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Abstract

We construct a multi-parametric family of solutions of the focus-
ing NLS equation from the known result describing the multi phase
almost-periodic elementary solutions given in terms of Riemann theta
functions. We give a new representation of their solutions in terms of
Wronskians determinants of order 2N composed of elementary trigono-
metric functions. When we perform a special passage to the limit
when all the periods tend to infinity, we get a family of quasi-rational
solutions. This leads to efficient representations for the Peregrine
breathers of orders N = 1, 2, 3 first constructed by Akhmediev and
his co-workers and also allows to get a simpler derivation of the generic
formulas corresponding the 3 or 6 rogue-waves formation in frame of
the NLS model first explained by Matveev et al. in 2010. Our for-
mulation allows to isolate easier the second or third order Peregrine
breather from a ”generic” solutions, and also to compute the Peregrine
breathers of order 2 and 3 easier with respect to other approaches. In
the cases N = 2, 3 we get the comfortable formulas to study the de-
formation of higher Peregrine breather of order 2 to the 3 rogue-waves
or order 3 to the 6 rogue-waves solution via variation of the free pa-
rameters of our construction.

1



1 Introduction

The nonlinear Schrödinger equation (NLS) was first derived by Zakharov
[16] in 1968. It was solved by the inverse scattering method by Zakharov
and Schabat in which in particular the amplitude of N-solitons solutions to
the focusing NLS equation was explicitly calculated.
The periodic and almost periodic algebro-geometric solutions to the focusing
NLS equation were first constructed in 1976 by Its and Kotlyarov [11].
Study of quasi-rational solutions was preceded by the works by Kuznetsov,
Ma, Kawata and Akhmediev who constructed some particular periodic solu-
tions to the NLS equation. In 1983, performing an appropriate passage to the
limit in one of this solutions Peregrine discovered a quasi-rational solution
to the NLS equation nowadays called worldwide Peregrine breather. In 1986
Eleonski, Akhmediev and Kulagin obtained the two-phase almost periodic
solution to the NLS equation and by taking an appropriate limit obtained
the first higher order analogue of the Peregrine breather[3]. A few families
of higher order were constructed in a series of articles by Akhmediev et al.
[1, 2] using Darboux transformations. Other solutions were found for reduced
self-induced transparency (SIT) integrable systems by Matveev, Rybin and
Salle [12]. In [10], the N-phase quasi-periodic modulations of the plane waves
solutions were constructed via appropriate degeneration of the finite gap pe-
riodic solutions of the NLS equation. Recently, it has been shown in [6] that
rational solutions of NLS equation can be written as a quotient of two wron-
skians using modified version of [8]; moreover, it has been established the
link between quasi-rational solutions of the focusing NLS equation and the
rational solution of the KP-I equation. Also with this formulation we recover
as particular case, Akhmediev’s quasi-rational solutions of NLS equation.

In this paper, we construct a representation of the solutions of the NLS
equation in terms of a ratio of two wronskians determinants of even order
2N composed of elementary functions; we will call these related solutions,
solutions of NLS of order N. When we perform the passage to the limit when
some parameter tends to 0, we get families of multi-rogue wave solutions of
the focusing NLS equation depending on a certain number of parameters.
It allows to recognize the famous Peregrine’s breather [13] and also higher
order Peregrine’s breathers constructed by Akhmediev [1, 4].
Conversely, in the approach of [6], it is very difficult from the general formula
given therein, to isolate higher order Peregrine’s breathers.

2



As particular cases, we get for N = 1, the well known Peregrine’s solution
[13] of the focusing NLS equation.
For N = 2, we get Akhmediev’s breathers with certain choices of the param-
eters. Surprisingly, we recover after reductions, exactly the same analytical
expression of the solutions given in [6]. We get for an arbitrary choice of the
parameters the shape of Akhmediev’s breathers; we can also get easily, for
particular parameters, the apparition of the three peaks for the modulus of
the solution v in the (x; y) coordinates (three sisters).
For N = 3, we get Akhmediev’s breathers for an arbitrary choice of param-
eters. Choosing particular parameters, we observe also the apparition of the
six peaks for the modulus of the solution in the (x, t) coordinates.

In this approach, we get an alternative way to get quasi-rational solutions
of the focusing NLS equation depending on a certain number of parameters,
in particular, higher order Peregrine’s breathers, different from all previous
works.

