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Validity diagrams of statistical energy analysis
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Abstract

This paper is concerned with the validity domain of Statistical Energy Analysis (SEA)
which is defined in terms of four criteria. The mode count N and the modal overlap M must
be high, the normalized attenuation factor m̄ and the coupling strength γ must be small.
The application of dimensional analysis on the governing equations of plates gives the space of
dimensionless parameters in which the validity domain of SEA must be delimited. This domain
is discussed on the basis of geometry of the surfaces delimiting it. The diagrams of validity of
SEA are introduced and discussed. A numerical simulation on a couple of rectangular plates
coupled along one edge illustrates the theoretical approach.

1 Introduction

Validity of Statistical Energy Analysis (SEA) [1] was among the main concerns in the early devel-
opment of the theory. The large use of SEA in engineering and, in the mean time, the difficulties
encountered to meet the assumptions of SEA for practical structures, have motivated many basic
studies to well understand what is SEA and what are its limitations.

The former development of SEA is largely inspired from statistical physics [2]. SEA were
conceived as the theory of energy exchanges between several groups of modes [3, 4, 5]. Modes play
the role of molecules that is the sites where the energy is localized. Their exact frequencies and
their shapes are of no importance but their number within a frequency band and their ability to
exchange energy with modes of other groups is of a great importance. SEA is a theory of collective
behaviour of modes while the governing equations describe their individual behaviour. As well,
SEA is the thermodynamics of structural and acoustical vibrations.

The simplicity of SEA equations largely results from the concept of thermal equilibrium. Al-
though the foundations of SEA were laid from the beginning, the discussion rapidly turned to the
question of the validity of such an approach. The assumptions of SEA have been discussed in many
papers. In the early work of Woodhouse [6], the crucial question of the proportionality between
exchanged power and the difference of modal energies is tackled by transforming the stiffness and
mass matrices of the overall system. This rigorous approach based on linear algebra leads to several
strict definitions of weak coupling. The critical overview of SEA by F. Fahy [7] points out several
difficulties of SEA and raises several questions of a great importance for foundations of SEA. Thirty
years later, some of them such as confidence, spatial distribution of energy, indirect coupling and
non-conservating coupling have become fashionable subjects in SEA literature. The existence of
indirect coupling between sub-systems which are not physically connected, is certainly the most
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strange phenomenon in SEA whose discovery has shaken the base of SEA. Its systematic study by
B. Mace [8, 9] who distinguishes ’quasi-SEA’ and ’proper SEA’ models, largely contributes to im-
prove the understanding of what is SEA and what are its limitations. It also clarifies the necessity
of the assumption of large mode number [10, 11, 12]. More recently, the work of Culla and Sestieri
[13] or the observations of Finnveden [14] show that the subject of the underlying assumptions of
SEA is far to be closed.

Although there is some differences in the details when formulating the assumptions, the notion
of weak coupling for instance is not defined in the same way by all authors, it seems that there
is a large consensus on a ’minimal’ set of assumptions. These are a large population of modes,
wide-band and uncorrelated excitations, large modal overlap, diffuse field, equipartition of energy,
light and conservative coupling. Some of these assumptions are redundant and therefore they are
not all simultaneously required for SEA to apply [15]. But, each assumption has been discussed in
the literature and for almost each of them an extension of SEA have been proposed. The strong
coupling is discussed in Ref. [16], the equipartition of modal energy is relaxed in Ref. [17], non
isotropic field is considered in Ref. [18] and non homogeneous field in Ref. [19], the dissipation in
couplings is taken into account in Ref. [20], the extension to mid-frequencies in Ref. [21, 22] and
the transition from mid to high frequencies in Ref. [23]. Finally, a generalisation of SEA valid for
non equilibrium state (non diffuse field) and based on a transfer equation analogous to Boltzmann’s
equation is proposed in Refs. [24, 25, 26, 27].

The aim of this paper is to describe the validity domain of SEA in the space of appropriate
dimensionless parameters. SEA is considered in its strict sense in the perspective of statistical
physics that is without previously mentioned extensions. The assumptions are therefore large
population of modes, ”rain-on-the-roof” excitation, large modal overlap, diffuse field, equipartition
of energy, light and conservative coupling. Each assumption imposes a constraint in the space of
parameters and these constraints are summarized in some diagrams where it is possible to directly
visualize the position of the actual system and to check if it is located within or outside the validity
domain of SEA.

This paper is organized as follows. In Section 2 are introduced the notations and the basic
relationships of SEA. In Section 3, the assumptions of SEA are presented and discussed within
the context of statistical physics. In Section 4 the dimensional analysis is applied to the governing
equations of plates and the set of dimensionless parameters is defined. In Section 5, the validity
domain of SEA is plotted in the space of dimensionless parameters and the validity diagrams are
presented in the particular case of a pair of rectangular plates coupled along a common edge. A
comparison of SEA results with a direct numerical simulation is presented in Section 6. Finally, a
discussion for complex structures is given in Section 7.

