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Abstract

We give a family of solutions of the focusing NLS equation as a
product of a quotient of two wronskians of order 2N by an exponential.
When we perform a special passage to the limit when all the periods
tend to infinity, we get a family of solutions depending on 7N + 1
parameters. We give explicit representations of solutions for N =
1, 2, 3. As particular cases, we recover the so called higher Peregrine’s
breathers labeled by the positive integer N .

1 Introduction

The nonlinear Schrödinger equation (NLS) was considered a long time by ago
in the basic work by Zakharov in 1969 [13]. The first solution was discovered
by Peregrine in 1983 [12].
Other families of higher order were constructed in a series of articles by
Akhmediev et al. [1, 2, 3] using Darboux transformations.
Other solutions were found for reduced self-induced transparency (SIT) in-
tegrable systems [11].

In [10], the N-phase quasi-periodic modulations of the plane waves solutions
were constructed via appropriate degeneration of the finite gap periodic so-
lutions of the NLS equation.
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In this paper, we will give an extension of a representation of the solu-
tions of the NLS equation in terms of wronskians recently founded in [9].
The solutions take the form of a quotient of two wronskians of even order
2N of elementary functions depending on 7N + 1 parameters.
We will call these related solutions, solutions of NLS of order N.
Then, to get quasi-rational solutions of NLS equation, we take the limit when
some parameter goes to 0. We obtain here solutions depending on 5N + 1
free parameters.
As particular cases, we get for N = 1, the well known Peregrine’s solution
[12] of the focusing NLS equation. For N = 2, 3, we recover Akhmediev’s
breathers.
Here we give a new approach to get an extension of higher order Peregrine
solutions different from all previous works.

2 Expression of solutions of NLS equation in

terms of Fredholm determinant

2.1 Solutions of NLS equation in terms of θ functions

We use here a general formulation of the solution of the NLS equation given in
([10]), different from that used in [9]. We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0, (1)

The solution is given in terms of truncated theta function by

v(x, t) =
θ3(x, t)

θ1(x, t)
exp(2it − iϕ). (2)

The functions θr(x, t), (r = 1, 3) are the functions defined by

θr(x, t) =
∑

k∈{0;1}2N

exp gr,k (3)

with gr,k given by

gr,k =
∑

k∈{0;1}2N

exp

{

2N
∑

µ>ν, µ,ν=1

ln

(

γν − γµ

γν + γµ

)2

kµkν (4)
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+

(

2N
∑

ν=1

iκν(x − x0ν) − 2δν(t − t0ν) + (r − 1) ln
γν − i

γν + i
+

2N
∑

µ=1, µ6=ν

ln

∣

∣

∣

∣

γν + γµ

γν − γµ

∣

∣

∣

∣

+ πiεν + eν

)

kν

}

.

The solutions depend on 4N +1 arbitrary parameters, for N being a positive
integer, N ≥ 1 :
ϕ, x0,ν , t0,ν for 1 ≤ ν ≤ 2N ;
N parameters satisfying the relations λN+j = −λj for 1 ≤ j ≤ N ;
2N parameters eν , 1 ≤ ν ≤ 2N .
The terms εν , 1 ≤ ν ≤ 2N are arbitrary numbers equal to 0 or 1.
The parameters eν are defined by the relations

eν = iaν − bν , 1 ≤ ν ≤ N, eν = iaν + bν , N + 1 ≤ ν ≤ 2N. (5)

In the preceding formula, the terms κν , δν , γν are functions of the parameters
λν , ν = 1, . . . , 2N , and they are given by the following equations,

κν = 2
√

1 − λ2
ν , δν = κνλν , γν =

√

1 − λν

1 + λν
. (6)

We also note that

κN+j = κj , δN+j = −δj , γN+j = 1/γj, j = 1 . . . N. (7)

2.2 Relation between θ and Fredholm determinant

We know from [10] that the function θr defined in (3) can be written as a
quotient of two different Fredholm determinants. The expression given in [10]
is different from which we need in the following. We need different choices
of εν :