2 Expression of solutions of NLS equation in

terms of Fredholm determinant

2.1 Solutions of NLS equation in terms of θ functions

We use here a general formulation of the solution of the NLS equation given
in [10], different from that used in [9]. We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0, (1)

The solution is given in terms of truncated theta function by

v(x, t) =
θ3(x, t)

θ1(x, t)
exp(2it − iϕ). (2)

The functions θr(x, t) are the functions defined by

θr(x, t) =
∑

k∈{0;1}2N

gr,k, r = 1, 3 (3)

3



with gr,k given by

gr,k = exp

{

2N
∑

µ>ν, µ,ν=1

ln

(

γν − γµ

γν + γµ

)2

kµkν (4)

+

(

2N
∑

ν=1

iκν(x − x0ν) − 2δν(t − t0ν) + (r − 1) ln
γν − i

γν + i
+

2N
∑

µ=1, µ6=ν

ln

∣

∣

∣

∣

γν + γµ

γν − γµ

∣

∣

∣

∣

+ πiεν + eν

)

kν

}

.

The solutions depend on a certain number of parameters :
ϕ, x0,ν , t0,ν for 1 ≤ ν ≤ 2N ;
N parameters λj , satisfying the relations

0 < λj < 1, λN+j = −λj , 1 ≤ j ≤ N ; (5)

2N parameters eν , 1 ≤ ν ≤ 2N satisfying the relations

ej = iaj − bj , eN+j = iaj + bj , 1 ≤ j ≤ N. (6)

The terms εν , 1 ≤ ν ≤ 2N are arbitrary numbers equal to 0 or 1.
In the preceding formula, the terms κν , δν , γν are functions of the parameters
λν , ν = 1, . . . , 2N , and they are given by the following equations,

κν = 2
√

1 − λ2
ν , δν = κνλν , γν =

√

1 − λν

1 + λν
. (7)

We also note that

κN+j = κj , δN+j = −δj , γN+j = 1/γj, j = 1 . . . N. (8)

2.2 Relation between θ and Fredholm determinant

We know from [10] that the function θr defined in (3) can be written as a
quotient of two different Fredholm determinants. The expression given in [10]
is different from which we need in the following. We need different choices
of εν :

εν = 0 if ν = 2k, εν = 1 if ν = 2k + 1, 1 ≤ ν ≤ N

εν = 1 if ν = 2k, εν = 0 if ν = 2k + 1, N + 1 ≤ ν ≤ 2N. (9)
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For the next section, we change notations, replacing ε by ǫ in such a way
that

ǫj = j, 1 ≤ j ≤ N

ǫj = j + 1, N + 1 ≤ j ≤ 2N. (10)

It is easy to see that (−1)εν = (−1)ǫν for 1 ≤ ν ≤ 2N .
The function θr defined in (3) can be rewritten with a summation in terms
of subsets of [1, .., 2N ]

θr(x, t) =
∑

J⊂{1,..,2N}

∏

ν∈J

(−1)ǫν

∏

ν∈J, µ/∈J

∣

∣

∣

∣

γν + γµ

γν − γµ

∣

∣

∣

∣

× exp{
∑

ν∈J

iκν(x − x0ν) − 2δν(t − t0ν) + xr,ν + eν},

with

xr,ν = (r − 1) ln
γν − i

γν + i
, 1 ≤ j ≤ 2N, (11)

in particular

xr,j = (r − 1) ln
γj − i

γj + i
, 1 ≤ j ≤ N,

xr,N+j = −(r − 1) ln
γj − i

γj + i
− (r − 1)iπ, 1 ≤ j ≤ N. (12)

We consider Ar = (aνµ)1≤ν,µ≤2N the matrix defined by

aνµ =
2(−1)ǫνγν

γν + γµ
exp(iκν(x − x0ν) − 2δν(t − t0ν) + xr,ν + eν). (13)

Then det(I + Ar) has the following form

det(I + Ar) =
∑

J⊂{1,...,2N}

∏

ν∈J

(−1)ǫν

∏

ν∈J µ/∈J

∣

∣

∣

∣

γν + γµ

γν − γµ

∣

∣

∣

∣

exp(iκν(x − x0ν)

−2δν(t − t0ν) + xr,ν + eν). (14)

