
HAL Id: hal-00573955
https://hal.science/hal-00573955v4

Preprint submitted on 16 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Families of quasi-rational solutions of the NLS equation
as an extension of higher order Peregrine breathers.

Pierre Gaillard

To cite this version:
Pierre Gaillard. Families of quasi-rational solutions of the NLS equation as an extension of higher
order Peregrine breathers.. 2011. �hal-00573955v4�

https://hal.science/hal-00573955v4
https://hal.archives-ouvertes.fr


Families of quasi-rational solutions of

the NLS equation as an extension of

higher order Peregrine breathers.

+Pierre Gaillard, + Université de Bourgogne, Dijon, France :
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Abstract

We construct a multi-parametric family of solutions of the focusing
nonlinear Schrödinger equation (NLS) equation from the known result
describing the multi phase almost-periodic elementary solutions given
in terms of Riemann theta functions. We give a new representation
of their solutions in terms of Wronskians determinants of order 2N
composed of elementary trigonometric functions. When we perform
a special passage to the limit when all the periods tend to infinity,
we obtain a family of quasi-rational solutions. This leads to efficient
representations for the Peregrine breathers of orders N = 1, 2, 3 first
constructed by Akhmediev and his co-workers and also allows us to
obtain a simpler derivation of the generic formulas corresponding the
three or six rogue-waves formation in frame of the NLS model first ex-
plained in 2010. Our formulation allows us to isolate easily the second
or third order Peregrine breather from ”generic” solutions, and also to
compute the Peregrine breathers of order 2 and 3 easier with respect
to other approaches. In the cases N = 2, 3 we get the comfortable for-
mulas to study the deformation of higher Peregrine breather of order
2 to the three rogue-waves or order 3 to the six rogue-waves solution
via variation of the free parameters of our construction.
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1 Introduction

The nonlinear Schrödinger equation (NLS) was first derived by Zakharov [19]
in 1968. It was solved in 1972 by the inverse scattering method by Zakharov
and Shabat [20] in which in particular the amplitude of N-solitons solutions
to the focusing NLS equation was explicitly calculated.
The periodic and almost periodic algebro-geometric solutions to the focusing
NLS equation were first found in 1976 by Its and Kotlyarov [14].
The study of quasi-rational solutions was preceded by the works by Kuznetsov,
Ma, Kawata and Akhmediev who constructed some special periodic solutions
to the NLS equation. In 1983, performing an appropriate passage to the limit
in one of this solutions, Peregrine discovered a quasi-rational solution to the
NLS equation nowadays called worldwide Peregrine breather. In 1986 Eleon-
ski, Akhmediev and Kulagin obtained the two-phase almost periodic solution
to the NLS equation and by taking an appropriate limit obtained the first
higher order analogue of the Peregrine breather [3]. A few families of higher
order were constructed in a series of articles by Akhmediev et al. [1, 2]
using Darboux transformations. Other solutions were found for reduced self-
induced transparency (SIT) integrable systems by Matveev, Rybin and Salle
[15]. In [13], the N-phase quasi-periodic modulations of the plane waves solu-
tions were constructed via appropriate degeneration of the finite gap periodic
solutions of the NLS equation.
Recently, it has been shown in [8] that rational solutions of NLS equation
can be written as a quotient of two wronskians using modified version of [10];
moreover, it has been established the link between quasi-rational solutions
of the focusing NLS equation and the rational solution of the KP-I equation.
Also with this formulation we recover as particular case, Akhmediev’s quasi-
rational solutions of NLS equation.
In [6], Calini and Schober have studied solutions of NLS equation using the
method of Hirota [12], in particular for the orders 2 and 3 (corresponding
to our notations) and obtained multi-rogue waves whose pictures were very
similar to the rational case obtained in [8]. It was clear from this remark that
rational solutions could be obtained from the solutions in terms of Riemann
theta functions given by A. Its [13] by a specific passage to the limit.

In this paper, we construct a representation of the solutions of the NLS
equation in terms of a ratio of two wronskians determinants of even order
2N composed of elementary functions; we will call these related solutions,
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solutions of NLS of order N. When we perform the passage to the limit when
some parameter tends to 0, we get families of multi-rogue wave solutions of
the focusing NLS equation depending on a certain number of parameters. It
allows to recognize the famous Peregrine breather [17] and also higher order
Peregrine breathers constructed by Akhmediev [1, 4].
Conversely, in the approach of [8], it is very difficult from the general formula
given therein, to isolate higher order Peregrine breathers.
As a particular case, we obtain for N = 1, the well known Peregrine’s solu-
tion [17] of the focusing NLS equation.
For N = 2, we get Akhmediev’s breathers with certain choices of the param-
eters. Surprisingly, we recover after reductions, exactly the same analytical
expression of the solutions given in [8]. We get for an arbitrary choice of the
parameters the shape of Akhmediev’s breathers; we can also get easily, for
particular parameters, the apparition of the three peaks for the modulus of
the solution v in the (x; y) coordinates (three sisters).
For N = 3, we get Akhmediev’s breathers for an arbitrary choice of param-
eters. Choosing particular parameters, we observe also the apparition of the
six peaks for the modulus of the solution in the (x, t) coordinates.
For N=4, we give only the analytical expression of Akhmediev’s breather in
the case t = 0 and the corresponding graphic in the (x, t) plane.