2 Basics of SEA

SEA is a simple method to assess the vibrational energy of systems divided into n sub-systems.
SEA is entirely based on some statistical considerations and the application of the energy balance.
A complete derivation of SEA is available in numerous reference texts [1, 28, 5] and this section
only summarizes the main relationships useful for the discussion.

SEA is a method intended to the prediction of vibrational levels in broadband. Therefore,
the analysis is confined to a frequency band ∆ω about the central frequency ω (rad/s). No strict
definition is given for the width of the frequency band, but it is commonly admitted that octave
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bands are well suited. The frequency band ∆ω is then simply related to the central frequency ω
by ∆ω = ω/

√
2.

A sub-system is defined as homogeneous set of modes whose frequencies lie in the frequency
band. It may be viewed as an ensemble of N oscillators. The modal density n is defined as the
number of modes per rad/s,

n =
N

∆ω
. (1)

The exact expression of the modal density depends on the nature of the system. In case of plates
submitted to flexural vibrations, the asymptotic expression based on wave propagation analysis
is [28],

n =
Sω

2πcgcϕ
, (2)

where S is the area of the plate, cg and cϕ the group speed and the phase speed of the flexural
wave. Several improvements of this expression can be found in the literature [1, 29].

In steady-state condition, the energy balance for sub-system i reads,

P diss
i +

∑

j !=i

Pij = P inj
i . (3)

The power being injected P inj
i is assumed to be known, but the powers being dissipated P diss

i and
being exchanged Pij must be expressed in terms of vibrational energies.

Let denote by Ei where i = 1, ...n the vibrational energy of sub-system i. The modal energy, also
called vibrational temperature, is defined as Ti = Ei/ni. Both variables Ei and Ti can be adopted
as primary variable of SEA. The total vibrational energy Ei is more important for a practical
analysis of the system but, the modal energy Ti has a more profound physical meaning and is
sometimes considered as the variable well suited for SEA. The idea that a vibrational temperature
with a value different from thermal temperature can drive the system dynamics was in fact the
first motivation for the early development of SEA [2].

The power being dissipated by internal losses is [30],

P diss
i = ωηiEi, (4)

where ηi is the damping loss factor usually determined by a direct measurement.

The power supplied by the sub-system i to the sub-system j is,

Pi→j = ωηijEi, (5)

where ηij is the coupling loss factor. The net exchanged power between sub-systems i and j is
Pij = Pi→j − Pj→i and therefore,

Pij = ω (ηijEi − ηjiEj) , (6)

The standard wave-based relationship of the coupling loss factor ηij for two adjacent plates
with a coupling of length Lij is [31, 1],

ηij =
Lijcgi
πSiω

τij (7)
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where τij is the mean transmission efficiency from plate i to plate j.

The coupling loss factors verify the reciprocity relationship [32, 33, 34]

niηij = njηji. (8)

The reciprocity relationship highlights the importance of the vibrational temperature. Substituting
Eq. (8) into Eq. (6) leads to,

Pij = ωηijni (Ti − Tj) , (9)

showing that the net exchanged power is proportional to the difference of modal energies or vibra-
tional temperatures. This is the well-known power flow equation which has been derived in a large
number of situations [4, 35, 3].

The SEA equation is simply obtained by substituting Eqs. (4, 6) in Eq. (3),

ω




n1

∑
j η1j −nlηlk

. . .
−nkηkl nn

∑
j ηnj








T1
...
Tn



 =




P inj
1
...

P inj
n



 (10)

This is a linear system on vibrational temperatures whose matrix is symmetric.

3 Validity criteria of SEA

Let now turn to the discussion on the basic assumptions of SEA. SEA is a statistical method applied
to the audio frequency range (macroscopic vibrations) in the same manner that thermodynamics is
a statistical method applied to thermal vibrations at the molecular scale (microscopic vibrations).
While in thermodynamics the statistical population is composed by a large number of molecules,
atoms or any other sites which store the vibrational energy, in SEA, the energy is localized in
large number N of modes. The number of molecules of thermodynamical systems is of order of
Avogadro’s number (1023). But in SEA, the number of modes may be only of order of several
thousands [7] or even several millions in the best case [36] which is always very low compared with
Avogadro’s number. This highlights that SEA is a statistical method applied to small populations,
and indeed, this fact can cause some difficulties. Fluctuations around the mean are more important
for relatively small populations. In Ref. [37, 38], the relative variance (the variance divided by the
square of the mean) is found to be of order of logN/N2. The size of the population of modes is
therefore the first criterion for the applicability of SEA to prediction of the response of a single
system (as opposed to the ensemble average response). The mode count N that is the number of
modes within the frequency band ∆ω is,

N = n∆ω, (11)

and a large population of modes reads,
N >> 1. (12)

This is the first criterion of validity of SEA.