From the beginning of this section, θ̃ has the same expression as in (14) so,
we have clearly the equality

θr = det(I + Ar). (15)
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Then the solution of NLS equation takes the form

v(x, t) =
det(I + A3(x, t))

det(I + A1(x, t))
exp(2it − iϕ). (16)

3 Expression of solutions of NLS equation in

terms of wronkian determinant

3.1 Link between Fredholm determinants and wron-

skians

We use here the same ideas that these exposed in [9]. The proofs are the same.
We don’t reproduce it in this text. The reader can see the aforementioned
paper.
We consider the following functions

φr
ν(y) = sin(κν(x − x0ν)/2 + iδν(t − t0ν) − ixr,ν/2 + γνy − ieν), 1 ≤ ν ≤ N,

φr
ν(y) = cos(κν(x − x0ν)/2 + iδν(t − t0ν) − ixr,ν/2 + γνy − ieν), N + 1 ≤ ν ≤ 2N.

(17)

For simplicity, in this section we denote them φν(y).
We use the following notations :
Θν = κν(x − x0ν)/2 + iδν(t − t0ν) − ixr,ν/2 + γνy − ieν , 1 ≤ ν ≤ 2N .
Wr(y) = W (φ1, . . . , φ2N) is the wronskian

Wr(y) = det[(∂µ−1
y φν)ν, µ∈[1,...,2N ]]. (18)

We consider the matrix Dr = (dνµ)ν, µ∈[1,...,2N ] defined by

dνµ = 2(−1)ǫν γν

γν+γµ
exp(iκν(x − x0ν) − 2δν(t − t0ν) + xr,ν − ieν),

1 ≤ ν ≤ 2N, 1 ≤ µ ≤ 2N,

with

xr,ν = (r − 1) ln
γν − i

γν + i
.

Then we have the following statement

Theorem 3.1

det(I + Dr) = kr(0) × Wr(φ1, . . . , φ2N)(0), (19)
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where

kr(y) =
22N exp(i

∑2N
ν=1 Θν)

∏2N
ν=2

∏ν−1
µ=1(γν − γµ)

.

Proof : The proof is the same as this given in [9]. We don’t reproduce it
here to avoid to have a too long text.

3.2 Wronskian representation of solutions of NLS equa-

tion

From the previous section, we get the following result :

Theorem 3.2 The function v defined by

v(x, t) =
W3(0)

W1(0)
exp(2it − iϕ). (20)

is solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0.

Remark 3.1 In formula (20), Wr(y) is the wronskian defined in (18)with
the functions φr

ν given by (17); κν , δν , γν are defined by (7); λν are arbitrary
parameters given by (5); eν are defined by (6).

4 Construction of quasi-rational solutions of

NLS equation

4.1 Taking the limit when the parameters λj → 1 for

1 ≤ j ≤ N and λj → −1 for N + 1 ≤ j ≤ 2N

In the following, we show how we can obtain quasi-rational solutions of NLS
equation by a simple limiting procedure.
For simplicity, we denote dj the term

cj√
2
.

We consider the parameter λj written in the form

λj = 1 − 2ǫ2d2
j , 1 ≤ j ≤ N. (21)
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When ǫ goes to 0, we realize limited expansions at order p, for 1 ≤ j ≤ N ,
of the terms
κj = 4djǫ(1 − ǫ2d2

j)
1/2, δj = 4djǫ(1 − 2ǫ2d2

j )(1 − ǫ2d2
j)

1/2,

γj = djǫ(1 − ǫ2d2
j)

−1/2, xr,j = (r − 1) ln(1 + 2idjǫ(1 − ǫ2d2
j)

−1/2),

κN+j = 4djǫ(1 − ǫ2d2
j)

1/2, δN+j = −4djǫ(1 − 2ǫ2d2
j)(1 − ǫ2d2

j)
1/2,

γN+j = 1/(djǫ)(1 − ǫ2d2
j )

1/2, xr,N+j = (r − 1) ln(1 − 2idjǫ(1 − ǫ2d2
j)

−1/2),
For example, the expansions at order 1 gives :

κj = 4djǫ + O(ǫ2), γj = djǫ + O(ǫ2), δj = 4djǫ + O(ǫ2),
xr,j = (r − 1)(2idjǫ + O(ǫ2)),
κN+j = 4djǫ + O(ǫ2), γN+j = 1/(djǫ) − (djǫ)/2 + O(ǫ2), δN+j = −4djǫ + O(ǫ2),
xr,N+j = −(r − 1)(2idjǫ + O(ǫ2)),
1 ≤ j ≤ N.