In this approach, we get an alternative way to get quasi-rational solutions
of the focusing NLS equation depending on a certain number of parameters,
in particular, higher order Peregrine breathers and multi-rogue waves, differ-
ent from all previous works.

2 Expression of solutions of NLS equation in

terms of Fredholm determinant

2.1 Solutions of NLS equation in terms of θ functions

We use here a general formulation of the solution of the NLS equation given in
[13], different from that used in [11]. We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0, (1)
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The solution is given in terms of truncated theta function by

v(x, t) =
θ3(x, t)

θ1(x, t)
exp(2it − iϕ). (2)

The functions θr(x, t) are the functions defined by

θr(x, t) =
∑

k∈{0;1}2N

gr,k, r = 1, 3 (3)

with gr,k given by

gr,k = exp

{

2N
∑

µ>ν, µ,ν=1

ln

(

γν − γµ

γν + γµ

)2

kµkν (4)

+

(

2N
∑

ν=1

iκνx − 2δνt + (r − 1) ln
γν − i

γν + i
+

2N
∑

µ=1, µ 6=ν

ln

∣

∣

∣

∣

γν + γµ

γν − γµ

∣

∣

∣

∣

+ πiǫν + eν

)

kν

}

.

The solutions depend on a certain number of parameters :
ϕ;
N parameters λj, satisfying the relations

0 < λj < 1, λN+j = −λj, 1 ≤ j ≤ N ; (5)

2N parameters eν , 1 ≤ ν ≤ 2N satisfying the relations

ej = iaj − bj, eN+j = iaj + bj, 1 ≤ j ≤ N. (6)

The terms ǫν , 1 ≤ ν ≤ 2N are arbitrary numbers equal to 0 or 1.
In the preceding formula, the terms κν , δν , γν are functions of the parameters
λν , ν = 1, . . . , 2N , and they are given by the following equations,

κν = 2
√

1 − λ2
ν , δν = κνλν , γν =

√

1 − λν

1 + λν

. (7)

We also note that

κN+j = κj, δN+j = −δj, γN+j = 1/γj, j = 1 . . . N. (8)
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2.2 Relation between θ and Fredholm determinant

We know from [13] that the function θr defined in (3) can be written as a
Fredholm determinant. The expression given in [13] is different from which
we need in the following. We need different choices of ǫν :

ǫν = 0, 1 ≤ ν ≤ N

ǫν = 1, N + 1 ≤ ν ≤ 2N. (9)

The function θr defined in (3) can be rewritten with a summation in terms
of subsets of [1, .., 2N ]

θr(x, t) =
∑

J⊂{1,..,2N}

∏

ν∈J

(−1)ǫν
∏

ν∈J, µ/∈J

∣

∣

∣

∣

γν + γµ

γν − γµ

∣

∣

∣

∣

× exp{
∑

ν∈J

iκνx − 2δνt + xr,ν + eν},

with

xr,ν = (r − 1) ln
γν − i

γν + i
, 1 ≤ j ≤ 2N, (10)

in particular

xr,j = (r − 1) ln
γj − i

γj + i
, 1 ≤ j ≤ N,

xr,N+j = −(r − 1) ln
γj − i

γj + i
− (r − 1)iπ, 1 ≤ j ≤ N. (11)

We consider Ar = (aνµ)1≤ν,µ≤2N the matrix defined by

aνµ = (−1)ǫν
∏

λ6=µ

∣

∣

∣

∣

γλ + γν

γλ − γµ

∣

∣

∣

∣

exp(iκνx − 2δνt + xr,ν + eν). (12)

Then det(I + Ar) has the following form

det(I + Ar) =
∑

J⊂{1,...,2N}

∏

ν∈J

(−1)ǫν
∏

ν∈J µ/∈J

∣

∣

∣

∣

γν + γµ

γν − γµ

∣

∣

∣

∣

exp(iκνx

−2δνt + xr,ν + eν). (13)
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From the beginning of this section, θ̃ has the same expression as in (13) so,
we have clearly the equality

θr = det(I + Ar). (14)

Then the solution of NLS equation takes the form

v(x, t) =
det(I + A3(x, t))

det(I + A1(x, t))
exp(2it − iϕ). (15)

3 Expression of solutions of NLS equation in

terms of wronkian determinant

3.1 Link between Fredholm determinants and wron-

skians

We use here the same ideas as those exposed in [11]. The proofs are the same.
We don’t reproduce it in this text. The reader can see the aforementioned
paper.
We consider the following functions

φr
ν(y) = sin(κνx/2 + iδνt − ixr,ν/2 + γνy − ieν/2), 1 ≤ ν ≤ N,

φr
ν(y) = cos(κνx/2 + iδνt − ixr,ν/2 + γνy − ieν/2), N + 1 ≤ ν ≤ 2N.