It could be argued that a second point of view is possible. Instead of applying SEA to a single
system with many modes, SEA can be applied to a population of similar systems each of them
having few modes. Predictions of SEA are then compared with the ensemble average of energies

4



Published in Journal of Sound and Vibration 329 (2010) 221-235

of individual systems. Although this interpretation of SEA is not explicitly mentioned in early
papers of SEA, it was present in the mind of these authors. For instance, Ref. [39] is a discussion
on the distribution law of modes in the statistical population, and the discussion in Ref. [40] clearly
presents SEA as it was. This is now a point of view widely spread in engineering especially in
automotive industry where the population of systems is large [41]. The introduction of statistical
population in SEA is quite similar to the so-called canonical ensemble by Gibbs in statistical
mechanics were the equivalence of time average and ensemble average is ensured by the ergodic
assumption. In both version of SEA, fluctuations around the mean are present but are negligible
provided that the number of modes is large in the strict version of SEA, and the size of population
is large in this second interpretation of SEA. Thus, if N denotes the cumulative number of modes
i.e. the sum of all individual mode counts, the statistical method makes sense for N >> 1 that is
Eq. (12).

SEA is the study of incoherent vibrational energy in the same manner that thermodynamics
is the study of ’degraded’ mechanical energy. This state of degradation for energy only arises
when the disorder prevails in the statistical population. Disorder is inherent to the statistical
method. Simple laws can emerge from the behaviour of a large population provided that all
’individuals’ are similar and that any of them may influence the population more than other ones.
For thermal vibrations of solids, disorder means that the vibration of atoms are uncorrelated. While
in the kinetic theory of gases, disorder means that the velocities of molecules before the shock are
statistically independent. This is the so-called molecular chaos or Stosszahlanstaz introduced by
Boltzmann in 1872 [42]. Disorder in vibroacoustics rather means that mode amplitudes, considered
as random variables, are uncorrelated. This state is reached when no mode dominates the dynamics
of the system that is when the frequency response function is smooth. The modal overlap defined
as,

M = nηω, (13)

is a measure of the overlapping of successive modes in the frequency response function. Thus, the
criterion for disorder in SEA is,

M >> 1. (14)

The diffuse field assumption of SEA means that the vibrational energy density is homogeneous
and isotropic in each sub-system. But it has been remarked [7] that the assumption equivalent to
diffuse field in the modal approach of SEA is the equipartition of modal energy (the vibrational
energy is equally shared among all modes). The proportionality between the energy density and
the modal energy stems from the proportionality of the modal density of two-dimensional sub-
systems with the surface as in Eq. (2). But the modal energy plays the same role as the energy per
molecule in thermodynamics which is exactly the definition of the temperature times Boltzmann’s
constant. This is why the modal energy can be called the vibrational temperature (a general
demonstration of this fact is available in Refs. [43, 44]). Thus, the diffuse field assumption means
that the vibrational temperature is the same at any point of the sub-system or, in other words,
that the sub-system is in thermal equilibrium. To reach this equilibrium state, it is necessary that
rays are mixed. The general mathematical conditions under which a diffuse field can emerge are
studied in billiards theory [45]. But at least, rays must cross several times the sub-system before
to be attenuated. If m = ηω/cg designates the attenuation factor of wave per meter,

m̄ =
ηω

cg
l, (15)

can be called the normalized attenuation factor [46], l being the mean free path of the sub-system.
Its value must be low to ensure the mixing of rays that is the thermal equilibrium,

m̄ << 1. (16)
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Each sub-system is in thermal equilibrium. But two adjacent sub-systems may have different
vibrational temperatures. This is the assumption of local equilibrium. The same situation arises in
non-equilibrium thermodynamics. The notion of local temperature makes sense providing that a
local equilibrium is reached. The thermal energy flows higher temperature to lower temperature. In
SEA, the linearity of the net exchanged power with vibrational temperatures, Eq. (6), is simply the
expression of linearity between fluxes and forces in linear irreversible thermodynamics [47], ωηijni

being the appropriate transport coefficient. It is well-known in non-equilibrium thermodynamics
that the linearity of fluxes and forces is valid for systems which are not too far from equilibrium.
This is the light coupling assumption. In the context of SEA, the light coupling assumption means
that the flow of exchanged vibrational energy is small compared with the internal dissipation of
energy. This can be enunciated as ηij << ηi. Although some authors have studied the possibility
to extend SEA to strong coupling [16], the usual relationships for coupling loss factors are derived
under the light coupling assumption. Following Smith [48], the coupling strength is defined as
γij = ηij/ηi. In case of assembled plates, ηij is given by Eq. (7). Since the mean free path of
two-dimensional domain is l = πS/P where S is the area and P the perimeter of the domain, it
yields,

γij =
τijLij

m̄iPi
. (17)

The light coupling condition reads,
γij << 1. (18)

A complete transmission (τij = 1) over a small length in a large plate (Lij << Pi) leads to a light
coupling.