Then, we realize limited expansions at order p in ǫ of the functions φr
j(0) and

φr
N+j(0), for 1 ≤ j ≤ N :

φ1
j(0) = Pj + O(ǫp+1),

φ3
j(0) = Qj + O(ǫp+1),

φ1
N+j(0) = P ′

j + O(ǫp+1),
φ3

N+j(0) = Q′
j + O(ǫp+1).

Here, it is the important point to get non trivial rational solution depending
on the whole parameters : we choose λj as (21 ), for 1 ≤ N . The parameters
aj and bj , for 1 ≤ N must be carrefully chosen. They must depend on ǫ and
are expressed in the form

aj = ãjǫ
M−1, bj = b̃jǫ

M−1, 1 ≤ j ≤ N, M = 2N. (22)

Theorem 4.1 With the parameters λj defined by (21), aj and bj chosen as
in (22), for 1 ≤ j ≤ N , the function v defined by

v(x, t) = exp(2it − iϕ) lim
ǫ→0

W3(0)

W1(0)
, (23)

is a quasi-rational solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0,

depending on 3N parameters dj, ãj, b̃j, 1 ≤ j ≤ N .
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Remark 4.1 In (23), Wr(y) is the wronskian defined in (18) with the func-
tions φr

ν given by (17).

Proof : The idea is similar as this given in [9]. We postpone the details of
the proof to a further publication.

Remark 4.2 If we replace the parameters defined in (22) by aj = ãjǫ
p(M), bj =

b̃jǫ
p(M), 1 ≤ j ≤ N , the parameters ãj and b̃j disappear in the limit when ǫ

goes ta 0 and we get particular cases of solutions.
If p(M) < M − 1, we get trivial solution (i. e. v(x, t) = exp(2it − iϕ)).
If we take p(M) > M − 1, we recover in this case higher order Peregrine’s
breathers.

4.2 Quasi-rational solutions of order N

In this section we choose x0i = 0, t0i = 0 for 1 ≤ i ≤ 2N .
To get solutions of NLS equation written in the context of fiber optics

iux +
1

2
utt + u|u|2 = 0, (24)

from these of (1), we can make the following changes of variables

t → X/2

x → T. (25)

In the following, we give all the solutions for (1).

4.2.1 Case N=1

From (23), we realize an expansion at order 1 of W3 and W1 in ǫ. The solution
of NLS equation can be written as

v(x, t) =
−16d2

1t
2 + 16id2

1t − 4id1b̃1 − 4d1xã1 − ã2
1 + 3d2

1 + 8d1tb̃1 − b̃2
1 − 4d2

1x
2

4d2
1x

2 + 4d1xã1 + 16d2
1t

2 − 8d1tb̃1 + ã2
1 + b̃2

1 + d2
1

exp(2it−iϕ).

Apparently, it depends on 3N + 1 = 4 parameters.
But in fact it can be written in the form

v(x, t) =
(4(x + ã1

2d1
)2 + 16(t − b̃1

4d1
)2 − 16i(t − b̃1

4d1
) − 3)

(4(x + ã1

2d1

)2 + 16(t − b̃1
4d1

)2 + 1))
exp(2it − iϕ).

9



We note that the parameter d1 disappears, and the remaining parameters

are only translation parameters. By denoting X = x + ã1

2d1
and T = t − b̃1

4d1
,

it be rewritten as

v(x, t) =
(4X2 + 16T 2 − 16iT − 3)

(4X2 + 16T 2 + 1))
exp(2it − iϕ).

We recover the well known Peregrine’s breather.
Thus, in this case N = 1, the parameters can be reduced to only 2 parameters
of translation and ϕ. The changes of these parameters don’t affect the aspect
of the form of the representation of |v(x, t)| in the x, t variables.
Moreover, if we make the preceding change of variable (25), and take ã1 =
b̃1 = 0, we get exactly Peregrine’s solution (see [13]).
We represent here the modulus of v in function of x ∈ [−5; 5] and t ∈ [−5; 5],
for ã1 = 1, b̃1 = 1 and d1 = 1.

