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Abstract: In this paper the class of linear impulsive systems is considered. These systems are
those with a continuous linear dynamics for all time, except at a sequence of instants. When
such a discrete time occurs, the state undergoes a jump, or more precisely follows a discrete
linear dynamics. The sequence of time instants, when a discrete dynamics occurs, is nearly-
periodic only, i.e. it is distant from a periodic sequence to an uncertain distance. This paper
succeeds to state tractable conditions to analyze the stability, and to design reset matrices such
that the hybrid system is globally asymptotically stable to the origin. The approach is based
on a polytopic embedding of the uncertain dynamics. An example illustrates the main stability
result.
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1. INTRODUCTION

Hybrid systems are dynamic systems subject to both
continuous-time and discrete-time dynamics. The impor-
tance of hybrid systems in control systems analysis and
design have been growing in the last decades, due mainly
to their presence in practical systems and to overcome
performance limitations of more classical controllers, i.e.,
regular linear or nonlinear controllers (see, e.g., Clegg
[1958], Prieur et al. [2007], Zaccarian et al. [2005], Nes̆ic̀
et al. [2008]). A particular class of hybrid systems is rep-
resented by reset systems, see Horowitz and Rosenbaum
[1975], Beker et al. [2001], Prieur et al. [2010], Barreiro
and nos [2010]. An interesting sub-class of hybrid systems
is the systems with finite state jump which are linear
continuous-time systems for which the state undergoes fi-
nite jump discontinuities at some discrete instants of time.
Such systems can be regarded as a special case of reset
systems in the sense that the reset rule is done through a
time condition instead of a state condition. These systems
can be named impulsive dynamical linear systems Haddad
et al. [2006]. See also for example Haddad et al. [2001a],

1 The research leading to these results has received funding from
the ANR project ArHyCo, ARPEGE, contract number ANR-2008
SEGI 004 01-30011459 and from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement
n 257462: HYCON2 Network of Excellence ”Highly-Complex and
Networked Control Systems”.

Haddad et al. [2001b], Li et al. [2001] and Hespanha et al.
[2008]. Lyapunov theory framework provides the main
tool to test the stability of reset of impulsive systems by
employing an adequate Lyapunov function (or a family of
Lyapunov functions) Liberzon [2003]. The results devel-
oped in the current paper are based on the use of adequate
parameter-dependent quadratic Lyapunov function (Lee
and Dullerud [2006], Daafouz and Bernussou [2001]).

The paper deals with both the stability analysis and
stabilization problems, for linear systems controlled by a
reset compensator. The reset rule, differently from Prieur
et al. [2010], is posed in function of the time. The interval
between two reset instants is supposed to be uncertain.
In this setup, this interval is defined as the sum of a
nominal reset period and an uncertain time-varying term
bounded in a given interval. Thus, in order to avoid
Zenon phenomena, we assume that the nominal reset
period is different from zero. The main conditions in
both problems is exhibited in terms of a parametric set
of linear matrix inequalities (LMI). Tractable numerical
solutions are proposed for these sets of parametric LMI to
be expressed as a finite number of conditions using convex
embeddings.

The paper is organized as follows. Section 2 describes
the class of systems under consideration and states the
problems of stability analysis and reset law design. In
Section 3, the main results to with both problems. Section
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4 presents two ways to solve the conditions developed in
Section 3. An numerical example is detailed in Section 5
to point out the potentiality but also the difficulty of the
proposed approach. Finally some concluding remarks and
forthcoming issues end the paper.

Notation. For a matrix M we denote by ‖M‖ the induced
matrix norm. By M " 0 or M ≺ 0 we mean that
the symmetric matrix M is positive or negative definite
respectively. We denote the transpose of a matrix M by
MT . By Im we denote the m×m identity matrix. By 0 we
denote the null matrix of the appropriate dimension. By
λmax(M) we denote the maximum eigenvalue of a square
symmetric matrix. For a given set S, co(S) denotes the
convex hull of S.

