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Abstract

The relationship which links the normal vibration occuring during the sliding of rough
surfaces and the nominal contact area is investigated. Two regimes are found. In the first
one, the vibrational level does not depend on the contact area while in the second one, it
is proportional to the contact area. A theoretical model is proposed. It is based on the
assumption that the vibrational level results from a competition between two processes of
vibration damping, the internal damping of the material and the contact damping occuring
at the interface.
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1 Introduction

The importance of surface roughness in macroscopic friction is recognized for a long time. As
early as in the eighteenth century, Coulomb [1] claimed that the fundamental cause responsible of
friction was the interlocking of antagonist asperities. The modern theory of the so-called multi-
contact interfaces is due to Bowden and Tabor [2], Archard [3], Greenwood and Williamson [4].
From these studies, it appears that there is a distinction between the nominal contact area (surface
in apparent contact) and the actual contact area (sum of all asperities in contact), the latter being
the only one responsible of friction. The actual contact area is proportional to the normal load
whatever is the nominal contact area. This is the key to explain Amontons-Coulomb’s laws of
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friction which states that the friction force is proportional to the normal load but does not depend
on the nominal contact area. This behaviour stems from a non-trivial collective phenomenon of
microscopic contacts since it has also been checked that this proportionality does not hold for a
single contact [5, 6]. The physics of multi-contact interfaces is always an active field of research in
both experimental [8] and numerical [7] ways. Recent advances in rapid imaging technology now
allow to directly observe the multi-contact interface between sliding solids [9, 10].

But the fundamental question in kinematic friction is how the kinetic energy of the sliding solid
is transformed into thermal energy. Microscopic models initiated by Tomlinson [11] have shown
the importance of multi-stability [12] in the dissipation process. The energy stored in elastic
deformation of microscopic degrees of freedom is suddenly released as vibration. This process is
well illustrated by the experiment of Ciliberto and Laroche [13]. The vibration induced by the
interaction of asperities is therefore a possible explaination of macroscopic friction [14]. In the
meantime, the normal vibration of solids has also a direct effect on the friction force [15, 16].
Hess and Soom have shown that the presence of normal vibration can reduce the mean contact
pressure, the contact area and therefore the friction force [17, 18, 19]. All these studies underline
the importance of dynamical effects in sliding contact of rough surfaces.

Focusing on the audio frequency range, friction-induced vibration may have several origins [21].
The first origin is the mechanical instabilities such as stick-slip, the ringing of wine glasses [20]
for instance. Stick-slip is usually explained by the velocity weakening phenomenon that is the
decreasing of friction coefficient during the transition between static and kinematic friction [22].
And the second origin, the so-called roughness noise, is a wide band noise produced by light impacts
between antagonist asperities. This is a direct effect of the dynamics rough interfaces. Moving a
small object on a table or rubbing the hands against each other are two examples of roughness
noise.

Experimental studies on roughness noise are rare. They are often included in general studies
on friction noise where it is sometimes difficult to separate steady sliding and stick-slip regimes.
Let quote the work of Yokoi and Nakai [23], Othman and al [24], Stoimenov and al [25], Ben
Abdelounis and al [26] who have studied the link between the sound pressure level and roughness
and sliding speed. They propose a power law P, o« Ra®V? where P, is the acoustical radiated
power, V' the sliding speed and Ra a roughness parameter.

More recently, the question of the dependence of friction noise with the contact area is tackled
in Ref. [27]. The principle of the experiment is the following. Several similar solids with a rough
base, called sliders, are pushed on the rough track of a plate, called resonator. The roughness of
both track and sliders is the same and the sliding speed is maintained constant. The resulting
normal vibration is measured in several points of the resonator. Then, the vibrational level is
plotted versus the number of sliders. It has been found that two regimes exist. The first regime is
linear. The vibrational energy is directly proportional to the number of sliders i.e. to the contact
area. But, in a second regime, the vibrational energy does not depend on the contact area. All
intermediate regimes have also been observed.

In this experiment, no distinction is done between nominal and actual contact areas. When
the number of sliders is increased, both nominal and actual contact areas are increased in same
proportion. The study of the separate contribution of nominal contact area for instance, would
require to maintain constant the actual contact area. This has not been done. Therefore, the
evolution of vibrational level versus contact area is rather the evolution of vibration versus the
number of identical sources (sliders). Thus, throughout this text, the term contact area must
generally be understood as the number of sources.
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Figure 1: When rubbing two steel pieces, the level of friction sound does not depend on the contact
area.