εν = 0 if ν = 2k, εν = 1 if ν = 2k + 1, 1 ≤ ν ≤ N

εν = 1 if ν = 2k, εν = 0 if ν = 2k + 1, N + 1 ≤ ν ≤ 2N. (8)

For the next section, we change notations, replacing ε by ǫ in such a way
that

ǫj = j, 1 ≤ j ≤ N

ǫj = j + 1, N + 1 ≤ j ≤ 2N. (9)
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It is easy to see that (−1)εν = (−1)ǫν for 1 ≤ ν ≤ 2N .
The function θr defined in (3) can be rewritten with a summation in terms
of subsets of [1, .., 2N ]

θr(x, t) =
∑

J⊂{1,..,2N}

∏

ν∈J

(−1)ǫν

∏

ν∈J, µ/∈J

∣

∣

∣

∣

γν + γµ

γν − γµ

∣

∣

∣

∣

× exp{
∑

ν∈J

iκν(x − x0ν) − 2δν(t − t0ν) + xr,ν + eν},

with

xr,ν = (r − 1) ln
γν − i

γν + i
, 1 ≤ j ≤ 2N, (10)

in particular

xr,j = (r − 1) ln
γj − i

γj + i
, 1 ≤ j ≤ N,

xr,N+j = −(r − 1) ln
γj − i

γj + i
− (r − 1)iπ, 1 ≤ j ≤ N. (11)

We consider Ar = (aνµ)1≤ν,µ≤2N the matrix defined by

aνµ =
2(−1)ǫνγν

γν + γµ

∏

η 6=ν

∣

∣

∣

∣

γν + γη

γν − γη

∣

∣

∣

∣

exp(iκν(x − x0ν) − 2δν(t − t0ν) + xr,ν + eν).(12)

Then det(I + Ar) has the following form

det(I + Ar) =
∑

J⊂{1,...,2N}

∏

ν∈J

(−1)ǫν

∏

ν∈J µ/∈J

∣

∣

∣

∣

γν + γµ

γν − γµ

∣

∣

∣

∣

exp(iκν(x − x0ν)

−2δν(t − t0ν) + xr,ν + eν). (13)

From the beginning of this section, θ̃ has the same expression as in (13) so,
we have clearly the equality

θr = det(I + Ar). (14)

Then the solution of NLS equation takes the form

v(x, t) =
det(I + A3(x, t))

det(I + A1(x, t))
exp(2it − iϕ). (15)
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3 Expression of solutions of NLS equation in

terms of wronkian determinant

3.1 Link between Fredholm determinants and wron-
skians

We use here the same ideas that these exposed in [9]. The proofs are the same.
We don’t reproduce it in this text. The reader can see the aforementioned
paper.
We consider the following functions

φr
ν(y) = sin(κν(x − x0ν)/2 + iδν(t − t0ν) − ixr,ν/2 + γνy − ieν), 1 ≤ ν ≤ N,

φr
ν(y) = cos(κν(x − x0ν)/2 + iδν(t − t0ν) − ixr,ν/2 + γνy − ieν), N + 1 ≤ ν ≤ 2N.

(16)

For simplicity, in this section we denote them φν(y).
We use the following notations :
Θν = κν(x − x0ν)/2 + iδν(t − t0ν) − ixr,ν/2 + γνy − ieν , 1 ≤ j ≤ 2N .
Wr(y) = W (φ1, . . . , φ2N) is the wronskian Wr(y) = det[(∂µ−1

y φν)ν, µ∈[1,...,2N ]].
We consider the matrix Dr = (dνµ)ν, µ∈[1,...,2N ] defined by

dνµ = 2(−1)ǫν γν

γν+γµ

∏

η 6=ν

∣

∣

∣

γν+γµ

γν−γµ

∣

∣

∣
exp(iκν(x − x0ν) − 2δν(t − t0ν) + xr,ν − ieν),

1 ≤ ν ≤ 2N, 1 ≤ µ ≤ 2N,

with

xr,ν = (r − 1) ln
γν − i

γν + i
.

