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Abstract

We give a family of solutions of the focusing NLS equation as a
product of a quotient of two wronskians of order 2NV by an exponential.
When we perform a special passage to the limit when all the periods
tend to infinity, we get a family of solutions depending on 7N + 1
parameters. We give explicit representations of solutions for N =
1, 2, 3. As particular cases, we recover the so called higher Peregrine’s
breathers labeled by the positive integer N.

1 Introduction

The nonlinear Schrodinger equation (NLS) was considered a long time by ago
in the basic work by Zakharov in 1969 [13]. The first solution was discovered
by Peregrine in 1983 [12].

Other families of higher order were constructed in a series of articles by
Akhmediev et al. [1, 2, 3] using Darboux transformations.

Other solutions were found for reduced self-induced transparency (SIT) in-
tegrable systems [11].

In [10], the N-phase quasi-periodic modulations of the plane waves solutions
were constructed via appropriate degeneration of the finite gap periodic so-
lutions of the NLS equation.



In this paper, we will give an extension of a representation of the solu-
tions of the NLS equation in terms of wronskians recently founded in [9].
The solutions take the form of a quotient of two wronskians of even order
2N of elementary functions depending on 7N + 1 parameters.

We will call these related solutions, solutions of NLS of order N.

Then, to get quasi-rational solutions of NLS equation, we take the limit when
some parameter goes to 0. We obtain here solutions depending on 5N + 1
free parameters.

As particular cases, we get for N = 1, the well known Peregrine’s solution
[12] of the focusing NLS equation. For N = 2, 3, we recover Akhmediev’s
breathers.

Here we give a new approach to get an extension of higher order Peregrine
solutions different from all previous works.

2 Expression of solutions of NLS equation in
terms of Fredholm determinant

2.1 Solutions of NLS equation in terms of § functions

We use here a general formulation of the solution of the NLS equation given in
([10]), different from that used in [9]. We consider the focusing NLS equation

1y + Vg + 2J0)%0 = 0, (1)
The solution is given in terms of truncated theta function by

. 93(1’, t)
n 91(!13', t)

The functions 6,(x,t), (r = 1, 3) are the functions defined by

Or(x,t) = > expgrs (3)

ke{0;1}2N

v(zx,t)

exp(2it — ip). (2)

with g, given by

IN 2
Grk = Z exp{ Z ln(u) kK, (4)
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2N
+ (Z ik (2 — 20,) — 20, — toy) + (r — 1) In n| 20 e, + ey> k;} .
v=1 p=1, p#v % Tu

The solutions depend on 4N + 1 arbitrary parameters, for N being a positive
integer, N > 1 :

©, Loy, to, for 1 <v < 2N;

N parameters satisfying the relations Ay;; = —A; for 1 < j < N;

2N parameters e,, 1 < v < 2N.

The terms ¢, 1 < v < 2N are arbitrary numbers equal to 0 or 1.

The parameters e, are defined by the relations

e, =ta, —b,, 1<v<N, e,=ia,+b,, N+1<v<2N. (5)

In the preceding formula, the terms «,, d,, 7, are functions of the parameters
A, v =1,...,2N, and they are given by the following equations,

1—)
Ky =2/1—=X2 0, =K\, Y= T

+ Ay

AN

(6)
We also note that

2.2 Relation between ¢ and Fredholm determinant

We know from [10] that the function 6, defined in (3) can be written as a
quotient of two different Fredholm determinants. The expression given in [10]
is different from which we need in the following. We need different choices
of g, :

e, =0ifv=2k e =1ifr=2k+1, 1<v<N
e, =1ifv=2k e, =0ifr=2k+1, N+1<v<2N. (8)

For the next section, we change notations, replacing € by € in such a way
that

eg=7+1, N+1<j<2N. 9)



It is easy to see that (—1)* = (=1)* for 1 < v < 2N.
The function 6, defined in (3) can be rewritten with a summation in terms
of subsets of [1,..,2N]

o= S TIC0e TI

Jc{1,.,2N}veJ ved, ug¢J

Yo+ Yu
T = Tu

X exp{z ik, (T — zoy) — 20, (t — toy) + 20 + €0},

veJ
with
r—DIm ' 1<j<2N (10)
:'UTI/:T_ n ) — ’
Yo 1 !
in particular
it ;
Ly i = —1)In T 1< §N7
j=(r—-1) S J
’)/j—'i . .
N = —(r—DIn2 " —(r —1)ir, 1<j<N. 11
rovey = ~(r = D ()i, 1 (1)

We consider A, = (ay,)1<yu<on the matrix defined by

_ 2(_1)61171/
Yo+ Vu

Yo+ Ty
Y — Ty

Aoy exp(iky, (v — oy) — 20, (t — toy) + @y + €,).(12)

n#v
Then det(I + A,) has the following form

det(I+A,)= > [ ]