Figure 1: Solution of NLS, N=1.
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4.2.2 Case N=2

In the case N = 2, we realize an expansion at order 3 in ǫ. From (23), the
solution of NLS equation can be written as

v(x, t) =
N(x, t)

D(x, t)
exp(2it − iϕ),

with
N(x, t) = (128d4

1
d4

2
− 64d6

1
d2

2
− 64d6

2
d2

1
)x6

((−768d6

1
d2

2
+1536d4

1
d4

2
−768d6

2
d2

1
)t2+((768i)d6

1
d2

2
+(768i)d2

1
d6

2
−(1536i)d4

1
d4

2
)t−288d4

1
d4

2
+144d6

2
d2

1
+144d6

1
d2

2
)x4

(−48d2

1d
3

2ã2 + 48ã1d1d
4

2 + 48d4

1d2ã2 − 48d3

1d
2

2ã1)x
3

((−3072d6

1d
2

2+6144d4

1d
4

2−3072d6

2d
2

1)t
4+((6144i)d6

1d
2

2−(12288i)d4

1d
4

2+(6144i)d2

1d
6

2)t
3+(−11520d4

1d
4

2

+5760d6

1
d2

2
+5760d6

2
d2

1
)t2+(−(1152i)d6

1
d2

2
+288b̃2d

2

1
d3

2
−(1152i)d2

1
d6

2
+288d3

1
d2

2
b̃1−288d4

1
d2b̃2+(2304i)d4

1
d4

2

−288b̃1d1d
4

2
)t+(144i)d4

1
d2b̃2+180d6

1
d2

2
−360d4

1
d4

2
−(144i)d3

1
d2

2
b̃1−(144i)d3

2
d2

1
b̃2+(144i)b̃1d1d

4

2
+180d6

2
d2

1
)x2

((−576ã1d1d
4

2+576d3

1d
2

2ã1−576d4

1d2ã2+576d2

1d
3

2ã2)t
2+(−(576i)ã1d

3

1d
2

2+(576i)d4

1d2ã2+(576i)ã1d1d
4

2

−(576i)d2

1
d3

2
ã2)t − 108d2

1
d3

2
ã2 + 108d4

1
d2ã2 − 108d3

1
d2

2
ã1 + 108ã1d1d

4

2
)x

(−4096d6

2
d2

1
−4096d6

1
d2

2
+8192d4

1
d4

2
)t6+(−(24576i)d4

1
d4

2
+(12288i)d2

1
d6

2
+(12288i)d6

1
d2

2
)t5+(−16896d4

1
d4

2

+8448d6

2d
2

1+8448d6

1d
2

2)t
4+((1536i)d2

1d
6

2+(1536i)d6

1d
2

2−384d3

1d
2

2b̃1−384b̃2d
2

1d
3

2+384d4

1d2b̃2+384b̃1d1d
4

2

−(3072i)d4

1d
4

2)t
3+(−(576i)d4

1d2b̃2+(576i)d3

2d
2

1b̃2−3744d4

1d
4

2+1872d6

2d
2

1−(576i)b̃1d1d
4

2+1872d6

1d
2

2

+(576i)d3

1
d2

2
b̃1)t

2+((1440i)d4

1
d4

2
−72d4

1
d2b̃2−72b̃1d1d

4

2
−(720i)d2

1
d6

2
−(720i)d6

1
d2

2
+72d3

1
d2

2
b̃1+72b̃2d

2

1
d3

2
)t

−9b̃2

2
d2

1
−(36i)d3

1
d2

2
b̃1+18ã1d2d1ã2+(36i)b̃1d1d

4

2
−9b̃2

1
d2

2
+90d4

1
d4

2
−45d6

1
d2

2
+(36i)d4

1
d2b̃2+18d1b̃2d2b̃1

−9ã2

1d
2

2 − (36i)d3

2d
2

1b̃2 − 9ã2

2d
2

1 − 45d6

2d
2

1

and
D(x, t) = (64d6

2
d2

1
+ 64d6

1
d2

2
− 128d4

1
d4

2
)x6

((768d6

2d
2

1 − 1536d4

1d
4

2 + 768d6

1d
2

2)t
2 + 48d6

2d
2

1 − 96d4

1d
4

2 + 48d6

1d
2

2)x
4

(−48ã1d1d
4

2 − 48d4

1d2ã2 + 48d3

1d
2

2ã1 + 48d2

1d
3

2ã2)x
3

((3072d6

2
d2

1