2. SYSTEM DESCRIPTION

Consider the following linear time-invariant system:

ẋp(t) = Axp(t) + Bu(t), ∀t ∈ R
+, xp(0) = x0

p ∈ R
np(1)

y(t) = Cxp(t),

where xp ∈ Rnp , u ∈ Rnu and y ∈ Rny represent
the system state, input and output, respectively. The
matrices A, B and C are constant matrices of appropriate
dimension. Associated to the system (1) we consider a reset
controller:

η̇(t) = Aηη(t) + Bηy(t), ∀t ∈ R
+ − T , η(0) = η0 ∈ R

nη

u(t) = Cηη(t) + Dηy(t), (2)

η(t) = Rηη(t−) + Ryy(t−), ∀t ∈ T ,

where the matrices Aη, Bη, Cη, Dη, Ry, Rη are constant
matrices of appropriate dimmension. η ∈ Rnη is the
controller state and t− = limτ→t,τ<t t. The set

T =

{

tk : tk ∈ R
+, tk < tk+1, ∀k ∈ N, lim

k→∞

tk = ∞

}

(3)

represents the set of reset times. We denote by τk the
interval between two reset instants,

τk := tk+1 − tk, ∀ k ∈ N. (4)

We assume that the reset interval has the form

τk = τnom + δτk, (5)

where τnom represents a nominal reset period and δτk the
uncertain time-varying term bounded in a given interval,

δτk ∈ [0, δτmax] . (6)

In order to avoid Zenon phenomena we assume that
τnom )= 0. The problems under study are formulated as
follows:

Problem 1. Assume that the matrices A, B, C and Aη,
Bη, Cη, Dη, Rη and Ry are given and constant. Provide
LMI methods for checking the stability of the reset system
(1), (2) with a reset interval (5).

Problem 2. Assume that the matrices A, B, C and Aη,
Bη, Cη, Dη are given and constant. Design reset matrices
Rη and Ry to guarantee stability of reset system (1), (2)
with a reset interval (5).

3. RESET STABILIZATION

We consider the following generic linear reset systems:

ẋ(t) = Acx(t), ∀t ∈ R
+ − T , (7)

x(t) = Arx(t−), ∀t ∈ T . (8)

Note that the system (1) with the control law (2) can be
expressed in this form using the notation

x = (xT
p ηT )T ∈ R

n, n = np + nη

Ac =

(

A + BDηC BCη

BηC Aη

)

(9)

and

Ar =

(

Inp 0
RyC Rη

)

. (10)

The following theorem proposes stability conditions for
closed-loop system (7) with a reset law (8).
Theorem 1. Consider system (7),(8), with T defined in (3)
such that the reset interval (4) satisfies the assumptions
(5) and (6). Assume that the matrix Ar is given. If there
exist symmetric positive definite matrices P (δτ), δτ ∈
[0, δτmax], and a matrix G of appropriate dimensions such
that the following set of linear matrix inequalities

(

P (δτa)
(

eAc(τnom+δτa
)T

AT
r GT

GAre
Ac(τnom+δτa) G + GT − P (δτb)

)

" 0, (11)

is satisfied for all δτa, δτb ∈ [0, δτmax], then there exists
a reset law (8) for which the equilibrium point x = 0 of
system (7) is asymptotically stable.

Proof. The proof is based on the evaluation of the system
behavior at the sampling instants tk. The solution of the
system (7) is described by the equation

x(t) = e(t−tk)Acx(tk), ∀t ∈ [tk, tk+1) . (12)
Note that since the continuous-time dynamic in between
two resets instances is linear, then the evolution of the
norm of the system state is upper-bounded for all t ∈

[tk, tk+1), i.e. there exist a scalar ε = λmax

(

Ac + AT
c

2

)

s.t. ‖x(t)‖ ≤ eε(t−tk)‖x(tk)‖ for all t ∈ [tk, tk+1). This
implies that for analyzing the asymptotic stability of the
system it suffice to analyze the behavior of the system for
the values t = tk, k ∈ N. Note that at t = tk+1 the system
state is given by:

x(tk+1) = Are
(tk+1−tk)Acx(tk)

= Are
τkAcx(tk)

= Are
(τnom+δτk)Acx(tk) (13)

The previous equation represents a discrete-time linear
system with time-varying parameters δτk that appear in
an exponential manner. Following generic stability results
for linear system with time-varying parameters (Lee and
Dullerud [2006], Daafouz and Bernussou [2001]), we con-
sider the following class of Lyapunov functions:

V (x(tk), δτk) = xT (tk)P (δτk)x(tk). (14)
The equilibrium point x = 0 is stable if the function is
strictly decreasing for all x(tk) )= 0 and all variations of
the parameter δτk. This condition can be expressed as

V (x(tk+1), δτk+1) < V (x(tk), δτk) (15)
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which is the same as

V
(

Are
(τnom+δτk)Acx(tk), δτk+1

)

< V (x(tk), δτk) (16)

for all δτk, δτk+1 in [0, δτmax] and for all x(tk) )= 0. Then
the stability is ensured if

max
δτb∈[0,δτmax]

V
(

Are
(τnom+δτa)Acx, δτb

)

< V (x, δτa) (17)

holds for all δτa ∈ [0, δτmax], x )= 0.

Assume that there exist matrices P (δτ), δτ ∈ [0, δτmax],
and a matrix G of appropriate dimensions such that the
condition (11) is satisfied ∀ δτa, δτb ∈ [0, δτmax]. Using
similar arguments as in (de Oliveira et al. [1999]), one can
see that multiplying the inequality (11) by

T := [In − (Are
Ac(τnom+δτa))T ]

on the left and by its transpose on the right, the following
inequality holds true:
(

eAc(τnom+δτa

)T

AT
r P (δτb)Are

Ac(τnom+δτa) − P (δτa) ≺ 0,

(18)
∀ δτa, δτb ∈ [0, δτmax] which guarantees that the condition
(17) is satisfied. !

The following theorem proposes conditions for the design
of a reset matrix Ar , as defined in (8), that stabilizes the
system (7).

Theorem 2. Consider system (7) with T defined in (3)
such that the reset interval (4) satisfies the assumptions
(5) and (6). If there exist symmetric positive definite
matrices P (δτa), δτa ∈ [0, δτmax], and matrices G, W of
appropriate dimensions such that the following set of linear
matrix inequalities

(

P (δτa)
(

eAc(τnom+δτa
)T

WT

WeAc(τnom+δτa) G + GT − P (δτb)

)

" 0, (19)

is satisfied for all δτa, δτb ∈ [0, δτmax], then there exists
a reset law (8) for which the equilibrium point x = 0 of
system (7) is asymptotically stable. The reset law is given
by (8) with Ar = G−1W.

Proof. Assume that there exist matrices P (δτ), δτ ∈
[0, δτmax], and matrices G, W of appropriate dimension
such that the condition (19) is satisfied. Using the change
of variables W = GAr the set of inequalities (19) leads to

(

P (δτa)
(

eAc(τnom+δτa
)T

AT
r GT

GAre
Ac(τnom+δτa) G + GT − P (δτb)

)

" 0, (20)

∀ δτa, δτb ∈ [0, δτmax]. Using Theorem 1 guarantees the
asymptotic stability. !

In the following corollary it is shown how the approach in
Theorem 2 can be used in order to develop reset law for
the particular case of system (1) with the reset law (2).
Note that in this case the reset matrix Ar has a particular
structure, as described in (10).

Corollary 1. Consider system (1), the reset control (2) and
the closed-loop matrices (9), (10). Moreover, consider that
the set T defined in (3) with the reset interval (4) satisfies
the assumptions (5) and (6). If there exist symmetric
positive definite matrices P (δτa), δτa ∈ [0, δτmax], and
matrices Ḡ, Wη, Wy of appropriate dimensions such that
the set of linear matrix inequalities (19) is satisfied with

G =

(

Inp 0
0 Ḡ

)

(21)

and

W =

(

Inp 0
WyC Wη

)

(22)

for all δτa, δτb ∈ [0, δτmax], then there exist a reset law
(8) with a structured reset matrix (10) for which the
equilibrium point x = 0 of system (1) is globally uniformly
exponentially stable. The reset law is given by (8) and (10)
with Ry = Ḡ−1Wy and Rη = Ḡ−1Wη.