JA{1,....2N}veJ veJ ugJ

Yo T exp(ik, (x — xq,)
T — ’Vu

—20,(t — toy) + v +€,). (13)

From the beginning of this section, 6 has the same expression as in (13) so,
we have clearly the equality

0, = det(I + A,). (14)
Then the solution of NLS equation takes the form

_det(I + Asz(z,1))

o) = T+ Ay, 1)

exp(2it — ip). (15)




3 Expression of solutions of NLS equation in
terms of wronkian determinant

3.1 Link between Fredholm determinants and wron-
skians

We use here the same ideas that these exposed in [9]. The proofs are the same.
We don’t reproduce it in this text. The reader can see the aforementioned

paper.
We consider the following functions
o) (y) = sin(ky(x — x0,) /2 + 00, (t — toy) — 12 /2 + 1y —ie,), 1<v <N, (16)
&7 (y) = cos(ky(x — xoy) /2 + 00, (t — toy) — 12y /2 + Yy —ie,), N+1<wv <2N.

For simplicity, in this section we denote them ¢, (y).

We use the following notations :

@1/ = K’I/(x - xOl/)/Q + Zau(t - tOl/) - ixr,u/2 + WY — ie,,, 1 S ] S 2N.
W.(y) = W(é1, ..., pan) is the wronskian W,.(y) = det[(85_1¢y)y7 pell,...2N])-

.....

-----

2(=1) v : :
dyy = ﬁ I, % exp(ik, (v — Toy) — 20,(t — toy) +  — i€y,),

1<v<2N, 1<pu<2N,

with ,
Yo —1
Yo+

Tp, = (r—1)In
Then we have the following statement

Theorem 3.1
det([+Dr) = ]{?T(O) X WT(¢1,...,¢2N)(O), (17)

where N
22N exp(i >02.6.)

ke (y) = P
LT (= )

Proof : see [9]



3.2 Wronskian representation of solutions of NLS equa-
tion
From the previous section, we get the following result :

Theorem 3.2 The function v defined by

v(z,t) = gjgg; exp(2it — ip). (18)

is solution of the NLS equation (1)
0y 4 Vgg + 2[0]?v = 0.

Remark 3.1 In (18), W, (y) = W(e7,...,d5N) is the wronskian W,.(y) =

The functions ¢}, are given by (16)
o, (y) = sin(ky(xr — xoy) /2 + 16, (t — to) — 12y, /2 + 1y —ie,), 1<wv <N,

o, (y) = cos(ky(x—2x0y) /2400, (t—to, ) —i2,, /247 y—ie,), N+1<wv <2N.
The parameters k,, 6,, v, are defined by (6) forv € [1,...,2N]

1—X,
Ky =2/1—=X, 8, =KrA\, 7= e, € {0;1}.

14+ N

Ay 18 an arbitrary parameter such that 0 < X\; < 1 and Ayy; = —A\; for
jel,...,NJ.
The parameters e, are defined by (5)

e, =1ta,—b,, 1<v<N, e, =ia,+b, 1<v<N.

4 Construction of quasi-rational solutions of
NLS equation

4.1 Taking the limit when the parameters \; — 1 for
1<j<Nand \; - —1for N+1<j<2N

In the following, we show how we can obtain quasi-rational solutions of NLS
equation by a simple limiting procedure.
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For simplicity, we denote d; the term 6—32
We consider the parameter A\; written in the form

ANj=1—¢€c, 1<j<N. (19)

When € goes to 0, we realize limited expansions at order p, for 1 < 57 < N,
of the terms

K = Adje(1 — Ed3)?, 65 = ddje(1 — 262d2) (1 — 2d3)/2,

v = d;e(1 — 62d§)_1/2, z,; = (r—1)In(1 + 2id;e(1 — ezd?)_lﬂ),

kny = ddje(l — Ed2)V2, 0y = —Adse(1 — 262d2) (1 — €2d2)Y/?,

Vvt = 1/(dje) (1 — €d2)?, zp niy = (r — 1) In(1 — 2id;e(1 — €2d3)~Y/2),
For example, the expansions at order 1 gives :

ki =4ddje + O(e?), v =de+O(e?), §; =4ddje+ O(e?),

zp; = (r —1)(2idje + O(€?)),

RN+ = 4dj€ + 0(62), 7N+j = 1/(d]6) — (dJE)/2 + 0(62), 6N+j = —4dj€ + 0(62),
Ty Ny = —(r — 1)(2idje + O(€?)),

1<j<N.