−6144d4

1
d4

2
+3072d6

1
d2

2
)t4+(−1152d6

2
d2

1
+2304d4

1
d4

2
−1152d6

1
d2

2
)t2+(288b̃1d1d

4

2
−288b̃2d

2

1
d3

2

−288d3

1d
2

2b̃1 + 288d4

1d2b̃2)t + 108d6

1d
2

2 + 108d6

2d
2

1 − 216d4

1d
4

2)x
2

((576ã1d1d
4

2−576d3

1d
2

2ã1+576d4

1d2ã2−576d2

1d
3

2ã2)t
2+36ã1d1d

4

2−36d2

1d
3

2ã2+36d4

1d2ã2−36d3

1d
2

2ã1)x

(−8192d4

1
d4

2
+4096d6

2
d2

1
+4096d6

1
d2

2
)t6+(6912d6

2
d2

1
−13824d4

1
d4

2
+6912d6

1
d2

2
)t4+(384d3

1
d2

2
b̃1−384b̃1d1d

4

2

−384d4

1
d2b̃2+384b̃2d

2

1
d3

2
)t3+(1584d6

2
d2

1
−3168d4

1
d4

2
+1584d6

1
d2

2
)t2+(−216b̃1d1d

4

2
+216d3

1
d2

2
b̃1−216d4

1
d2b̃2

+216b̃2d
2

1d
3

2)t + 9d6

1d
2

2 + 9d6

2d
2

1 − 18ã1d2d1ã2 + 9ã2

1d
2

2 − 18d4

1d
4

2 + 9b̃2

1d
2

2 + 9b̃2

2d
2

1

+9ã2

2d
2

1 − 18d1b̃2d2b̃1
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Remark 4.3 This solution depends on 3N + 1 = 7 parameters. In fact, like
in the case N = 1, it can be reduced and the final expression depends only on
two parameters (ϕ being not taking into account).
If we denote

α =
3(b̃2d1 − b̃1d2)

2d1d2(d2
1 − d2

2)
,

and

β =
3(ã2d1 − ã1d2)

d1d2(d2
1 − d2

2)
,

the preceding solution v(x, t) can be written as

v(x, t) =
N1(x, t)

D1(x, t)
exp(2it − iϕ), (26)

with

N1(x, t) = 64x6+(768t2−144−(768i)t)x4−16βx3+(3072t4+192αt−(96i)α−5760t2−(6144i)t3

+(1152i)t−180)x2+(192βt2−36β−(192i)βt)x+45−(1536i)t3+β2+4α2−1872t2

−8448t4 − 256αt3 +4096t6 +48αt+(720i)t− (12288i)t5 +(384i)αt2 − (24i)α

D1(x, t) = 64x6+(768t2+48)x4−16βx3+(−1152t2+192αt+108+3072t4)x2+(12β

+192βt2)x + 4096t6 + 6912t4 − 256αt3 + 1584t2 − 144αt + β2 + 4α2 + 9.

In [6], we have constructed the solution v2 of (1). Choosing the parameters

as follows B = 1, ϕ1 = 3ϕ3 =, ϕ2 = 2ϕ4 + 3+
√

5
16

√

10 − 2
√

7 (as specified
in[7]), the solution can be written exactly in the form (26).
The two different methods give well the same analytical expression v(x, t)
as solution of NLS (1), but the choices of parameters ϕi in the method [6]
are difficult to isolate Akhmediev’s breathers as to identify with the solutions
given in this paper.

If we make the preceding changes of variables defined by (25), and take
ã1 = ã2 = b̃1 = b̃2 = 0, it can be reduced exactly at the second order Akhme-
diev’s solution (see [1]).