This experimental result is not obvious. Usually, a larger number of acoustical sources leads
to a greater sound pressure level. That evidence applies sometimes but can be violated too, this
proves that the acoustic behaviour of rough surfaces deserves a deeper analysis.

This study proposes an explanation of the existence of these two regimes. The aim is to
investigate the relationship between the vibrational level and the nominal contact area, the nominal
contact pressure being maintained constant. The paper is organized as follows. The first section is
concerned with the observation of the two regimes of roughness noise, a constant vibrational level
on the one hand, and a proportional vibrational level on the other hand. In Section 3, a unified
model is proposed and is tested in Section 4 on a system which shows these two regimes. Finally,
some conclusions are given in Section 5.

2 Observation of the constancy of roughness noise

When rubbing by hands two flat steel sheets, the resulting friction noise is an example of roughness
noise. This experiment have been proposed by Stoimenov and al. [25] in order to illustrate the
dependence of friction noise with roughness. The static load applied by hands is so light that the
dynamical coupling is weak. If the movement is applied as shown in Fig. 1, the contact surface
can be controlled with the angle between the two pieces. Then, a curious result can be observed:
the noise level does not depend on the contact area.

A similar experiment, may be more convincing, can be achieved with a drum. Rubbing simul-
taneously several rigid and rough solids, some sugar lumps for instance, on the drum membrane
also produces a roughness noise. The drum then plays the role of a resonator. Once again, it can
be checked with a sonometer or more simply by hearing the noise, that a larger number of solids
does not produce a stronger sound. Results of this experiment are shown in Fig. 2a. The noise
level remains constant up to fifty lumps.

This observation is rather paradoxical. The common sense tells us that the greater is the
contact area the higher is the sound level. The difference of sound pressure level between a single
source and s identical sources is AL, = 10log;,s dB that is 10 dB per decade (s = 10). This
law simply claims that the power being injected into vibration is proportional to the number of
sources, or, in other words, that the sources are uncorrelated.

The additivity of sound sources and its immediate consequence the proportionality of vibra-
tional energy with the number of sliders, applies in some cases. Let re-do the same experiment of
sugar lumps on a thick wood table. Results are shown in Fig. 2b. The noise level now increases
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Figure 2: Friction noise of sugar lumps. The Sound Pressure Level (Lp) is measured by a sonometer
whith a constant sliding speed. (a), on the drum membrane the friction sound is constant. (b), on
the surface of a wood table the friction sound is proportional to the number of sliders (~ 10 dB
per decade).

with a slope near 9 dB per decade which well agrees with the theoretical result of 10 dB per
decade. All these simple examples show the link between friction-induced vibration and contact
area is more complex that it could be at first sight.

Two regimes exist for roughness noise, a first regime where friction sound is constant and a sec-
ond one where friction sound is proportional to the number of sliders. These regimes illustrated in
these simple experiments, have also been explored on a single steel plate as well as all intermediate
regimes [27].



Published in Tribology Letters 41 (2011) 47-53

3 Theoretical development

Roughness noise is generated in three steps. Micro-impacts between asperities at the interface is
the fundamental mechanism responsible of the conversion of kinetic energy of the sliding solid into
vibrational energy. The resulting vibrations propagate through the solids which then behave as
resonators. Finally, the sound is radiated from solids in air.

The final step, the acoustical radiation, is rather well-known [28, 29]. The power being radiated
is proportional to the square of the root mean square of vibrational velocity v on the vibrating
surface,

Prad = pocov® A, (1)
where pg is the air density, ¢ the sound speed in air, o the so-called radiation factor and A the

radiating area. The Sound Power Level (dB) is,

Pra
Ly, = 10log Pod’ (2)

where Py = 1072 W and the base of logarithm is 10. It is therefore directly related to the mean
velocity v. The question of sound level then reduces to the knowledge of the mean vibrational
velocity v. We shall determine it by applying a power balance on the vibrating system.