(16)

For simplicity, in this section we denote them φν(y).
We use the following notations :
Θν = κνx/2 + iδνt − ixr,ν/2 + γνy − ieν/2, 1 ≤ ν ≤ 2N .
Wr(y) = W (φ1, . . . , φ2N) is the wronskian

Wr(y) = det[(∂µ−1
y φν)ν, µ∈[1,...,2N ]]. (17)

We consider the matrix Dr = (dνµ)ν, µ∈[1,...,2N ] defined by

dνµ = (−1)ǫν
∏

λ6=µ

∣

∣

∣

γλ+γν

γλ−γµ

∣

∣

∣
exp(iκνx − 2δνt + xr,ν + eν),

1 ≤ ν ≤ 2N, 1 ≤ µ ≤ 2N,

with

xr,ν = (r − 1) ln
γν − i

γν + i
.

Then we have the following statement
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Theorem 3.1

det(I + Dr) = kr(0) × Wr(φ1, . . . , φ2N)(0), (18)

where

kr(y) =
22N exp(i

∑2N
ν=1 Θν)

∏2N
ν=2

∏ν−1
µ=1(γν − γµ)

.

Proof : The proof is the same as this given in [11]. We don’t reproduce it
here to avoid to have a too long text.

3.2 Wronskian representation of solutions of NLS equa-

tion

From the previous section, we get the following result :

Theorem 3.2 The function v defined by

v(x, t) =
W3(0)

W1(0)
exp(2it − iϕ). (19)

is solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0.

Remark 3.1 In formula (19), Wr(y) is the wronskian defined in (17)with
the functions φr

ν given by (16); κν, δν, γν are defined by (7); λν are arbitrary
parameters given by (5); eν are defined by (6).

4 Construction of quasi-rational solutions of

NLS equation

4.1 Taking the limit when the parameters λj → 1 for

1 ≤ j ≤ N and λj → −1 for N + 1 ≤ j ≤ 2N

In the following, we show how we can obtain quasi-rational solutions of NLS
equation by a simple limiting procedure.
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For simplicity, we denote dj the term
cj√
2
.

We consider the parameter λj written in the form

λj = 1 − 2ǫ2d2
j , 1 ≤ j ≤ N. (20)

When ǫ goes to 0, we realize limited expansions at order p, for 1 ≤ j ≤ N ,
of the terms
κj = 4djǫ(1 − ǫ2d2

j)
1/2, δj = 4djǫ(1 − 2ǫ2d2

j)(1 − ǫ2d2
j)

1/2,

γj = djǫ(1 − ǫ2d2
j)

−1/2, xr,j = (r − 1) ln
1+iǫdj(1−ǫ2d2

j )−1/2

1−iǫdj(1−ǫ2d2

j )−1/2
,

κN+j = 4djǫ(1 − ǫ2d2
j)

1/2, δN+j = −4djǫ(1 − 2ǫ2d2
j)(1 − ǫ2d2

j)
1/2,

γN+j = 1/(djǫ)(1 − ǫ2d2
j)

1/2, xr,N+j = (r − 1) ln
1−iǫdj(1−ǫ2d2

j )−1/2

1+iǫdj(1−ǫ2d2

j )−1/2
.

For example, the expansions at order 1 gives :

κj = 4djǫ + O(ǫ2), γj = djǫ + O(ǫ2), δj = 4djǫ + O(ǫ2),
xr,j = (r − 1)(2idjǫ + O(ǫ2)),
κN+j = 4djǫ + O(ǫ2), γN+j = 1/(djǫ) − (djǫ)/2 + O(ǫ2), δN+j = −4djǫ + O(ǫ2),
xr,N+j = −(r − 1)(2idjǫ + O(ǫ2)),
1 ≤ j ≤ N.

Then, we realize limited expansions at order p in ǫ of the functions φr
j(0) and

φr
N+j(0), for 1 ≤ j ≤ N :

φ1
j(0) = Pj + O(ǫp+1),

φ3
j(0) = Qj + O(ǫp+1),

φ1
N+j(0) = P ′

j + O(ǫp+1),
φ3

N+j(0) = Q′
j + O(ǫp+1).

Here, it is the important point to get non trivial rational solution depending
on the whole parameters : we choose λj as (20 ), for 1 ≤ N . The parameters
aj and bj, for 1 ≤ N must be carrefully chosen. They must depend on ǫ and
are expressed in the form

aj = ãjǫ
M−1, bj = b̃jǫ

M−1, 1 ≤ j ≤ N, M = 2N. (21)

Theorem 4.1 With the parameters λj defined by (20), aj and bj chosen as
in (21), for 1 ≤ j ≤ N , the function v defined by

v(x, t) = exp(2it − iϕ) lim
ǫ→0

W3(0)

W1(0)
, (22)
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is a quasi-rational solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0,

depending on 3N parameters dj, ãj, b̃j, 1 ≤ j ≤ N .