Proof. Assume that the exist symmetric positive definite
matrices P (δτa), δτa ∈ [0, δτmax], and matrices G and
W as in (21), (22) such that conditions (19) are satisfied.
According to Theorem 2, there exists a stabilizing reset
matrix Ar given by

Ar = G−1W (23)

=

(

Inp 0
0 Ḡ−1

) (

Inp 0
WyC Wη

)

(24)

=

(

Inp 0
Ḡ−1WyC Ḡ−1Wη

)

, (25)

which is of the form (10) with Ry = Ḡ−1Wy and Rη =
Ḡ−1Wη. !

The application of the previous corollary to the ideal
case in which no uncertainty concerns the reset interval
(δτmax = 0) is given as follows:

Corollary 2. Consider system (1), the reset control (2) and
the closed-loop matrices (9), (10). Moreover, consider that
the set T defined in (3) with a nominal reset interval
τnom. If there exist a symmetric matrix P and matrices
Ḡ, Wη, Wy of appropriate dimension such that the set
of linear matrix inequalities (19) is satisfied for P (δτa) =
P, δτa ∈ [0, δτmax], with G and W as defined in (21) and
(22), respectively, then there exists a reset law (8) with
the structured reset matrix (10) for which the equilibrium
point x = 0 of system (1) is asymptotically stable. The
reset law is given by (8) and (10) with Ry = Ḡ−1Wy and
Rη = Ḡ−1Wη.

Remark. Corollary 2 presents stabilization condition for
the case of nominal reset interval. The given conditions
represent a finite set of linear matrix inequalities which
can be checked using classical convex optimization tools.
Note that the conditions (11), (19) lead to a parametric
set of linear matrix inequalities, since they depend on
the different values of δτa, δτb in the interval [0, δτmax].
Tractable numerical condition for solving this parametric
set of conditions are presented in the following section.

4. NUMERICAL EVALUATION

In this section it is shown how the parametric set of LMIs
presented previously, namely (11), (19), can be expressed
as a finite number of conditions using convex embeddings.

4.1 Polytopic sets

In order to obtain a finite number of LMIs from (11) and
(19), we have to deal with the exponential uncertainty
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eAcδτk (Hetel et al. [2007]) that appears in the conditions.
Note that the uncertain matrices eAcδτk are continuous
with respect to δτk and that δτk belongs to a bounded set.
Then, for δτa ∈ [0, δτmax], the matrix eAcδτa describes a
compact subset of Rn×n :

E =
{

X ∈ R
n×n : X = eAcδτa , δτa ∈ [0, δτmax]

}

(26)

The basic idea is to embed the set of matrices E into a
polytopic set Z, i.e. to find a set of N matrices Zi such
that

E ⊂ Z = co {Z1, Z2, . . . , ZN} . (27)
This implies that for all δτa ∈ [0, δτmax] there exist a set
of scalars µi(δτa) ∈ [0, 1], i = 1, . . . , N , such that

eAcδτa =
N

∑

i=1

µi(δτa)Zi,

N
∑

i=1

µi(δτa) = 1. (28)

In order to provide some insight about how a polytopic
embedding can be approximated, we recall briefly some of
the methods proposed in (Hetel et al. [2007]).

Consider an h-order Taylor series expansion of the matrix
exponential eAcδτ :

eδτaAc ≈

(

h
∑

l=0

Ac
l

l!
δτ l

a

)

. (29)

Then we may construct a convex polytope by considering
the terms δτ l, l = 1, 2, . . . , h, as independent parameters.
The h-order Taylor approximation can be embedded in
a matrix hypercube with 2h vertices. However, one can
exploit the relation between the different parameters to
construct a convex polytope inside the hypercube. This ap-
proached is mathematically formalized in Lemma 4 (given
in the Appendix). Applying Lemma 4 to the polynomial
form (29) for δτa ∈ [0, δτmax], leads to a polytopic approx-
imation (27) with N = h + 1 vertices given by:

Z1 = In,

Z2 = δτmaxAc + In,

Z3 = δτ2
max

Ac
2

2!
+ δτmaxAc + In,

...

Zh+1 = δτh
max

Ac
h

h!
+ δτh−1

max

Ac
h−1

(h − 1)!
+ . . .

. . . . + δτ2
max

Ac
2

2!
+ δτmaxAc + In.

In the following subsection we illustrate the use of such
polytopic embedding methods for reset matrices design.