The first step is concerned with the excitation mechanism. Without going into details of what
happens at the interface, it can expected that the normal vibration stems from the numerous
impacts occuring between antagonist asperities. An analytical model of impact of rough surfaces
as well as a review of previous ones available in the literature, are presented in Ref. [30]. Several
general points can be enounciated. The more important the incident kinetic energy, the stronger
the impacts. In particular, an increase of the sliding velocity or the moving mass must lead to a
higher vibrational power transfered to the system. Furthermore, due to the random character of
the surfaces, all these events are independent i.e. the properties of individual impacts, in particular
the transfered energy, are not influenced by other impacts. The vibrational power being injected
Py, in the vibrating system is thus proportional to the rate of impacts and therefore the contact
area S,

an = pS7 (3)

where p is the vibrational power being injected per unit area. Indeed, p remains unknown but the
important fact is that P, is proportional to the contact area S.

The vibrational level is controlled by dissipation. Many damping coefficients are used in the
literature but in the field of Statistical Energy Analysis [31], the vibrational power being dissipated
is,

Pyis = numv? A. (4)

mwv? A is the total vibrational energy of the resonator, m being its mass per unit area, A the surface
of the resonator and v the mean vibrational velocity. 7 is the so-called damping loss factor and
w is the central frequency. Indeed, n is a global loss factor which includes all types of dissipation
and, in particular, the acoustical radiation. The radiated power P.,q is therefore included in the
term Pyis.

The velocity v is found by applying the power balance Pinj = Fais,

pS
mv2 = W—A (5)
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Since pg, ¢, o, m and p do not depend on the friction area S, the explaination of the existence of
the two regimes must be seek in the possibility of the damping loss factor nw to depend or not on
the contact area S. The physics of 7 must therefore be detailed.

Several phenomena are responsible of damping of vibration. But they can be classified in two
types.

The first type is the dissipation occuring in the overall plate. Dissipation by hysteresis of
material is an example. All points of the vibrating system are submitted to a strain cycle and
therefore take part in dissipation. The sound radiation also belongs to that type. Beyond the
critical frequency, the entire vibrating surface radiates whereas only edges and corners radiate
below the critical frequency. Therefore, if in addition the vibrating field is diffuse, all parts of the
vibrator are equally responsible of dissipation and the dissipated power is proportional to the plate
surface A. We are then lead to introduce the “internal” damping loss factor 7; and the power being
dissipated by internal damping,

Pt = niwmu?A. (6)

The internal damping loss factor n; is an intrinsic property of the resonator. Its value just depend
on the material and on the shape of the resonator but not on the contact area S.

The second type of dissipation of vibration occurs at the frictional interface. It is well-known for
a long time that a mechanical contact can be responsible of a significant increase of the damping
loss factor [32]. Several phenomena whose friction, are responsible of dissipation of vibration
within the contact. But the most important is certainly the air pumping. The vibrational power
being dissipated in the contact is proportional to the contact area S and the square of the mean
vibrational velocity v? [33]. Let introduce a “contact” damping loss factor 7., the vibrational
power being dissipated by friction is,

Pric = newmuv?S, (7)

where n.w is assumed to be a local quantity which depends on the roughness of surfaces in contact,
the sliding velocity V' and the mass per unit area m but not on the contact area S neither the
surface of the resonator A.

The power balance now reads Pinj = Ppic + Pint and therefore,

2 L (8)

mee= NewS + niwA’

Indeed, the decomposition Py = Pt + Paic and Eqgs. (4, 6, 7) implies that n(S) = n; + n.5/A.
Egs. (5) and (8) are therefore equivalent, the latter being simply more detailed since the dependance
with S is now apparent.

The regime of constant friction sound versus number of sliders experimentally observed, can
now be explained by considering that the friction term dominates the internal damping term,
niwA << n.wS. Eq. (8) then shows that the vibrational energy does not depend on the contact
area A neither the plate area S,

mv* = . (9)

On the other hand, the proportionality of friction sound versus number of sliders is recovered
when the contact damping term is negligible compared with the internal damping term, n;wA >>
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Figure 3: Experimental set-up. Several rigid sliders with base area S and weight NV are pulled at
a constant velocity V on a rough track located on an elastic resonator. The friction results in a
vibrational diffuse field v.

newS. Always with Eq. (8) , the vibrational energy is now proportional to the contact area S,

mu? = 77?514. (10)

Let us introduce the dimensionless quantity,

2
Yy — Newmu 7 (11)
p

as the ratio of vibrational power dissipated by friction and injected power. Clearly, Y < 1. With,

NewS
X = 12
e (12
being the ratio of powers dissipated by friction and by internal damping, Eq. (8) reads,
X
= —. 1
X+1 (13)

The internal damping regime is found when X < 1 leading to the proportionality of friction sound
with sources Y = X. And the contact damping regime appears when X > 1, the constancy of
friction noise versus sources then reads Y = 1.