Conversely to the case N = 1, in this case it remains two parameters
interesting on the 7 which are different from parameters of translation. It is

12



the crucial point. With these parameters the shape of the curve of |v| change
radically as we prove it in the following. We recover as well second order
Peregrine’s breather as well the three sisters of the same amplitude.
We represent the modulus of v in function of x ∈ [−5; 5] and t ∈ [−5; 5].
If we take d1 = 1, d2 = 2, ã1 = 1, ã2 = 1, b̃1 = 1, b̃2 = 1, we get the well
known Peregrine’s breather of order 2 :

Figure 2: Solution of NLS, N=2.
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If we take d1 = 1, d2 = 2, ã1 = 0, ã2 = 0, b̃1 = 1000, b̃2 = 1000, we get the
case of the three sisters :

Figure 3: Solution of NLS, N=2.
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4.2.3 Case N=3

In the case N = 3, we realize an expansion at order 5 in ǫ. We get from (23),
the solution of NLS equation (24) in the form

v(x, t) =
N(x, t)

D(x, t)
exp(2it − iϕ).

In this case, the analytical expression takes about 36 pages of usual format.
We can’t reproduce it in this text. We obtain a solution depending on 3N +
1 = 10 parameters.
We give the following graphics for the modulus of v in function of x ∈ [−5; 5]
and t ∈ [−5; 5].
If we take the following parameters : d1 = 1, d2 = 2, d3 = 3, ã1 = 1, ã2 =
1, ã3 = 1, b̃1 = 1, b̃2 = 1, b̃3 = 1, we get the Peregrine’s breather of order 3 :

Figure 4: Solution of NLS, N=3.
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If we take the following parameters d1 = 1, d2 = 2, d3 = 3, ã1 = 10000, ã2 =
0, ã3 = 0, b̃1 = 10000, b̃2 = 0, b̃3 = 0, the shape of the modulus of v in the x, t
coordinates change to get 6 peaks as described in the approach of Matveev
et al. (see [6, 7]) :

Figure 5: Solution of NLS, N=3.

If we make the preceding changes of variables defined by (25), and take
ã1 = ã2 = ã3 = b̃1 = b̃2 = b̃3 = 0, we still recover the solution given recently
by Akhmediev [1]. It can be notified that even in this case, the choices of
the parameters for the method given in [6] to get Akhmediev’s breathers are
not yet found.

4.2.4 Cases of higher order

In the case of higher order N ≥ 4, the work is actually in progress and we
postpone to present the results in an other paper in order not to make this
one too long. We just give a particular case with N = 4, to show the efficiency
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of the method. When we choose a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = 0,
we get from (23), the solution of NLS equation (24) in the form

v(x, t) =
N(x, t)

D(x, t)
exp(2it − iϕ).

The polynomials N and D are defined by

N(x, t) = −1048576x20 + (7864320 + 41943040it − 41943040t2)x18

+(44236800 − 283115520it + 1509949440it3 − 754974720t4 + 1415577600t2)x16

+(324403200−4246732800t2+24159191040it5+37748736000t4−1415577600it−25165824000it3−8053063680t6)x14

+(13212057600it3 + 225485783040it7 − 493250150400it5 − 9083289600it

+465064427520t6 − 10734796800t2 − 56371445760t8 − 235615027200t4 + 1354752000)x12

+(−3223742054400t6 + 1352914698240it9 − 4396972769280it7 − 138726604800it3 − 74008166400t2

−6096384000+9909043200t4+3297729576960t8+1088673546240it5−270582939648t10−32514048000it)x10

+(14543833006080t10 − 402554880000it3 − 9398592000 − 804722688000t2 + 5411658792960it11

+10477161676800t6 + 12049396531200it7 − 1086898176000t4 − 901943132160t12 − 18232639488000t8

−20857434931200it9 − 5588700364800it5 + 121927680000it)x8

+(48197586124800it9 + 16161649459200t6 − 2061584302080t14 − 19920273408000t4 + 47933344972800t8

+14431090114560it13 − 19074908160000it5 + 7153090560000it3 − 36923296972800t10 + 150377472000it

−11430720000 + 40587440947200t12 − 52312701665280it11 + 678730752000t2 + 12472182374400it7 )x6

+(−98297708544000it9+273331047628800t10+24739011624960it15−207309570048000t6+350542080000t2

+70490456064000it5 + 52425444556800t12 + 291375415296000t8 − 3092376453120t16 + 137168640000it

+9644670000 − 54116587929600it13 − 344240160768000it7 + 37205154201600it11 + 69578470195200t14

+3170119680000it3+3292047360000t4 )x4+(24739011624960it17+1181263645900800t12+66486093742080t16