Remark 4.1 In (22), Wr(y) is the wronskian defined in (17) with the func-
tions φr

ν given by (16).

Proof : The idea is similar as this given in [11]. We postpone the details
of the proof to a further publication.

Remark 4.2 If we replace the parameters defined in (21) by aj = ãjǫ
p(M), bj =

b̃jǫ
p(M), 1 ≤ j ≤ N with p(M) 6= M − 1, the parameters ãj and b̃j disappear

in the limit when ǫ goes ta 0 and we get particular cases of solutions.
If p(M) < M − 1, we get trivial solution (i. e. v(x, t) = exp(2it − iϕ)).
If we take p(M) > M − 1, we recover in this case higher order Peregrine’s
breathers.

4.2 Quasi-rational solutions of order N

To get solutions of NLS equation written in the context of fiber optics

iux +
1

2
utt + u|u|2 = 0, (23)

from these of (1), we can make the following changes of variables

t → X/2

x → T. (24)

In the following, we give all the solutions for (1).

4.2.1 Case N=1

From (22), we realize an expansion at order 1 of W3 and W1 in ǫ. The solution
of NLS equation can be written as

v(x, t) =
−16d2

1t
2 + 16id2

1t − 4id1b̃1 − 4d1xã1 − ã2
1 + 3d2

1 + 8d1tb̃1 − b̃2
1 − 4d2

1x
2

4d2
1x

2 + 4d1xã1 + 16d2
1t

2 − 8d1tb̃1 + ã2
1 + b̃2

1 + d2
1

exp(2it−iϕ).
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Apparently, it depends on 3N + 1 = 4 parameters.
But in fact it can be written in the form

v(x, t) =
(4(x + ã1

2d1

)2 + 16(t − b̃1
4d1

)2 − 16i(t − b̃1
4d1

) − 3)

(4(x + ã1

2d1

)2 + 16(t − b̃1
4d1

)2 + 1))
exp(2it − iϕ).

We note that the parameter d1 disappears, and the remaining parameters

are only translation parameters. By denoting X = x + ã1

2d1

and T = t − b̃1
4d1

,
it can be rewritten as

v(x, t) =
(4X2 + 16T 2 − 16iT − 3)

(4X2 + 16T 2 + 1))
exp(2it − iϕ).

We recover the well known Peregrine breather.
Thus, in this case N = 1, the parameters can be reduced to only 2 parameters
of translation and ϕ. The changes of these parameters don’t affect the aspect
of the form of the representation of |v(x, t)| in the (x, t) variables.
Moreover, if we make the preceding change of variable (24), and take ã1 =
b̃1 = 0, we get exactly Peregrine’s solution (see [17]).
We represent in the figure 1, the modulus of v in function of x ∈ [−5; 5] and
t ∈ [−5; 5], for ã1 = b̃1 = 1 and d1 = 1.
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Figure 1: Solution to the NLS equation for N=1 with ã1 = b̃1 = 1, d1 = 1.

4.2.2 Case N=2

In the case N = 2, we realize an expansion at order 3 in ǫ. From (22), the
solution of NLS equation can be written as

v(x, t) =
n(x, t)