4.2 Stabilization based on polytopic sets

As follows we show how the parametric set of linear matrix
inequalities, such as (11), (19), can be reduced to a finite
number of linear matrix inequalities. The approach is
illustrated for the condition (19). The conditions proposed
in Theorem 1 and Corolarry 1, can be treated in a similar
manner. The reset matrix design procedure based on
polytopic set (27) is formulated in the following Theorem.

Theorem 3. Consider system (7) with T defined in (3)
such that the reset interval (4) satisfies the assumptions

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

x 1

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

1

x 2

0 1 2 3 4 5 6 7 8
−6

−4

−2

0

2

x 3

Fig. 1. Illustration of system evolution with a periodic reset interval
τ1
nom = 0.28.

(5) and (6). Moreover, consider the polytopic set (27) with
N vertices. If there exists symmetric positive definite ma-
trices Pi, i = 1, . . . , N, and matrices G, W of appropriate
dimensions such that the following set of linear matrix
inequalities

(

Pi ZT
i

(

eAcτnom
)T

WT

WeAcτnomZi G + GT − Pj

)

" 0, (30)

is satisfied for all i, j = 1, . . . , N , then there exists a reset
law (8) for which the equilibrium point x = 0 of system
(7) is asymptotically stable. The reset law is given by (8)
with Ar = G−1W.

Proof. Assume that there exist a set of matrices Pi, i =
1, . . . , N and matrices G and R such that the set of
inequalities (30) hold true. Then the condition
(

∑N
i=1 µiPi

∑N
i=1 µiZ

T
i

(

eAcτnom
)

WT

∑N
i=1 µiWeAcτnomZi G + GT −

∑N
i=1 µjPj

)

" 0,

(31)
is satisfied for any set of scalars µi, µj ∈ [0, 1], i, j =

1, . . . , N , such that
∑N

i=1 µi =
∑N

i=1 µj = 1. Note that
eAcδτa ∈ Z for all δτa ∈ [0, δτmax]. Then the previous
condition implies the existences of matrices P (δτa) such
that the condition (19) holds with

P (δτa) =
N

∑

i=1

µi(δτa)Pi, (32)

P (δτb) =
N

∑

j=1

µj(δτb)Pj , (33)

where µi(δτa), µj(δτb) ∈ [0, 1], i, j = 1, . . . , N , represent
the barycentric coordinates of eAcδτa and eAcδτb in the
polytope Z. !

5. NUMERICAL EXAMPLES

Consider a reset system (7) with

Ac =

(

0 −3 1
1.4 −2.6 0.6
8.4 −18.6 4.6

)

, Ar =

(

1 0 0
0 1 0
0 0 0

)

(34)

The matrix Ac has the eigenvalues
λ1 = −1.44, λ2 = 3.44, λ3 = 0. (35)

!"#$%&'#(%)*+,*-.-/01,2-32456/-78+,$73,309-0:,785;+

<30=3-8/,>4?.-//01,/7,@A/B,%$)!,C7351,!78D30>>+,E020-901,"2/7?03,@FG,HI@I+



0 2 4 6 8 10 12 14
−4

−2

0

2

4

x 1

0 2 4 6 8 10 12 14
−2

−1

0

1

2

x 2

0 2 4 6 8 10 12 14
−20

0

20

40

x 3

Fig. 2. Illustration of system evolution with a periodic reset interval
τ2
nom = 0.54.
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Fig. 3. Illustration of unstable system behavior when the reset
interval switches among two values τnom ∈ {0.28, 0.54}.

For this system the matrix Are
τnom is Schur for τnom ∈

[0, 0.58]. This implies that the system is stable if the reset
occurs periodically, with constant reset interval τnom in
[0, 0.58] and δτk = 0. However, variation of the reset
interval may induce instability. While the system is stable
for τ1

nom = 0.28 and τ2
nom = 0.54 (see Fig. 1 and Fig. 2,

respectively), the matrix Are
τ1

nomAre
τ2

nom has eigenvalues
outside the unit circle. Therefore, resetting the system
with the pattern τ1

nom → τ2
nom → τ1

nom → τ2
nom . . ., leads

to an unstable behavior. This phenomena is illustrated in
Fig. 3.