Indeed, the symmetric condition must also apply,

γji << 1. (19)

But the couple of conditions Eqs. (18, 19) are not independent. To check this assertion, let
substitute ηij = γijηi in Eq. (8) and let multiply both hand-sides by ω. The modal overlap as
defined in Eq. (13) then appears. It yields,

γijMi = γjiMj. (20)

The set of dimensionless parameters γij , γji, Mi and Mj is therefore dependent.

Some other assumptions of SEA are not directly taken into account in these criteria. The
most important of them is concerned with the nature of the excitation. It is commonly admitted
that excitations must be wide-band, spatially distributed and uncorrelated in SEA. The ”rain-on-
the-roof” excitation meets these conditions. However, SEA sometimes applies even for localized
excitations and the choice of the bandwidth ∆ω is rather important to ensure a small variance. In
some texts, ”rain-on-the-roof” excitation is not considered as an absolutely necessary assumption
but rather than a condition favourable to the establishment of diffuse field and small variance [15].

4 Space of dimensionless parameters

The purpose of this section is to apply the dimensional analysis [49] to exhibit the space of di-
mensionless parameters in which the validity domain of SEA must be delimited. The discussion
is conducted on a vibrating system made of n rectangular plates with length ai and a common
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width b. They are assumed to be coupled along their edges of length b and only the out-of-plane
vibration is considered (Fig. 1).

Let first discuss the case n = 1. The governing equation (Love’s plate equation [50]) for the
out-of-plane vibration is,

∆2vi − k4i (1− jηi)vi = fi, (21)

where the imaginary part−jηi is the contribution of damping to the wavenumber ki. The boundary
conditions are prescribed on the deflection, the rotation angle of section, the moment and the
transverse force at edges. Only two conditions are required at each edge. For instance, clamped
edges at x = 0 and x = ai,

vi(0, y) = vi(ai, y) = 0, (22)

∂vi
∂x

(0, y) =
∂vi
∂x

(ai, y) = 0. (23)

And simply supported edges at y = 0, y = b,

vi(x, 0) = vi(x, b) = 0, (24)

∂2vi
∂y2

(x, 0) + νi
∂2vi
∂x2

(x, 0) =
∂2vi
∂y2

(x, b) + νi
∂2vi
∂x2

(x, b) = 0. (25)

So, the only physical parameters of this set of equations are the wavenumber ki, the damping loss
factor ηi, the length ai, the width b, and the Poisson’s coefficients νi that is 5 physical parameters.
Their only physical unit is the length (the time and the mass do not appear in these parameters).
The theorem of Vaschy-Buckingham [51, 52] gives the number of dimensionless parameters of this
problem, 5− 1 = 4. These dimensionless parameters can be chosen arbitrarily provided that they
are independent. Among the possible choices, is the dimensionless wavenumber κi = kili/2π where
li = πaib/2(ai + b) is the mean free path (this is also the number of wavelengths per mean free
path), the shape ratio εi = (ai + b)/

√
πaib defined as the ratio between the perimeter of the plate

and that of a circle of the same area, the damping loss factor ηi and the Poisson’s coefficient νi.
This set of dimensionless parameters is well-suited to rewrite the governing equation (21) and the
related boundary conditions (22-25) in dimensionless form. As well, it will be called ’primary’
set of dimensionless parameters. But any other choice of independent dimensionless parameters is
possible. In particular, the set of dimensionless parameters of SEA introduced in previous section
is acceptable provided that a one to one map can be found,

κi, ηi, εi, νi −→ Ni,Mi, m̄i, νi. (26)

These relationships are easily found,

Ni = 2
√
2κ2

i ε
2
i , (27)

Mi = 4ηiκ
2
i ε

2
i , (28)

m̄i = πηiκi, (29)

νi = νi. (30)

Indeed, the Poisson’s coefficient remains unchanged in this transformation. The problem of a single
vibrating plate is mathematically fully determined by the only four dimensionless parameters N ,
M , m̄ and ν. We can admit that the Poisson’s coefficient is of a low importance in SEA. This is
a reasonable assumption since, excepted for non typical materials such as rubber, the Poisson’s
coefficient usually ranges from 0.2 and 0.3. Since SEA is a theory included in the Love’s theory
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Figure 1: Dimensional analysis on assembling of n rectangular plates of same width b and various
lengths ai and coupled along their edges of width b. Only the out-of-plane vibration is taken into
account.

of plate in the sense that equation of SEA can be derived from the governing equation of Love’s
plate, the validity domain of SEA is necessarily confined into the 3-dimensional space N , M , m̄.
The conditions (12), (14) and (16) give the boundary of the validity domain of SEA for a single
plate.