Then we have the following statement

Theorem 3.1

det(I + Dr) = kr(0) × Wr(φ1, . . . , φ2N)(0), (17)

where

kr(y) =
22N exp(i

∑2N
ν=1 Θν)

∏2N
ν=2

∏ν−1
µ=1(γν − γµ)

.

Proof : see [9]
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3.2 Wronskian representation of solutions of NLS equa-
tion

From the previous section, we get the following result :

Theorem 3.2 The function v defined by

v(x, t) =
W3(0)

W1(0)
exp(2it − iϕ). (18)

is solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0.

Remark 3.1 In (18), Wr(y) = W (φr
1, . . . , φ

r
2N) is the wronskian Wr(y) =

det[(∂µ−1
y φr

ν)ν, µ∈[1,...,2N ]].
The functions φr

ν are given by (16)

φr
ν(y) = sin(κν(x− x0ν)/2 + iδν(t− t0ν)− ixr,ν/2 + γνy − ieν), 1 ≤ ν ≤ N,

φr
ν(y) = cos(κν(x−x0ν)/2+iδν(t−t0ν)−ixr,ν/2+γνy−ieν), N+1 ≤ ν ≤ 2N.

The parameters κν , δν , γν are defined by (6) for ν ∈ [1, . . . , 2N ]

κν = 2
√

1 − λ2
ν , δν = κνλν , γν =

√

1 − λν

1 + λν
, ǫν ∈ {0; 1}.

λν is an arbitrary parameter such that 0 < λj < 1 and λN+j = −λj for
j ∈ [1, . . . , N ].
The parameters eν are defined by (5)

eν = iaν − bν , 1 ≤ ν ≤ N, eν = iaν + bν , 1 ≤ ν ≤ N.

4 Construction of quasi-rational solutions of

NLS equation

4.1 Taking the limit when the parameters λj → 1 for
1 ≤ j ≤ N and λj → −1 for N + 1 ≤ j ≤ 2N

In the following, we show how we can obtain quasi-rational solutions of NLS
equation by a simple limiting procedure.
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For simplicity, we denote dj the term
cj√
2
.

We consider the parameter λj written in the form

λj = 1 − ǫ2c2
j , 1 ≤ j ≤ N. (19)

When ǫ goes to 0, we realize limited expansions at order p, for 1 ≤ j ≤ N ,
of the terms
κj = 4djǫ(1 − ǫ2d2

j)
1/2, δj = 4djǫ(1 − 2ǫ2d2

j )(1 − ǫ2d2
j)

1/2,

γj = djǫ(1 − ǫ2d2
j)

−1/2, xr,j = (r − 1) ln(1 + 2idjǫ(1 − ǫ2d2
j)

−1/2),

κN+j = 4djǫ(1 − ǫ2d2
j)

1/2, δN+j = −4djǫ(1 − 2ǫ2d2
j)(1 − ǫ2d2

j)
1/2,

γN+j = 1/(djǫ)(1 − ǫ2d2
j )

1/2, xr,N+j = (r − 1) ln(1 − 2idjǫ(1 − ǫ2d2
j)

−1/2),
For example, the expansions at order 1 gives :

κj = 4djǫ + O(ǫ2), γj = djǫ + O(ǫ2), δj = 4djǫ + O(ǫ2),
xr,j = (r − 1)(2idjǫ + O(ǫ2)),
κN+j = 4djǫ + O(ǫ2), γN+j = 1/(djǫ) − (djǫ)/2 + O(ǫ2), δN+j = −4djǫ + O(ǫ2),
xr,N+j = −(r − 1)(2idjǫ + O(ǫ2)),
1 ≤ j ≤ N.