4 Experimental verification

In order to check the above theory, a simple experiment has been carried out. The experimental
set-up is shown in Fig. 3. s rigid sliders of base area Sy (total friction area S = sSp) and weight
Ny (total weight N = sNp) are pulled by a small DC-motor with a constant velocity V' on an
elastic resonator. The base of sliders and the track on the resonator are rough, giving rise to the
expected vibration v of the resonator. The sliding velocity V is measured by a magnetic coder on
the DC-motor. A reductor on the motor ensures a constant sliding speed whatever the number
of sliders is. The RMS-value v of the vibrational velocity is measured within the frequency band
[10 Hz - 10 kHz] by a piezo-electric accelerometer. The signal is acquired by a 16-bits A/D board
with a sampling frequency 40 kHz. The RMS-value of v is computed from the stationary part of
the accelerogram within a time window of duration 1 s.
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Table 1: Experimental results. Slope A and vibrational energy mw? for the mean contact area
(S =12 em?); nw measured with the decay of the resonator impulse response; n.w and p assessed
from the positions X and Y on the non-dimensional curve of Fig. 5.

resonator slider A (dB/decade) mv? (pJ/m?) X Y nw (571 nw (57Y) p (mW/m?)
high damping thin 6.5 11 05 03 69 1000 32

low damping  thin 1.6 41 5.2 08 3.8 550 27

high damping  thick 2.6 37 28 0.7 39 5400 310

low damping  thick 0.4 78 24 1.0 38 2500 210

The sliders are parallelepipedic solids made of stainless steel and have dimensions 2 x 2 x 0.5 cm
for the thin one and 2 x 2 x 2 c¢m for the thick one. Their masses are respectively M = 15.5 g and
M = 62 g. The first natural frequency of sliders is 35 kHz for the thin one and 75 kHz for the thick
one. These values are obtained by Finite Element Method with a volumic mass p = 7800 kg/m?, a
Young’s modulus E = 210 GPa and a Poisson’s ratio » = 0.3. They are largely beyond 10 kHz and
therefore the sliders can be considered as being infinitely rigid compared up to the upper frequency
10 kHz of measurement.

The resonator is a rectangular stainless steel plate. Two resonators are used, a steel plate
alone and a steel plate covered with a damping material. The dimensions are 150 x 220 x 2 mm
with a mass per unit area m = 16.1 kg/m? for the undamped plate and m = 22.2 kg/m? for the
damped plate. The fundamental frequency of the plates is 200 Hz and about 75 natural frequencies
are found within the band [10 Hz - 10 kHz]. Consequently, the vibrational field resulting in the
resonator is diffuse that is homogeneous and isotropic. The exact position of the accelerometer is
of no importance.

The internal damping was assessed with 7w = 27 x 2.2/T,. where T,. is the reverberation-time
(the time for a decay of 60 dB of the impulse response). The reverberation-times of both plates
were measured by recording their impulse responses h(t), and plotting the time-reversed integration
t — [ h?(r)dr (Schroeder’s plot). Values are given in Table 1.

The base of sliders and the track on the resonator are prepared by grinding. The size of the
particles is about 1 mm and the particles are made of brown corundum. The resulting surfaces
have a roughness about R, = 5 ym. The surfaces are cleaned with in two steps. The first cleaning
is done with heptan in order to remove all greases. The second cleaning is done with propanol for
all residual traces and the surfaces are dried under a nitrogen flux.

During the experiment with sliders, the central frequency is w = 7/v where 7 is the RMS-
value of the vibrational acceleration and v the RMS-value of the vibrational velocity. The value
w/2m = 1000 Hz is obtained in all experiments.

