,
Jim Vi (z,) = [yl (12)

namely as pf approaches zero, Vk(ozp) approaches |y|?.

Moreover given any pazr (Qp, X) satisfying (11), let K, =
XQ and P, = Q . Then, for a small enough selection
ofa equation (7) z's satisﬁed. Moreover, given any selec-
tion of 0 < & < «, the reset system (5) with the flow and
Jump sets in (6), is such that:

1. the plant state x,, converges to zero, and the function
xp — Vp(zp) = ), Ppx, is non-increasing along
solutions;

2. if the pair (Bp, A.) is detectable, then the hybrid
closed-loop is globally exponentially stable.

Just as in the case discussed in Section 4.1, the optimiza-
tion problem in (9) can be used to build a curve providing
the overshoot reduction level p,- I achievable with a certain
bound sjs on the gain K. Similar to before, it might well
be that the optimal p, ! grows unbounded as the bound
Kk becomes arbitrarily large.

Example 2. We consider an example originally discussed
in Beker et al. (2001), where a First Order Reset Element
whose linear part is characterized by the transfer function

. +1 controls via a negative unltary feedback a SISO plant

whose transfer function is P = m For this example,
the control system involving the FORE is shown in Beker
et al. (2001) to behave more desirably than the linear
control system because it has only about 40% overshoot as
compared to the linear closed-loop system, while retaining
the rise time of the linear design (this example was also
later discussed later in Nesi¢ et al. (2005); Zaccarian et al.
(to appear) where the L5 gain properties of the reset
closed-loop were characterized). Here we show that when
allowing more general resets than just the ones induced by
the FORE resetting law (which essentially imposes a reset
of the controller state to zero when the controller input and
output have opposite signs), arbitrary small overshoot can
be achieved, while retaining the same rise time. To this
aim, we use the following state-space representation of the
linear closed-loop:

] -

Figure 2 shows the overshoot reduction parameter p, 1

a function of the bound x;; imposed on the gain K. Note
that the curve has a peculiar shape for small values of
kar and then essentially grows linearly or large values of
ka- Table 2 reports the values of P,, K, and py1 for
some selections of xj,s. Using the values in Table 2, we
run several simulations of the closed-loop starting from
the initial conditions z,(0,0) = [1, 1}/, resembling the

(13)
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Fig. 2. Curve of the overshoot reduction parameter p, !
a function of the bound x;; imposed on the gain K.

KM P, K} oy
0.1 | [ 53064 oord006 | DO T 048451
0.5 | | 5088500 099128 O9F | | 10.662
1 00015986 099778 Oo%E] | 21179
5 | [ 0ososms oovar ] | | XP8s0r | | 103 2

Table 1. Values of the matrices P,, K, and py
for some selections of k.

step responses reported in Beker et al. (2001); Nesi¢ et al.
(2005); Zaccarian et al. (to appear). In particular, we
implement the hybrid loops arising when using the values
in the table within the scheme proposed in Theorem 3.
Note that since in this case the pair (B,, A.) is observable,
then according to the results of Theorem 1, the trajectories
are all convergent to zero. The resulting plant input and
output responses are shown in Figure 3, where we also
show the linear response (thin solid) and the response
obtained with the FORE used in Beker et al. (2001) (thin
dashed).
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Fig. 3. Simulation results when using the linear hybrid
loops discussed in Example 2. Linear response (thin
solid) and response of the FORE closed-loop of Beker
et al. (2001) (thin dashed) compared to the reset
responses obtained with the parameters in Table 2

(bold).



The results in Figure 3 are indicative of the potential of the
proposed approach with the goal of reducing overshoots
in linear control systems and correspond to trajectories
of the reset system (5) with the flow and jump sets in
(6), with the parameters in (13) and with the gains K,
in Table 2. It should be pointed out that even though we
manage to improve the overshoot reduction as compared
to the FORE resetting strategy proposed in Beker et al.
(2001) (see the thin dashed curve in Figure 3), this
last strategy is more appealing from an implementation
viewpoint because it only requires a measurement of the
plant output. Conversely, the resetting strategy of the
improved bold curves of the figure are obtained using a
full measurement of the plant state. *

5. CONCLUSIONS

The design problem of a stabilizing hybrid loop is consid-
ered in this paper. This class of system mixes discrete and
continuous dynamics depending on the value of a quadratic
function of the state. Adding a hybrid loop to a closed-loop
linear system can been instrumental when maximizing the
decay rate with an amplitude-limited controller. Finally it
has been proven that adding a hybrid loop may be useful
to reduce an overshoot of a given output. Some simulations
highlighted the interest of the results.
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