d(x, t)
exp(2it − iϕ),

with
n(x, t) = (128d4

1
d4

2
− 64d6

1
d2

2
− 64d6

2
d2

1
)x6

((−768d6

1
d2

2
+1536d4

1
d4

2
−768d6

2
d2

1
)t2+((768i)d6

1
d2

2
+(768i)d2

1
d6

2
−(1536i)d4

1
d4

2
)t−288d4

1
d4

2
+144d6

2
d2

1
+144d6

1
d2

2
)x4

(−48d2

1
d3

2
ã2 + 48ã1d1d

4

2
+ 48d4

1
d2ã2 − 48d3

1
d2

2
ã1)x

3

((−3072d6

1
d2

2
+6144d4

1
d4

2
−3072d6

2
d2

1
)t4+((6144i)d6

1
d2

2
−(12288i)d4

1
d4

2
+(6144i)d2

1
d6

2
)t3+(−11520d4

1
d4

2

+5760d6

1
d2

2
+5760d6

2
d2

1
)t2+(−(1152i)d6

1
d2

2
+288b̃2d

2

1
d3

2
−(1152i)d2

1
d6

2
+288d3

1
d2

2
b̃1−288d4

1
d2b̃2+(2304i)d4

1
d4

2

−288b̃1d1d
4

2
)t+(144i)d4

1
d2b̃2+180d6

1
d2

2
−360d4

1
d4

2
−(144i)d3

1
d2

2
b̃1−(144i)d3

2
d2

1
b̃2+(144i)b̃1d1d

4

2
+180d6

2
d2

1
)x2
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((−576ã1d1d
4

2
+576d3

1
d2

2
ã1−576d4

1
d2ã2+576d2

1
d3

2
ã2)t

2+(−(576i)ã1d
3

1
d2

2
+(576i)d4

1
d2ã2+(576i)ã1d1d

4

2

−(576i)d2

1
d3

2
ã2)t − 108d2

1
d3

2
ã2 + 108d4

1
d2ã2 − 108d3

1
d2

2
ã1 + 108ã1d1d

4

2
)x

(−4096d6

2
d2

1
−4096d6

1
d2

2
+8192d4

1
d4

2
)t6+(−(24576i)d4

1
d4

2
+(12288i)d2

1
d6

2
+(12288i)d6

1
d2

2
)t5+(−16896d4

1
d4

2

+8448d6

2
d2

1
+8448d6

1
d2

2
)t4+((1536i)d2

1
d6

2
+(1536i)d6

1
d2

2
−384d3

1
d2

2
b̃1−384b̃2d

2

1
d3

2
+384d4

1
d2b̃2+384b̃1d1d

4

2

−(3072i)d4

1
d4

2
)t3+(−(576i)d4

1
d2b̃2+(576i)d3

2
d2

1
b̃2−3744d4

1
d4

2
+1872d6

2
d2

1
−(576i)b̃1d1d

4

2
+1872d6

1
d2

2

+(576i)d3

1
d2

2
b̃1)t

2+((1440i)d4

1
d4

2
−72d4

1
d2b̃2−72b̃1d1d

4

2
−(720i)d2

1
d6

2
−(720i)d6

1
d2

2
+72d3

1
d2

2
b̃1+72b̃2d

2

1
d3

2
)t

−9b̃2

2
d2

1
−(36i)d3

1
d2

2
b̃1+18ã1d2d1ã2+(36i)b̃1d1d

4

2
−9b̃2

1
d2

2
+90d4

1
d4

2
−45d6

1
d2

2
+(36i)d4

1
d2b̃2+18d1b̃2d2b̃1

−9ã2

1
d2

2
− (36i)d3

2
d2

1
b̃2 − 9ã2

2
d2

1
− 45d6

2
d2

1

and
d(x, t) = (64d6

2
d2

1
+ 64d6

1
d2

2
− 128d4

1
d4

2
)x6

((768d6

2
d2

1
− 1536d4

1
d4

2
+ 768d6

1
d2

2
)t2 + 48d6

2
d2

1
− 96d4

1
d4

2
+ 48d6

1
d2

2
)x4

(−48ã1d1d
4

2
− 48d4

1
d2ã2 + 48d3

1
d2

2
ã1 + 48d2

1
d3

2
ã2)x

3

((3072d6

2
d2

1
−6144d4

1
d4

2
+3072d6

1
d2

2
)t4+(−1152d6

2
d2

1
+2304d4

1
d4

2
−1152d6

1
d2

2
)t2+(288b̃1d1d

4

2
−288b̃2d

2

1
d3

2

−288d3

1
d2

2
b̃1 + 288d4

1
d2b̃2)t + 108d6

1
d2

2
+ 108d6

2
d2

1
− 216d4

1
d4

2
)x2

((576ã1d1d
4

2
−576d3

1
d2

2
ã1+576d4

1
d2ã2−576d2

1
d3

2
ã2)t

2+36ã1d1d
4

2
−36d2

1
d3

2
ã2+36d4

1
d2ã2−36d3

1
d2

2
ã1)x

(−8192d4

1
d4

2
+4096d6

2
d2

1
+4096d6

1
d2

2
)t6+(6912d6

2
d2

1
−13824d4

1
d4

2
+6912d6

1
d2

2
)t4+(384d3

1
d2

2
b̃1−384b̃1d1d

4

2

−384d4

1
d2b̃2+384b̃2d

2

1
d3

2
)t3+(1584d6

2
d2

1
−3168d4

1
d4

2
+1584d6

1
d2

2
)t2+(−216b̃1d1d

4

2
+216d3

1
d2

2
b̃1−216d4

1
d2b̃2

+216b̃2d
2

1
d3

2
)t + 9d6

1
d2

2
+ 9d6

2
d2

1
− 18ã1d2d1ã2 + 9ã2

1
d2

2
− 18d4

1
d4

2
+ 9b̃2

1
d2

2
+ 9b̃2

2
d2

1

+9ã2

2
d2

1
− 18d1b̃2d2b̃1

Remark 4.3 This solution depends on 3N + 1 = 7 parameters. In fact, like
in the case N = 1, it can be reduced and the final expression depends only on
two parameters (ϕ being not taking into account).
If we denote

α =
3(b̃2d1 − b̃1d2)

2d1d2(d2
1 − d2

2)
,

and

β =
3(ã2d1 − ã1d2)

d1d2(d2
1 − d2

2)
,

the preceding solution v(x, t) can be written as

v(x, t) =
n1(x, t)

d1(x, t)
exp(2it − iϕ), (25)
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with

n1(x, t) = 64x6+(768t2−144−(768i)t)x4−16βx3+(3072t4+192αt−(96i)α−5760t2−(6144i)t3

+(1152i)t−180)x2+(192βt2−36β−(192i)βt)x+45−(1536i)t3+β2+4α2−1872t2

−8448t4 − 256αt3 +4096t6 +48αt+(720i)t− (12288i)t5 +(384i)αt2 − (24i)α

d1(x, t) = 64x6+(768t2+48)x4−16βx3+(−1152t2+192αt+108+3072t4)x2+(12β

+192βt2)x + 4096t6 + 6912t4 − 256αt3 + 1584t2 − 144αt + β2 + 4α2 + 9.