Four experiments have been realized by combining high and low internal damping with thin
and thick sliders. The thickness of sliders is a convenient way to modify the mass of sliders and
therefore incident kinetic energy. In all experiments, the vibrational RMS-velocity v is measured
when pulling from 1 to 8 sliders (S = 4 cm? to 32 cm?) with a sliding velocity V = 6 cm/s. In
Fig. 4 is shown the vibrational velocity v versus contact area S for the four experiments.



Published in Tribology Letters 41 (2011) 47-53

From Fig. 4, it appears that high damped resonators have a lower vibrational level. This
observation well agrees with Eq. (5). The second remark is that the vibrational level is an increasing
function of the mass of sliders that is the tickness of sliders. Finally, the slope of the curve v versus
S has four different values. The lowest slope is encountered for low damped resonator and highest
slider mass while the greatest slope occurs when the damping is high and the mass of sliders is low.
The slope A (dB/decade) as well as the mean vibrational energy mu? are evaluated from Fig. 4
around the logarithmic mean contact surface (S = 12 cm?). Results are summarized in Table 1.

Following Eq. (13), the slope X in dB per decade is,

OdlogY
A=10—" 14
Olog X’ (14)
with the result,
10
A= — 15
X+1 (15)

where X is the mean value of X . This suggests a way for the determination of the unknown values
of n.w and p. The mean values X and Y follow from,

10

X="—-1 16
)\ ’ ( )
. X
Y = —"——. 17
X+1 (17)
The value of n.w is thus obtained from
X iwA
mew = =, (18)
and the value of p from,
=2
NeWMU

Values of 7.w and p are also summarized in Table 1. Results of measurement for the four experi-
ments are re-plotted with dimensionless variables X and Y in Fig. 5.

It is apparent from Fig. 5 and Table 1 that all regimes from X < 1 to X > 1 are reached in
these experiments. The fact that the two regimes (proportionality and constancy) are observed on
the same vibrational system, shows that the physical explaination of this phenomenon does not
lie in the nature of system (a membrane for the drum and a plate for the wood table), but rather
in the friction conditions (contact pressure, sliding velocity...) and the internal damping of the
resonator. The value of X (deduced from the slope A) is multiplied by about 10.4 (respectively
8.6) for thin sliders (respectively thick sliders) when the internal damping 7w of the resonator is
multiplied by 18 (respectively 10). These values are comparable and show that the increase of the
vibrational level is effectively driven by the internal damping of the resonator.

A final remark is that the values of injected power per unit area p are greater for heavy sliders.
This result reinforces the idea that incident kinetic energy 0.5MV? where M is the mass of sliders
and V the sliding speed, is the relevant parameter which controls the vibrational power being
injected in the system. It is unfortunately difficult to measure the relative velocity between the
slider and the resonator during impacts, but, it can be assessed that it is of order of V sin a+v cos «
where « is the slope of impacting asperity. Since V' = 6 cm/s and v ~ 1 mm/s, the angle for which
both contributions equal is ay = 1 degree which is a very low value. For greater angles, the sliding
velocity contribution dominates.
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5 Conclusion

In this study, it has been shown that the level of normal vibration induced by mechanical impacts
during the sliding of rough surfaces, may depend or not on the number of sliders. Two regimes
exist for roughness noise. The regime where the contact damping dominates implies that roughness
noise level does not depend on the number of sliders. It can be easily observed on drums and,
more generally, on any structure highly reverberent. On the other hand, the regime of dominating
internal damping implies that the noise level linearly increases with the number of sliders. It can
be observed on highly damped resonators, a wood table for instance.

The underlying assumption that has been proposed in this study to explain the constant regime
is that the damping of vibration in the interface is a local phenomenon governed by Eq. (7). This
is a strong assumption. But this is the only assumption which leads to the energy balance where
the contact area vanishes.

The existence of two regimes highlights the fact that the dependence of friction-induced vi-
bration with contact area is more complicated than the similar laws for friction force (Amontons’
law) and wear rate (Achard’s law). However, the vibrational power density being injected (p in
Table 1), is always proportional to the nominal contact area and is approximatly independent of
the internal damping of system. This fact is consistent with Amontons’ law of proportionality of
mechanical power being dissipated with normal load.
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