We choose the following notations :

Bj = Iij(l‘ — Jfoj)/z + ’L(Sj(t — tOj) — ZLU]/4 — iel,, and

B; = Iij(x — $0j)/2 — ’L(Sj(t — toj) + Z$]/4 — iel,.

Then, we realize limited expansions at order p in € of the functions ¢7(0) and
Nj(0), for 1 <j <N

Q%(O) = Sin(Bj + i:)jj/4) =P, + O(ef”“‘l),

¢}(0) = sin(B; — z;/4) = Q; + O(e*),

dn;(0) = cos(Bj —ix;/4) = P{ 4+ O(eP*),
X1;(0) = cos(Bj 4 ix;/4) = Q4+ O(eP).

Then we have the following statement, the same as in [?]. So we refer the
reader to this paper.

Theorem 4.1 The function v defined by

v(x,t) = exp(2it — ip) lim Ws(0)

e—0 W1 (O) ) (20>

is a quasi-rational solution of the NLS equation (1)

0y 4 Vge + 2[0]?v = 0.



Remark 4.1 In (20), W,.(y) = W(¢},...,d5y) is the wronskian

¢! are the functions defined by (16), k,, 6., 7, are parameters defined by (6)
and e, are parameters defined in (5).

Proof : see [9]

4.2 Quasi-rational solutions of order N

In this section we choose zg; =0, to; =0 for 1 <i < 2N.
To get solutions of NLS equation written in the context of fiber optics (21)

1

from these of (1), we can make the following changes of variables

t—>X/2
z—T. (22)

In the following, we give all the solutions for (1).

4.2.1 Case N=1

If we consider the case N = 1, from (20), we realize a development at order

1 of W3 and W7 in e. The solution of NLS equation can be written as

—16d%t2 + 162(1%15 — 4Zdlbl — 4d1[L’CL1 - CL% + 3d% + 8d1tb1 — b% — 4d%l’2
4d32? + 4dyxay + 16d3t2 — 8dith, + a? + b? + d?

vz, t) = exp(2it—iyp).

Apparently, it depends on 3N + 1 = 4 parameters.
But in fact it can be written in the form
(4(z + 4)* + 16(t — -)* — 16i(t — ) — 3)

- - exp(2it — ip).
(4(x + )2 + 16(t — {2-)2 + 1))

v(z,t) =



We note that the parameter d; disappears, and the remaining parameters
are only translation parameters. By denoting X = = + ;Tll and T =t — &

ady
it be rewritten as

(4X2 4+ 16T2 — 16iT — 3)

) = i e 1)

exp(2it — ip).

So we get the well known Peregrine’s breather.

Thus, in this case N = 1, the parameters can be reduced to only 2 parameters
of translation and . The changes of these parameters don’t affect the aspect
of the form of the representation of |v(x,t)| in the x,t variables.

Moreover, if we make the preceding change of variable (22), and take a; =
by = 0, we get exactly first order Akhmediev’s solution (see [1]).

We represent here the modulus of v in function of x € [—5;5] and ¢ € [—5; 5],
fora; =1,b; =1and d; = 1.

Lol b T T T b T T T T L Ta T

Figure 1: Solution of NLS, N=1.



4.2.2 Case N=2

In the case N = 2, we realize a development at order 3 in €. From (20), the
solution of NLS equation can be written as

N(x,t)

v(z,t) = DD

exp(2it — i),

with
N (z,t) = —3744d dat> —(7200)dStd2 —9a2d? —9a3 d3—45dSd3 —45dSd3 +90d} ds—9b3d? +(61447) 22> dSt3
—Ob3d34+1872d5t% d3—64dS x5 da+128d 20 dy+T72d5 d5thy —T2dod] thy —72d1 d3thy +384d {3 daby
+1536dj2tdyt? —768dSx 12 d3—3072d52 % t* d3—384d5t3 d3by —384badid5t3 +18dy badaby —11520d w2 dit?
—108d2xd3as+T72d5td3 by —48d2 w3 dyas+5760d3 2% dSt? +6144d v t* d5+108a1dy d3x+108d  wdeas
+5760d522t?d2—108d5 wd3a, +384d,d3t3by +48d w3 daas —3072d322 d5t* —768d3 0 dSt* +-48a, dy daz®
+18aydadyas—48ayds 2 ds—576d wt? dyas —4096d5t0 d3 +8448d5t* d3 —4096dSt0 d3+8192d1t° d3+8448d5t* d3
—16896d 1t d3+180d2 x> dS —288by dyx? dy t+576a1 d st dax+288ds 2> dath, —576a, dy daat> +576d2xdst> ay
—288d 2 datby+288d2 w2 dytby+144d%x* dS+180d5 2 d3+144dSx* d3—360d w2 d5 —288d x* dy+1872d5d3t?
—64d32°dS+(5761)d3t? d3ba+(23047)diw dyt—(7200)d3 tdS+(61447)dS x> d3— (11520 dSxtd3+(576i) by d3t> d3
+(1444)diz* daba— (15367 )diz* dyt-+(144i)bydy dya® — (5767 )dit> dabs— (11524 dia? dSt— (144i)by d3 x> d3
+(36i)d doby—(5767)bydy dyt? — (576i)d5 wdatas+(15364)d5dat>+(1440i)d 1 tdy+(15367)dSt> d2+(576i)ardy dyxt
—(364)d3dab, +(12288i)d3t°dS+(36i)bydy dy+(122881)dSt° d3— (367 ) dads by + (7684 ) dia* dSt— (245767 )d it dy
—(30724)d t3d5+(7681)dS e tda+(576i)d i wtdyas—(12288i)d i dyt® — (576i)ay d3wtds—(1444)diz> dyby