Let now consider the coupling between two adjacent rectangular plates of size ai × b. The
coupling conditions along the common edge of length b are the continuity of deflection and rotation
of section and the balance the moments and transverse forces. For instance, if the y-axis is chosen
along the common edge,

v1(0, y) = v2(0, y), (31)

∂v1
∂y

(0, y) =
∂v2
∂y

(0, y) (32)

D1

[
∂2v1
∂x2

(0, y) + ν1
∂2v1
∂y2

(0, y)

]
= D2

[
∂2v2
∂x2

(0, y) + ν2
∂2v2
∂y2

(0, y)

]
, (33)

D1

[
∂3v1
∂x3

(0, y) + ν1
∂3v1

∂y2∂x
(0, y)

]
= D2

[
∂3v2
∂x3

(0, y) + ν2
∂3v2

∂y2∂x
(0, y)

]
. (34)

Therefore, the bending stiffness D1 and D2 of plates are also relevant physical parameters. They
introduce the new unit Newton. The number of independent physical parameters is now 11 in-
cluding k1, k2, η1, η2, a1, a2, b ν1, ν2, D1 and D2. The number of dimensionless parameters is
therefore 11 − 2 = 9. Eight parameters are the previous ones, κi, εi, ηi and νi for i = 1, 2. One
additional dimensionless parameters is expected. One can choose the ratio of bending stiffness
D1/D2 or, equivalently, the transmission efficiency τ12 of the interface (ratio of transmitted power
and incident power of a plane wave with diffuse incidence). Thus, the set of ’primary’ dimensionless
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parameters is, κ1, η1, ε1, ν1, κ2, η2, ε2, ν2, τ12. The space of dimensionless parameters of SEA must
include the dimensionless parameters of isolated plates, N1, M1, m̄1, ν1, N2, M2, m̄2, ν2. One
additional dimensionless parameters must be prescribed for the coupling. Since γ12 and γ21 are
not independent (Eq. (20)), a single coupling strength, say γ12, can be retained. The one-to-one
map to seek is thus,

κ1, η1, ε1, ν1,κ2, η2, ε2, ν2, τ12,−→ N1,M1, m̄1, ν1, N2,M2, m̄2, ν2, γ12. (35)

Indeed, Eqs. (27-30) remain valid for i = 1, 2. The last relationship is,

γ12 =
τ12

πη1κ1
µ. (36)

where µ = b/2(a1 + b). Since ε1 = (a1 + b)/
√

πa1b, µ is a function of ε1 easily determined as,

1

µ
=

{
πε2 −

√
πε2(πε2 − 4) if b > a

πε2 +
√

πε2(πε2 − 4) if b < a
(37)

Omitting the Poisson’s coefficients, the validity domain of SEA is a subset of the 7-dimensional
space N1, M1, m̄1, N2, M2, m̄2, γ12. The limits of the SEA domain are given in Eqs. (12, 14, 16)
for each plate and Eqs. (18, 19) for the coupling. The first seven conditions are hyper-planes in
the 7-dimensional space, but the last condition (γ21 << 1) which can be expressed as,

γ12
M1

M2
<< 1. (38)

is a family of curves in the 7-dimensional space.

Finally, this result can be generalized to the case of n plates. The physical parameters are then,
ki, ηi, ai, νi and Di for i = 1...n that is 5 parameters per plate plus the width (the coupling length)
b that is 5n+ 1 physical parameters. The physical units are always length and force, the number
of dimensionless parameters is therefore 5n+ 1 − 2. The ’primary’ dimensionless parameters are
κi, ηi, εi, νi for each plate (this provides 4n dimensionless parameters) and the remaining ones
must be found among the transmission efficiencies τij . But the ratios Di/Dj are not independent
since Di/Dj = D1/Dj × Di/D1. The number of independent ratios Di/Dj is n − 1. Therefore,
a same number of τij must be retained as independent dimensionless parameters. For instance,
the sequence τi,i+1, i = 1...n − 1 can be chosen. This provides the additional n − 1 ’primary’
dimensionless parameters. The SEA dimensionless parameters indeed include those of isolated
plates, Ni, Mi, m̄i and νi, for i = 1...n. The other parameters stemming from the couplings are
γi,i+1 for i = 1...n− 1. The transformation law,

κi, ηi, εi, νi, τi,i+1 −→ Ni,Mi, m̄i, νi, γi,i+1. (39)

of the ’primary’ set of dimensionless parameters to the SEA set of parameters is constituted by
Eqs. (27-30) for i = 1...n and,

γi,i+1 =
τi,i+1

πηiκi
µ(εi). (40)

respectively for i = 1...n−1. The validity domain of SEA is confined into this (5n−1)-dimensional
space by Eqs. (12, 14, 16) for each plate and Eqs. (18, 19) for each coupling.
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5 Diagrams of validity

In this section, the validity conditions of SEA are clarified in the κ, η, ε-space of ’primary’ dimen-
sionless parameters.