We choose the following notations :
Bj = κj(x − x0j)/2 + iδj(t − t0j) − ixj/4 − ieν , and
B′

j = κj(x − x0j)/2 − iδj(t − t0j) + ixj/4 − ieν .
Then, we realize limited expansions at order p in ǫ of the functions φr

j(0) and
φr

N+j(0), for 1 ≤ j ≤ N :

φ1
j(0) = sin(Bj + ixj/4) = Pj + O(ǫp+1),

φ3
j(0) = sin(Bj − xj/4) = Qj + O(ǫp+1),

φ1
N+j(0) = cos(B′

j − ixj/4) = P ′
j + O(ǫp+1),

φ3
N+j(0) = cos(B′

j + ixj/4) = Q′
j + O(ǫp+1).

Then we have the following statement, the same as in [?]. So we refer the
reader to this paper.

Theorem 4.1 The function v defined by

v(x, t) = exp(2it − iϕ) lim
ǫ→0

W3(0)

W1(0)
. (20)

is a quasi-rational solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0.
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Remark 4.1 In (20), Wr(y) = W (φr
1, . . . , φ

r
2N) is the wronskian

Wr(y) = det[(∂µ−1
y φr

ν)ν, µ∈[1,...,2N ]].

φr
ν are the functions defined by (16), κν , δν, γν are parameters defined by (6)

and eν are parameters defined in (5).

Proof : see [9]

4.2 Quasi-rational solutions of order N

In this section we choose x0i = 0, t0i = 0 for 1 ≤ i ≤ 2N .
To get solutions of NLS equation written in the context of fiber optics (21)

iux +
1

2
utt + u|u|2 = 0. (21)

from these of (1), we can make the following changes of variables

t → X/2

x → T. (22)

In the following, we give all the solutions for (1).

4.2.1 Case N=1

If we consider the case N = 1, from (20), we realize a development at order
1 of W3 and W1 in ǫ. The solution of NLS equation can be written as

v(x, t) =
−16d2

1t
2 + 16id2

1t − 4id1b1 − 4d1xa1 − a2
1 + 3d2

1 + 8d1tb1 − b2
1 − 4d2

1x
2

4d2
1x

2 + 4d1xa1 + 16d2
1t

2 − 8d1tb1 + a2
1 + b2

1 + d2
1

exp(2it−iϕ).

Apparently, it depends on 3N + 1 = 4 parameters.
But in fact it can be written in the form

v(x, t) =
(4(x + a1

2d1

)2 + 16(t − b1
4d1

)2 − 16i(t − b1
4d1

) − 3)

(4(x + a1

2d1

)2 + 16(t − b1
4d1

)2 + 1))
exp(2it − iϕ).
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We note that the parameter d1 disappears, and the remaining parameters
are only translation parameters. By denoting X = x + a1

2d1

and T = t − b1
4d1

,
it be rewritten as

v(x, t) =
(4X2 + 16T 2 − 16iT − 3)

(4X2 + 16T 2 + 1))
exp(2it − iϕ).

So we get the well known Peregrine’s breather.
Thus, in this case N = 1, the parameters can be reduced to only 2 parameters
of translation and ϕ. The changes of these parameters don’t affect the aspect
of the form of the representation of |v(x, t)| in the x, t variables.
Moreover, if we make the preceding change of variable (22), and take a1 =
b1 = 0, we get exactly first order Akhmediev’s solution (see [1]).
We represent here the modulus of v in function of x ∈ [−5; 5] and t ∈ [−5; 5],
for a1 = 1, b1 = 1 and d1 = 1.

Figure 1: Solution of NLS, N=1.