−1542243483648000t10 − 1290950148096000it9 + 20615843020800it15 + 330497733427200t14

+1311675120000t2 − 19203609600000t4 − 73156608000000it5 − 77157360000it − 202937204736000it13

+546681913344000it7 − 2748779069440t18 + 6958006272000t6 − 2693991392870400it11

−1756650405888000t8 + 4511324160000it3 + 2679075000)x2

200930625+1099511627776t20+1883933717299200it13−26800595927040t18+569274531840000it9−379138238054400t16

−395779571712000it7−796770120499200t14−10995116277760it19+832835262873600t12−53014155264000it5

+523098390528000t10−63909113364480it17+963558457344000t8+369538986147840it15+48039505920000t6

+10716300000it − 11341179360000t4 − 240045120000it3 − 87873660000t2 + 806992478208000it11 ,

D(x, t) = 1048576x20 + (41943040t2 + 2621440)x18 + (−283115520t2 + 754974720t4 + 26542080)x16

+(471859200t2 + 8053063680t6 + 265420800 − 7549747200t4)x14
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+(6606028800t4 + 7431782400t2 + 56371445760t8 − 70464307200t6 + 1741824000)x12

+(270582939648t10+49235558400t2+264241152000t6+1683763200+188271820800t4−253671505920t8)x10

+(4280706662400t8+338228674560t10−128894976000t2−594542592000t6+4463424000+1532805120000t4+901943132160t12 )x8

+(8382528000 + 134120448000t2 + 68966940672000t8 + 2061584302080t14 − 2536095744000t4

+42658430976000t6 + 6313601925120t12 + 31962609745920t10 )x6

+(161269678080000t8 +46039891968000t6 −365783040000t4 +332943851520000t10 +123453466214400t12

+1786050000 + 23192823398400t14 + 320060160000t2 + 3092376453120t16 )x4

+(15545779200000t4+158993694720000t6+241591910400000t14−417368899584000t10−58785398784000t8

+893025000 + 2748779069440t18 + 38654705664000t16 − 122880240000t2 + 296795661926400t12 )x2

+22325625+46437300000t2+1053529473024000t12+1099511627776t20+190374425395200t16+25426206392320t18

+3594961440000t4 +435233046528000t8 +17801441280000t6 +592866548121600t14 +727066135756800t10

Moreover,

v(x, 0) =
N(x, 0)

D(x, 0)
,

N(x, 0) = −200930625+2679075000x2 +9644670000x4 −11430720000x6 −9398592000x8 −6096384000x10

+1354752000x12 + 324403200x14 + 44236800x16 + 7864320x18 − 1048576x20 ,

D(x, 0) = 22325625 + 893025000x2 + 1786050000x4 + 8382528000x6 + 4463424000x8 + 1683763200x10

+1741824000x12 + 265420800x14 + 26542080x16 + 2621440x18 + 1048576x20 .

We recover a result of Akhmediev formulated in [1] in the case of initial
condition t = 0. Here we give the complete solution in x and t.
To my knowledge, it is the first analytical expression of an Akhmediev’s
breather of order 4.

We give the shape of the modulus of v in the x, t coordinates (correspond-
ing in the general formulation to the elementary case a1 = 0, a2 = 0, a3 = 0,
a4 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0) :
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Figure 6: Solution of NLS, N=4.

5 Conclusion

We have given here an extension of a previous result exposed in [9] which
gives with new parameters a family which recover a wide spectrum of solu-
tions of the NLS equation. These solutions also are written as a quotient of
wronskians. An other approach has been given in [6].
This method described in the present paper provides a powerful tool to get
explicitly solutions of the NLS equation. This new formulation gives an in-
finite set of non singular solution of NLS equation.
This method with parameters gives as well higher Peregrine’s breathers of
order N as well solutions with peaks of similar amplitude. It is is reasonable
to conjecture that in general there is N(N + 1)/2 peaks for the modulus of
any solution v in the (x, t) coordinates.
Because of the presence of a lot of redundant parameters (3N + 1) , the
present formulation give more flexibility to pass from Akhmediev’s breathers
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to peaks of similar heights. This present method shows more adapted and
efficient than this given in [6] to get all type of solutions.
This method can be extended to get an infinite family of quasi-rational so-
lutions of NLS equation at any order and the results raise any scepticism
about the use of determinants and theta functions.
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