In the case of a single plate, the space of dimensionless parameters has dimension 3. In the
N,M, m̄-space of SEA parameters, the conditions (12, 14, 16) define a domain limited by three
planes whose equations are N = 1, M = 1 and m̄ = 1. The validity domain of SEA delimited by
these three planes is shown in Fig. 2. A section along the N,M -plane is shown in Fig. 2(a), a
section along the m̄,M -plane in Fig. 2(b) and a section along the m̄,N -plane in Fig. 2(c). It is
clear that the validity domain of SEA is an unbounded domain in the N , M , m̄-space. But in the
κ, η, ε-space of ’primary’ dimensionless parameters, these three planes become three surfaces. By
virtue of Eqs. (27-30), the equations of the surfaces are,

κ2ε2 =
1

2
√
2
, (41)

ηκ2ε2 =
1

4
, (42)

ηκ =
1

π
, (43)

respectively for N = 1, M = 1 and m̄ = 1.

In the κ, η-plane, the condition N = 1 reads κ ∝ 1 that is a vertical line which position depends
on the value of ε. The condition M = 1 reads η ∝ 1/κ2 and the condition m̄ = 1 becomes η ∝ 1/κ
a hyperbolic line. The domain of validity is thus confined within the strip shown in Fig. 3(a). A
question is to check whether the top line m̄ = 1 and the bottom line M = 1 cross somewhere. If
the answer is yes, SEA validity would be confined below this frequency limit. But the top line
decreases less rapidly than the bottom line since the ratio (1/κ)/(1/κ2) goes to infinity, and it can
be concluded that it does not exist a frequency limit to SEA.

In the κ, ε-plane, the condition N = 1 leads to ε ∝ 1/κ, a hyperbolic line, the condition M = 1
also gives ε ∝ 1/κ but usually at a higher level since the proportionality coefficient is like 1/η,
and m̄ = 1 gives κ ∝ 1, a vertical line. A last condition ε > 1 is imposed by the definition of ε
which is always greater than unity (the perimeter of a circle is the lower than the one of any other
shape). The domain is shown in Fig. 3(b). The vertical line (m̄ = 1) imposes a upper frequency
limit. However, this does not contradict the previous observation. From Eq. (30), m̄ ∝ ηκ and an
increase of the frequency κ while maintaining η constant leads to an increase of m̄. This process
is shown in Figs. 4. The upper frequency in the κ, ε-plane then corresponds to the limit m̄ = 1.

In the η, ε-plane, the condition N = 1 gives ε ∝ 1 a horizontal line, the condition M = 1 gives
ε ∝ 1/

√
η and the condition m̄ = 1 leads to η ∝ 1 a vertical line. The physical limit ε > 1 also

holds. The relative position of the two horizontal lines m̄ = 1 and ε = 1 can be inverted. The
resulting domain is shown in Fig. 3(c).

The case of structures with several plates is straightforward. The space of dimensionless pa-
rameters has dimension 4n− 1 (omitting the Poisson’s coefficients) and the conditions of validity
are Eqs. (12-16) for each plate and (18, 19) for each coupling.

In the space of ’primary’ parameters, the equations of the varieties which delimit the validity
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Figure 2: Validity domain of SEA for a single plate in the N,M, m̄-space of SEA dimensionless
parameters. Sections of the domain on the (a); M,N -plane, (b); m̄,M -plane and (c); m̄,N -plane.
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domain of SEA are,

κ2
i ε

2
i =

1

2
√
2
, (44)

ηiκ
2
i ε

2
i =

1

4
, (45)

ηiκi =
1

π
, (46)

τijµ(εi)

ηiκi
= π, (47)

τijµ(εi)

ηiκi
× ηiκ2

i ε
2
i

ηjκ2
jε

2
j

= π, (48)

(49)

respectively for Ni = 1, Mi = 1, m̄i = 1, γij = 1 and γji = 1. Fortunately, none of these equations
involves all dimensionless parameters. It is therefore not useful to represent all sections.