9



4.2.2 Case N=2

In the case N = 2, we realize a development at order 3 in ǫ. From (20), the
solution of NLS equation can be written as

v(x, t) =
N(x, t)

D(x, t)
exp(2it − iϕ),

with

N(x, t) = −3744d4

1
d4

2
t2−(720i)d6

1
td2

2
−9a2

2
d2

1
−9a2

1
d2

2
−45d6

1
d2

2
−45d6

2
d2

1
+90d4

1
d4

2
−9b2

2
d2

1
+(6144i)d2

1
x2d6

2
t3

−9b2

1
d2

2
+1872d6

1
t2d2

2
−64d6

1
x6d2

2
+128d4

1
x6d4

2
+72d3

1
d2

2
tb1−72d2d

4

1
tb2−72d1d

4

2
tb1+384d4

1
t3d2b2

+1536d4

1
x4d4

2
t2−768d6

1
x4t2d2

2
−3072d6

1
x2t4d2

2
−384d3

1
t3d2

2
b1−384b2d

2

1
d3

2
t3+18d1b2d2b1−11520d4

1
x2d4

2
t2

−108d2

1
xd3

2
a2+72d3

2
td2

1
b2−48d2

1
x3d3

2
a2+5760d2

1
x2d6

2
t2+6144d4

1
x2t4d4

2
+108a1d1d

4

2
x+108d4

1
xd2a2

+5760d6

1x
2t2d2

2−108d3

1xd2

2a1+384d1d
4

2t
3b1+48d4

1x
3d2a2−3072d2

1x
2d6

2t
4−768d2

1x
4d6

2t
2+48a1d1d

4

2x
3

+18a1d2d1a2−48a1d
3

1x
3d2

2−576d4

1xt2d2a2−4096d6

2t
6d2

1+8448d6

2t
4d2

1−4096d6

1t
6d2

2+8192d4

1t
6d4

2+8448d6

1t
4d2

2

−16896d4

1t
4d4

2+180d2

1x
2d6

2−288b1d
4

2x
2d1t+576a1d

3

1t
2d2

2x+288d3

1x
2d2

2tb1−576a1d1d
4

2xt2+576d2

1xd3

2t
2a2

−288d4

1x
2d2tb2+288d2

1x
2d3

2tb2+144d2

1x
4d6

2+180d6

1x
2d2

2+144d6

1x
4d2

2−360d4

1x
2d4

2−288d4

1x
4d4

2+1872d6

2d
2

1t
2

−64d2

1x
6d6

2+(576i)d2

1t
2d3

2b2+(2304i)d4

1x
2d4

2t−(720i)d2

1td
6

2+(6144i)d6

1x
2t3d2

2−(1152i)d6

1x
2td2

2+(576i)b1d
3

1t
2d2

2

+(144i)d4

1x
2d2b2−(1536i)d4

1x
4d4

2t+(144i)b1d1d
4

2x
2−(576i)d4

1t
2d2b2−(1152i)d2

1x
2d6

2t−(144i)b1d
3

1x
2d2

2

+(36i)d4

1
d2b2−(576i)b1d1d

4

2
t2−(576i)d2

1
xd3

2
ta2+(1536i)d6

2
d2

1
t3+(1440i)d4

1
td4

2
+(1536i)d6

1
t3d2

2
+(576i)a1d1d

4

2
xt

−(36i)d3

1
d2

2
b1+(12288i)d2

1
t5d6

2
+(36i)b1d1d

4

2
+(12288i)d6

1
t5d2

2
−(36i)d3

2
d2

1
b2+(768i)d2

1
x4d6

2
t−(24576i)d4

1
t5d4

2

−(3072i)d4

1
t3d4

2
+(768i)d6

1
x4td2

2
+(576i)d4

1
xtd2a2−(12288i)d4

1
x2d4

2
t3−(576i)a1d

3

1
xtd2

2
−(144i)d2

1
x2d3

2
b2

and

D(x, t) = −3168d4

1
d4

2
t2+9a2

2
d2

1
+9a2

1
d2

2
+9d6

1
d2

2
+9d6

2
d2

1
−18d4

1
d4

2
+9b2

2
d2

1
+9b2

1
d2

2
+1584d6

1
t2d2

2
+216d3

1
d2

2
tb1

−216d2d
4

1
tb2−216d1d

4

2
tb1−384d4

1
t3d2b2+384d3

1
t3d2

2
b1+384b2d

2

1
d3

2
t3−18d1b2d2b1+216d3

2
td2

1
b2

−384d1d
4

2
t3b1−18a1d2d1a2+4096d6

2
t6d2

1
+6912d6

2
t4d2

1
+4096d6

1
t6d2

2
−8192d4

1
t6d4

2
+6912d6

1
t4d2

2
−13824d4

1
t4d4

2

+1584d6

2d
2

1t
2+(576a1d1d

4

2t
2−576a1d

3

1t
2d2

2+576d4

1t
2d2a2−36d2

1d
3

2a2−36d3

1d
2

2a1+36d4

1d2a2−576d2

1d
3

2t
2a2

+36a1d1d
4

2)x+(64d6

1d
2

2−128d4

1d
4

2+64d6

2d
2

1)x
6+(48d6

2d
2

1+768d6

2d
2

1t
2−96d4

1d
4

2−1536d4

1d
4

2t
2+48d6

1d
2

2

+768d6

1t
2d2

2)x
4+(48d3

1d
2

2a1+48d2