1 2 1 2 1 1 2 1 2 1 2
and
D(z,t) = —3168didyt* +9a3d? +9a2da+9d5d3+9d5ds —18d d5+9b2d2 +9b3d3+1584dSt? d3+216d5 d5thy
—216dadthy—216d1d5thy —384d 1> daby+384d5t3 daby +384badi dat® —18d1badaby +216d5td2 by
—384d;d5t*b1 —18a1dady as+4096d5t° d+6912d5t* d7 +4096d5t°d3 —8192d1t5d5+6912d5t* d3 —13824d 1t d;
+1584dSd3t* +(576a,dy dyt* —576a1ds t*d3+576d 1t dyas —36d5 dyas —36d5d3a; +36didyaz—576d1dst> s
+36a1dyd5)x+(64d5ds—128d ds+64dSd? )20 4 (48dSd3 +768dSd > —96d d3—1536d dyt> +48dSd3
+768d5t%d3)x* +(48d3 d3a, +48d3d3as —48d dyas —A48aydy dy ) x® +(—216d1ds+3072d5t* d3+2304d 1 dyt?
—288d3d3th +108d5d5 —1152d5d3t* —6144d1t* d3+108d5d3 —1152d5t% da+3072d5t* d5 —288ditd3 by

+288d1d5tby + 288dad]thy)x?.

This solution depends on 3N + 1 = 7 parameters. If we make the preceding
changes of variables defined by (22), and take a; = a3 = by = by = 0 it can

10



be reduced exactly at the second order Akhmediev’s solution (see [1]).

Conversely to the case N = 1, in this case it remains two parameters
interesting on the 7 which are different from parameters of translation. It is
the crucial point. With these parameters the shape of the curve of |v| change
radically as we prove it in the following. We recover as well Peregrine’s
breather as well the three sisters.

We represent the modulus of v in function of x € [—5;5] and t € [—5;5].
If we take dy = 1,dy = 2,a1 = 1,a, =1,b; = 1, by = 1,, we get the well
known Peregrine’s breather of order 2 :

Figure 2: Solution of NLS, N=2.

If we take dy = 1, dy = 2, a1 = 0, as = 0, by = 1000, b, = 1000,, we get
the case of the three sisters :

11



Figure 3: Solution of NLS, N=2.

4.2.3 Case N=3

In the case N = 3, we make a development at order 5 in € and get from (20),
the solution of NLS equation (21) in the form

N(z,t)

v(z,t) = D(z.1) exp(2it — ip).

In this case, the analytical expression takes about 36 pages of usual format.

We can’t reproduce it in this text. We obtain a solution depending on 3N +

1 = 10 parameters.

We only give the following graphic for the modulus of v in function of = €

[—5;5] and t € [—5;5].

If we take the following parameters : dy = 1,dy =2, d3 =3, a1 = 1, ay =

1,a3=1,b; =1, by =1, b3 =1, we get the Peregrine’s breather of order 3 :
If we take other parameters, the shape of the modulus of v in the z,¢

12



Figure 4: Solution of NLS, N=3.

coordinates change to get for example 6 described like in the approach of
Krichever (see [6, 7]).

If we make the preceding changes of variables defined by (22), and take
dy = dy = d3 = 0, we still recover the solution given recently by Akhmediev

1].

This method can be extended to get an infinite family of quasi-rational
solutions of NLS equation at any order.

5 Conclusion

We have given here an extension of a previous result exposed in [9]. These
solutions also are written as a quotient of wronskians. An other approach

13



has been given in [6].

This method described in the present paper provides a powerful tool to get
explicitly solutionsof the NLS equation. This new formulation gives an infi-
nite set of non singular solution of NLS equation.
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