In [8], we have constructed the solution v2 of (1). Choosing the parameters

as follows B = 1, ϕ1 = 3ϕ3, ϕ2 = 2ϕ4 + 3+
√

5
16

√

10 − 2
√

5 (as specified in
[9]), the solution can be written exactly in the form (25).
The two different methods give well the same analytical expression v(x, t)
as solution of NLS (1), but the choices of parameters ϕi in the method [8]
are difficult to isolate Akhmediev’s breathers as to identify with the solutions
given in this paper.

If we make the preceding changes of variables defined by (24), and take
ã1 = ã2 = b̃1 = b̃2 = 0, it can be reduced exactly at the second order Akhme-
diev’s solution (see [1]).

Contrary to the case N = 1, in this case there are two important param-
eters different from parameters of translation which play a central role in the
deformation of solution. It is the crucial point. With these parameters the
shape of the curve of |v| change radically as we prove it in the following. We
recover second order Peregrine breather as well the three sisters of the same
amplitude.
We represent the modulus of v in function of x ∈ [−5; 5] and t ∈ [−5; 5] in
two cases.
If we take d1 = 1, d2 = 2, ã1 = ã2 = b̃1 = b̃2 = 1, we get the well known
Peregrine breather of order 2 described in the figure 2 :

13



Figure 2: Solution to the NLS equation for N=2 with d1 = 1, d2 = 2, ã1 =
ã2 = b̃1 = b̃2 = 1.

If we take d1 = 1, d2 = 2, ã1 = ã2 = 0, b̃1 = b̃2 = 1000 we get the case of the
three sisters described by the figure 3 :
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Figure 3: Solution to the NLS equation for N=2 with d1 = 1, d2 = 2, ã1 =
ã2 = 0, b̃1 = b̃2 = 1000.

We presented here an example of deformation of solutions of the NLS
equation according to the parameters aj and bj giving various known shapes
of the modulus of these one, to illustrate the power of the method. The study
of the zones of appearance of these various types of solutions according to
aj and bj, or of α and β is in progress and will be the subject of a next
publication not to weigh down the text of this article.

4.2.3 Case N=3

In the case N = 3, we realize an expansion at order 5 in ǫ. We get from (22),
the solution of NLS equation (23) in the form

v(x, t) =
n(x, t)

d(x, t)
exp(2it − iϕ).

15



In this case, the analytical expression takes about 36 pages of usual format.
We can’t reproduce it in this text.
We give the following graphics for the modulus of v in function of x ∈ [−5; 5]
and t ∈ [−5; 5] in three cases.
If we take the following parameters : d1 = 1, d2 = 2, d3 = 3, ã1 = ã2 = ã3 =
b̃1 = b̃2 = b̃3 = 1, we get the Peregrine breather of order 3 given by the figure
4 :

Figure 4: Solution to the NLS equation for N=3 with d1 = 1, d2 = 2, d3 =
3, ã1 = ã2 = ã3 = b̃1 = b̃2 = b̃3 = 1.
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If we take the following parameters d1 = 1, d2 = 2, d3 = 3, ã1 = 10000, ã2 =
ã3 = 0, b̃1 = 10000, b̃2 = b̃3 = 0, the shape of the modulus of v in the (x, t)
coordinates change to get 6 peaks as described in the approach of Matveev
et al. (see [8]) and is given by the figure 5.

Figure 5: Solution to the NLS equation for N=3 with d1 = 1, d2 = 2, d3 =
3, ã1 = 10000, ã2 = ã3 = 0, b̃1 = 10000, b̃2 = b̃3 = 0.
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If we take ã1 = ã2 = ã3 = b̃1 = b̃2 = b̃3 = 0 and make the preceding
changes of variables defined by (24), we recover the solution given recently
by Akhmediev [1]. For example, if we take all parameters aj and bj equal to
zero, we obtain the Peregrine breather of order 4. If we choose the following
representation of the NLS equation

vN(x, t) =
n(x, t)

d(x, t)
exp(2it − iϕ) = (1 − αN

GN(2x, 4t) + iHN(2x, 4t)