Consider now that τnom = 0.1 and that δτmax = 0.2. In
order to illustrate graphically the construction of the poly-
topic embedding Z in (27), consider the Jordan normal
form of Ac:

J =

(

λ1 0 0
0 λ2 0
0 0 λ3.

)

(36)

with λi = 1, . . . , 3, given in (35). For this particular case,
the exponential uncertainty eδτkJ has the form

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 4. Representation of exponential uncertainty and of construc-
tion of convex polytopes in the φ1(δτa) − φ2(δτb) plane, for
τnom = 0.1, δτa ∈ [0, 0.2]. The polytopic embedding in dark
gray is obtained based on a 8th order Taylor approximation. In
light gray we represent a polytopic embedding obtained based
on a 8th order Taylor approximation applied on 5 subintervals.

eδτkJ = T

(

φ1(δτk) 0 0
0 φ2(δτk) 0
0 0 1

)

T−1 (37)

with two uncertain scalar parameters φi(δτk) = eδτkλi , i =
1, 2, and δτk ∈ [0, 0.2]. In Fig. 4, we illustrate the curve
described by the exponential uncertainty in the φ1(δτk)−
φ2(δτk) plane as well as the obtained polytopic embedding
based on a 8th order Taylor series expansion (in dark
gray). Note that the polytopic embedding procedure can
be refined by dividing the interval [0, δτmax] in several
subintervals, and applying the Taylor method locally.
Then, the extreme point of the global polytope can be
determined among the vertex of each local embedding
using classical convex hull algorithms. An illustration
based on 5 subinterval is given in Fig. 4 (light gray). Using
such an embedding and adapting Theorem 1 similarly to
Theorem 3, we can show that the system is robustly stable
for τnom = 0.1 with variations of the reset interval of a
maximum amplitude δτmax = 0.2. An example of system
evolution according to a random variation of the reset
interval is given in Fig. 5.

6. CONCLUSION

Focusing on linear impulsive systems, we stated tractable
conditions to analyze the stability. Also some sufficient
conditions are derived to compute reset matrices such
that the hybrid system is global asymptotically stable to
the origin. It is assumed that the jump instants are not
periodic but only nearly-periodic, i.e. with an uncertain
distance to a periodic sequence.

This paper lets many questions open. The first one may
be the generalization of this work to nonlinear systems.
Lyapunov techniques may be applied in this context (see
e.g. Goebel et al. [2009]). Also the performance issues
may be considered either for linear impulsive systems or
for nonlinear ones. One criterion to be optimized may
be the rejection of perturbations and the gain perturba-
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Fig. 5. Example of system evolution for τnom = 0.1, δτ ∈ [0, 0.2],
based on an arbitrary sequence of reset intervals.

tions/output to be made as low as possible. The connec-
tion with the Input-to-State Stability (ISS) of impulsive
systems as in Hespanha et al. [2008] may be fruitful.

APPENDIX

Lemma 4. (Hetel et al. [2007]) Consider a polynomial
matrix

L(ρ) = L0 + ρL1 + ρ2L2 + . . . + ρ pLp, (38)

where the parameter ρ ∈ R and Li ∈ Rn×n, i = 1, . . . , p.
For each upper bound ρ̄ ≥ 0 on ρ there exist matrices
Ui ∈ Rn×n, i = 1, . . . , p + 1, s.t. the following property
holds:
For all ρ ∈ [0, ρ̄] there exist parameters µi(ρ), i = 1, . . . , p+
1, with

p+1
∑

i=1

µi(ρ) = 1, and µi(ρ) ≥ 0, i = 1, . . . , p + 1,

s.t.

L(ρ) =
p+1
∑

i=1

µi(ρ)Ui. (39)

In particular, Ui, i = 1, . . . , p, can be chosen as

U1 = L0,

U2 = ρL1 + L0,

U3 = ρ 2L2 + ρL1 + L0,

...

Up+1 = ρ pLp + ρ p−1Lp−1 + . . . + ρ 2L2 + ρL1 + L0.

The relations between the parameters ρ and µ are given
by:

µ1(ρ) = 1 −
ρ

ρ
,

µi(ρ) =
ρ i−1

ρ i−1 −
ρ i

ρ i
, i = 2 . . . p, (40)

µp+1(ρ) = 1 −
ρ p

ρ p .
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