1d
3

2a2−48d4

1d2a2−48a1d1d
4

2)x
3+(−216d4

1d
4

2+3072d6

2t
4d2

1+2304d4

1d
4

2t
2

−288d3

1d
2

2tb1+108d6

1d
2

2−1152d6

2d
2

1t
2−6144d4

1t
4d4

2+108d6

2d
2

1−1152d6

1t
2d2

2+3072d6

1t
4d2

2−288d3

2td
2

1b2

+288d1d
4

2tb1 + 288d2d
4

1tb2)x
2.

This solution depends on 3N + 1 = 7 parameters. If we make the preceding
changes of variables defined by (22), and take a1 = a2 = b1 = b2 = 0 it can

10



be reduced exactly at the second order Akhmediev’s solution (see [1]).

Conversely to the case N = 1, in this case it remains two parameters
interesting on the 7 which are different from parameters of translation. It is
the crucial point. With these parameters the shape of the curve of |v| change
radically as we prove it in the following. We recover as well Peregrine’s
breather as well the three sisters.
We represent the modulus of v in function of x ∈ [−5; 5] and t ∈ [−5; 5].
If we take d1 = 1, d2 = 2, a1 = 1, a2 = 1, b1 = 1, b2 = 1,, we get the well
known Peregrine’s breather of order 2 :

Figure 2: Solution of NLS, N=2.

If we take d1 = 1, d2 = 2, a1 = 0, a2 = 0, b1 = 1000, b2 = 1000,, we get
the case of the three sisters :
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Figure 3: Solution of NLS, N=2.

4.2.3 Case N=3

In the case N = 3, we make a development at order 5 in ǫ and get from (20),
the solution of NLS equation (21) in the form

v(x, t) =
N(x, t)

D(x, t)
exp(2it − iϕ).

In this case, the analytical expression takes about 36 pages of usual format.
We can’t reproduce it in this text. We obtain a solution depending on 3N +
1 = 10 parameters.
We only give the following graphic for the modulus of v in function of x ∈
[−5; 5] and t ∈ [−5; 5].
If we take the following parameters : d1 = 1, d2 = 2, d3 = 3, a1 = 1, a2 =
1, a3 = 1, b1 = 1, b2 = 1, b3 = 1, we get the Peregrine’s breather of order 3 :

If we take other parameters, the shape of the modulus of v in the x, t

12



Figure 4: Solution of NLS, N=3.

coordinates change to get for example 6 described like in the approach of
Krichever (see [6, 7]).

If we make the preceding changes of variables defined by (22), and take
d1 = d2 = d3 = 0, we still recover the solution given recently by Akhmediev
[1].

This method can be extended to get an infinite family of quasi-rational
solutions of NLS equation at any order.

5 Conclusion

We have given here an extension of a previous result exposed in [9]. These
solutions also are written as a quotient of wronskians. An other approach

13



has been given in [6].
This method described in the present paper provides a powerful tool to get
explicitly solutionsof the NLS equation. This new formulation gives an infi-
nite set of non singular solution of NLS equation.
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