QN(2x, 4t)
)e2it−iϕ

with
GN(X,T ) =

∑N(N+1)
k=0 gk(T )Xk

HN(X,T ) =
∑N(N+1)

k=0 hk(T )Xk

QN(X,T ) =
∑N(N+1)

k=0 qk(T )Xk

18



We get

α3 = 4, g12 = 0, g11 = 0, g10 = 6, g9 = 0, g8 = 90T 2 + 90, g7 = 0,
g6 = 300T 4 − 360T 2 + 1260,
g5 = 0,
g4 = 420T 6 − 900T 4 + 2700T 2 − 2700,
g3 = 0,
g2 = 270T 8 + 2520T 6 + 40500T 4 − 81000T 2 + 180Tb − 4050,
g1 = 0,
g0 = 66T 10 + 2970T 8 + 13140T 6 − 45900T 4 − 12150T 2 + 4050

h12 = 0, h11 = 0, h10 = 6 T, h9 = 0, h8 = 30T 3 − 90 T, h7 = 0,
h6 = 60T 5 − 840T 3 − 900T,
h5 = 0,
h4 = 60T 7 − 1260T 5 − 2700T 3 − 8100T,
h3 = 0,
h2 = 30T 9 − 360T 7 + 10260T 5 − 37800T 3 + 28350T,
h1 = 0,
h0 = 6 T 11 + 150T 9 − 5220T 7 − 57780T 5 − 14850T 3 + 28350T

q12 = 1, q11 = 0, q10 = 6 T 2 + 6, q9 = 0, q8 = 15T 4 − 90 T 2 + 135, q7 = 0,
q6 = 20T 6 − 180T 4 + 540T 2 + 2340,
q5 = 0,
q4 = 15T 8 + 60T 6 − 1350T 4 + 13500T 2 + 3375,
q3 = 0,
q2 = 6 T 10 + 270T 8 + 13500T 6 + 78300T 4 − 36450T 2 + 12150,
q1 = 0,
q0 = T 12 + 126T 10 + 3735T 8 + 15300T 6 + 143775T 4 + 93150T 2 + 2025

It can be notified that even in this case, the choices of the parameters for
the method given in [8] to get Akhmediev’s breathers are not yet found.

As in the previous section, we presented here deformations of solutions
of the equation NLS according to the parameters aj and bj giving various
known solutions. In order to make the text of this paper not too long, we
postpone the study of the zones of appearance of these various types of
solutions according to aj and bj to a next publication.
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4.2.4 Cases of higher order

In the case of higher order N ≥ 4, the work is actually in progress and we
postpone to present the results in an other paper in order not to make this
one too long. We just give a particular case with N = 4, to show the efficiency
of the method. When we choose a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = 0,
we get from (22), the solution of NLS equation (23) in the form

v(x, t) =
n(x, t)

d(x, t)
exp(2it − iϕ).

The expression of v is rather cumbersome. The polynomials N and D are
polynomials in x and t of same degree N(N + 1) = 20. It is too long to
be published here. We postpone to give the explicit expression in a further
publication.
In particular,

v(x, 0) =
n(x, 0)

d(x, 0)
,

n(x, 0) = −200930625+2679075000x2+9644670000x4−11430720000x6−9398592000x8−6096384000x10

+1354752000x12 + 324403200x14 + 44236800x16 + 7864320x18 − 1048576x20,

d(x, 0) = 22325625+893025000x2+1786050000x4+8382528000x6+4463424000x8+1683763200x10

+1741824000x12 + 265420800x14 + 26542080x16 + 2621440x18 + 1048576x20.

For example, if we take all parameters aj and bj equal to zero, we obtain the
Peregrine breather of order 4. The solutions of NLS equation take the form

vN(x, t) =
n(x, t)

d(x, t)
exp(2it − iϕ) = (1 − αN

GN(2x, 4t) + iHN(2x, 4t)

QN(2x, 4t)
)e2it−iϕ

with
GN(X,T ) =

∑N(N+1)
k=0 gk(T )Xk

HN(X,T ) =
∑N(N+1)

k=0 hk(T )Xk

QN(X,T ) =
∑N(N+1)

k=0 qk(T )Xk
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α4 = 4, g20 = 0, g19 = 0, g18 = 10, g17 = 0, g16 = 270T 2 + 270, g15 = 0, g14 = 1800T 4

−3600T 2 + 9000, g13 = 0, g12 = 5880T 6 − 54600T 4 − 12600T 2 + 189000, g11 = 0,
g10 = 11340T 8 − 176400T 6 + 189000T 4 − 378000T 2 − 1077300, g9 = 0,
g8 = 13860T 10 − 207900T 8 + 2356200T 6 + 1701000T 4 − 56983500T 2 − 4819500,

g7 = 0, g6 = 10920T 12 − 18480T 10 + 6967800T 8 + 56095200T 6 − 342657000T 4

+198450000T 2 − 11907000, g5 = 0 g4 = 5400T 14 + 163800T 12 + 9034200T 10

+107919000T 8 − 615195000T 6 + 178605000T 4 + 654885000T 2 + 178605000, g3 = 0,
g2 = 1530T 16 + 133200T 14 + 5506200T 12 − 116802000T 10 − 1731334500T 8