In the κi, ηi-plane, the condition Ni = 1, Mi = 1 and m̄i = 1 have ever been discussed The
condition γij = 1 reads ηi ∝ 1/κi and the condition γji = 1 reads ηi ∝ κi. The hyperbolic
line γij = 1 confines the domain in the upper part of the κi, ηi-plane in the same way than the
condition Mi = 1. The second line imposes a upper frequency limit. But this does not imply a
frequency limit for SEA in the overall dimensionless space since the position of this limit in the
κi, ηi-plane depends on some other parameters in the same way than the frequency limit observed
in the κ, ε-plane of a single plate depends on the value of η. The domain is shown in Fig. 5 in the
case of a single coupling.

In each diagram, the limits γij = 1 and γji = 1 must be applied for each coupling with the
plate i. This can result in a large number of additional lines in the plane sections.

6 Numerical simulation

In order to illustrate the usefulness of validity diagrams, a numerical simulation is now presented on
a pair of coupled rectangular plates. Results of SEA are compared with those of a direct numerical
simulation.

The system is shown in Fig. 6. The two plates have length a and width b. Their exterior edges
are simply supported. The common edge of width b is either free or simply supported. The two
plates have same flexural wave speed, damping loss factor and dimensions a × b. Therefore, the
dimensionless numbers κi, ηi, εi, Ni, Mi and m̄i have identical values for both plates. But the
plates have different values of bending stiffness and mass per unit area (but with same flexural wave
speed) in order that the coupling edge is a discontinuity with transmission efficiency τij . From
reciprocity τ12 = τ21 and since ε1 = ε2, η1 = η2 and κ1 = κ2 it yields, γ12 = γ21. Plate 1 is excited
by an out-of plane force located at x0/a = 0.3 and y0/b = 0.25. The frequency response functions
(FRF) between force (input) and deflection vi but also space and time derivatives (up to order 2)
of deflection, are computed on a 30 × 30 grid of receiver points on each plate. These FRFs are
computed at 1000 or 2000 frequencies within an octave band. From these FRFs, values of energy
densities for a unit force are calculated at all frequencies and receiver points. The vibrational
energy of plates in the octave band is assessed by summing the contributions of all frequencies
(integration over frequency) and receiver points (integration over space).
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Figure 3: Validity domain of SEA for a single plate in the κ, η, ε-space of ’primary’ dimensionless
parameters. Sections of the domain on the (a); κ, η-plane, (b); κ, ε-plane and (c); η, ε-plane.
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Figure 4: The frequency limit in the κ, ε-plane stems from the fact that in the κ, η-plane, the
horizontal line η = cste encounters the limit m̄ = 1.
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Figure 5: Section in the κi, ηi-plane of the validity domain of SEA for coupled plates.

Figure 6: Numerical simulation on a pair of rectangular plates with same width b. All external
edges are simply supported and the coupling edge ensures continuity of deflection, rotation, moment
and force. The left plate is excited by a driven force (o), the receiver points (+) of plates belong
to a regular array centred on each plate.
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Table 1: Dimensionless parameters and results for the five simulations. Reference simulation (o),
high attenuation (&), low modal overlap (∇), low mode count (×), high coupling stenth (+).
Dimensionless wavenumber κ, damping loss factor η, shape ratio ε, mode count N , modal overlap
M , normalized attenuation factor m̄, transmission efficiency τ and coupling strength γ. Results of
direct numerical simulation: injected power in plate 1 P dns

1 = 1.0, dimensionless energies ωEdns
i in

plate i = 1, 2. Results of SEA: injected power P sea
1 , dimensionless energies ωEsea

i .
Simulation o & ∇ × +

κ 5.0 10.0 2.9 0.91 22.4
η 0.01 0.1 0.0001 0.08 0.0005
ε 1.13 1.13 1.96 1.96 1.13
τ 0.125 0.125 0.0012 0.68 0.163
N 90 360 90 9 1800
M 1.3 51 0.013 1 1.3
m̄ 0.16 3.14 0.001 0.23 0.035
γ 0.2 0.01 0.62 0.14 1.16

P dns
1 1.0 1.0 1.0 1.0 1.0

ωEdns
1 81.5 9.72 10025 10.74 1569

ωEdns
2 16.2 0.019 418 0.518 405

P sea
1 1.007 1.0007 0.891 1.348 0.996

ωEsea
1 86.4 9.91 6447 15.06 1297

ωEsea
2 14.3 0.097 2463 1.80 695

The direct numerical simulation is based on the solving of Eq. (21) for the plates. The boundary
conditions are simply supported Eqs. (24-25) at y = 0 and y = b, simply supported at x = 0 and
x = a1 + a2 and either free Eqs. (31-34) or simply supported at the interface x = a1. The solution
is developed as a Fourier’s series along the y-axis.

vi(x, y) =
∞∑

n=1

vi,n(x) sin(
nπy

b
), (50)

The complete description of this technique can be found in Appendix A of Ref. [46]. For the
present numerical simulations, the series has been truncated to 2000 terms.