+2532222000T 6 − 893025000T 4 + 4643730000)T 2 + 223256250, g1 = 0,
g0 = 190T 18 + 33150T 16 + 1294200T 14 + 3288600T 12 + 48629700T 10

−2015401500T 8 − 1845585000T 6 + 14586075000)T 4 + 2098608750T 2 − 44651250,

h20 = 0, h19 = 0, h18 = 10T, h17 = 0, h16 = 90T 3 − 270T, h15 = 0, h14 = 360T 5

−6000T 3 − 5400T, h13 = 0, h12 = 840T 7 − 29400T 5 + 12600T 3 − 138600T, h11 = 0,
h10 = 1260T 9 − 65520T 7 + 259560T 5 − 529200T 3 − 1984500T, h9 = 0,
h8 = 1260T 11 − 77700T 9 + 718200T 7 − 5329800T 5 − 6142500T 3 + 29767500T,

h7 = 0, h6 = 840T 13 − 48720T 11 + 718200T 9 + 2973600T 7 − 72765000T 5

+436590000T 3 + 146853000T,h5 = 0, h4 = 360T 15 − 12600T 13 + 138600T 11

−5859000T 9 − 328293000T 7 + 1075599000T 5 + 773955000T 3 + 535815000T, h3 = 0,
h2 = 90T 17 + 1200T 15 − 189000T 13 − 40143600T 11

−307786500T 9 + 2085426000T 7 − 4465125000T 5 + 4405590000T 3 − 1205583750T, h1 = 0,
h0 = 10T 19 + 930T 17 − 86040T 15 − 7018200T 13 − 48100500T 11 − 542902500T 9

+6039117000T 7 + 12942909000T 5 + 937676250T 3, q20 = 1, q19 = 0,
q18 = 10T 2 + 10, q17 = 0, q16 = 45T 4 − 270T 2 + 405, q15 = 0,
q14 = 120T 6 − 1800T 4 + 1800T 2 + 16200, q13 = 0, q12 = 210T 8 − 4200T 6 + 6300T 4

+113400T 2 + 425250, q11 = 0, q10 = 252T 10 − 3780T 8 + 63000T 6

+718200T 4 + 3005100T 2 + 1644300, q9 = 0, q8 = 210T 12 + 1260T 10

+255150T 8 − 567000T 6 + 23388750T 4 − 31468500T 2 + 17435250, q7 = 0,
q6 = 120T 14 + 5880T 12 + 476280T 10 + 16443000T 8 + 162729000T 6

−154791000T 4 + 130977000T 2 + 130977000, q5 = 0, q4 = 45T 16 + 5400T 14

+459900T 12 + 19845000T 10 + 153798750T 8 + 702513000T 6 − 89302500T 4

+1250235000T 2 + 111628125,q3 = 0, q2 = 10T 18

+2250T 16 + 225000T 14 + 4422600T 12 − 99508500T 10 − 224248500T 8

+9704205000T 6 + 15181425000T 4 − 1920003750T 2 + 223256250, q1 = 0,
q0 = T 20 + 370T 18 + 44325T 16 + 2208600T 14 + 62795250T 12 + 693384300T 10

+6641129250T 8 + 4346055000T 6 + 14042818125)T 4 + 2902331250T 2 + 22325625

We recover a result of Akhmediev formulated in [1] in the case of initial
condition t = 0. Here we give the complete solution in x and t.

We give the shape of the modulus of v in the (x, t) coordinates (corre-
sponding in the general formulation to the elementary case ã1 = ã2 = ã3 =
ã4 = b̃1 = b̃2 = b̃3 = b̃4 = 0 in the figure 6 :
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Figure 6: Solution to the NLS equation for N=4 with ã1 = ã2 = ã3 = ã4 =
b̃1 = b̃2 = b̃3 = b̃4 = 0.

Remark 4.4 In this last case, ã1 = ã2 = ã3 = ã4 = b̃1 = b̃2 = b̃3 = b̃4 = 0,
the analytical expression of the solution of the NLS equation does not depend
on the parameters d1, d2, d3, d4. It can be seen in the particular case v(x, 0).

5 Conclusion

We have given here an extension of a previous result exposed in [11] which
gives with new parameters a family which recover a wide spectrum of so-
lutions of the NLS equation. These solutions are written as a quotient of
wronskians. An other approach has been given in [8].
The method described in the present paper provides a powerful tool to get
explicitly solutions of the NLS equation.
This method with parameters gives higher Peregrine breathers of order N

22



as well solutions with peaks of similar amplitude. It is is reasonable to con-
jecture that in general there is N(N + 1)/2 peaks for the modulus of any
solution v in the (x, t) coordinates.
Because of the presence of a lot of redundant parameters (3N + 1) , the
present formulation give more flexibility to pass from Akhmediev’s breathers
to peaks of similar heights. This present method shows more adapted and
efficient than this given in [8] to get all type of solutions.
This new formulation gives an infinite set of non singular (quasi-rational)
solutions of NLS equation at any order and the results raise any scepticism
about the use of determinants and theta functions.
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