The SEA computation is realized as follows. The injected power is,

P inj
1 =

|F |2

16
√
mD

. (51)

where F = 1 N is the excitation force, m the mass per unit area and D the bending stiffness. The
modal density is given by Eq. (2) and the coupling loss factors by Eq. (7). The SEA system is
Eq. (10).

Five numerical simulations have been realized. The respective dimensionless numbers are shown
in Tab. 1. They have been chosen as follows. A first simulation (symbol o) is done with dimen-
sionless numbers N , M and m̄ chosen in such a way that they are correct for SEA. They verify the
criteria (12), (14), (16), (18), (19). All subsequent simulations violate a criteria. The second simu-
lation (symbol &) has a large normalized attenuation factor m̄ > 1, the third simulation (symbol
∇) has a small modal overlap (M < 1), the fourth simulation (symbol ×) has a small number of
modes N = 9 and the fifth simulation (symbol +) has a strong coupling γ > 1. The positions
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of these five simulations are plotted in Fig. 7. In these diagrams, the validity domain of SEA is
delimited by the lines N = 20, M = 0.5 and m̄ = 1. Since the equations of these lines depend on
the value of ε, two diagrams have been plotted: Fig. 7(a) for ε = 1.13 and Fig. 7(b) ε = 1.96. The
position of symbols relative to these lines clearly show which assumption is violated.

At the interface, the coupling conditions are the followings: free conditions for o, &, ∇, × and
simply supported conditions for +.

Numerical results are presented in Tab. 1. The injected power of direct numerical simulation
is conventionally 1 W. It means that all results have been divided by the injected power actually
computed by direct numerical simulation. For instance, the value P sea

1 = 1.348 (simulation ×)
means that Eq. (51) over-estimates the actual injected power by 34.8%. The dimensionless energies
ωEi are also presented in Tab. 1. It can be checked that the power balance P1 = η(ωE1 + ωE2)
always applies for SEA but not for direct numerical simulation. The difference is due to numerical
approximations. Thus, the ratio η(ωEdns

1 + ωEdns
2 )/P dns

1 is a quality indicator of direct numerical
simulation. It has been maintained below 10% for all simulations, which is largely smaller than
the differences observable between direct numerical simulation and SEA.

Numerical results are shown in Fig. 8. The relative error between direct numerical simulation
and SEA is plotted for the power being injected by the driven force and the total vibrational
energies of plates 1 and 2. It is clear that the reference calculation (symbol o) shows a fine
agreement between SEA and direct numerical simulation for the three results. It means not only
that the injected power is well estimated by Eq. (51), but also that the power being exchanged
between the two plates is well estimated by Eq. (6). When the number of modes is low (simulation
×), the SEA injected power given by Eq. (51) is a poor estimation of actual injected power. For
the four simulations &, ∇, × and +, the energy of plate 2 is not well estimated. The discrepancy
is large (from 2.5 dB to 8 dB) and cannot be only explained by the error on the injected power.
In these cases, the exchanged power given in SEA by Eq. (6) is a poor estimation of the power
actually exchanged. Also interesting is the last simulation (+) with strong coupling (γ = 1.16). The
assumption γ << 1 is violated which results in a bad estimation of energy 2. But, the discrepancy is
not so high compared with other simulations. The assumption of light coupling seems to be robust
in this case. This phenomenon, which is something well-known by ’practitioners’ of SEA, can be
explained by the fact that when the coupling is strong, the equilibrium between sub-systems is
rapidly reached. Therefore, the vibrational energies are very little sensitive to the quality of Eq. (9)
since they are rather governed by the equality Ti = Tj which is roughly sufficient to obtain a good
result.

7 Complex structures

One would wonder whether the previous analysis applies for complex structures. The previous
analysis is limited to rectangular plates with a common width b. To relax the assumption of
common width, it is necessary to introduce several additional parameters, the width bi of plate i
and the coupling length Lij between plates i and j. The physical parameters are now ki, ηi, ai, bi,
νi and Di for i = 1...n and Lij for all couplings. Their number 6n+n(n− 1)/2 and the number of
physical units is always 2. The number of dimensionless parameters is therefore 6n+n(n−1)/2−2
to completely describe the structure.

In the same way, if the plates are no longer assumed to be rectangular but, for instance,
polygonal, further lengths and angles are necessary to fully describe the geometry. This results in
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Figure 7: Validity domain of SEA for a pair of coupled rectangular plates. The lines m̄ = 1 (- -),
M = 0.5 (-.-), N = 20 (–) are plotted in the κ, η-cut of ’primary’ dimensionless space in cases (a),
ε = 1.13 and (b), ε = 1.96. Numerical simulations are positioned in the reference case (o), for large
attenuation (&), low modal overlap (∇), few modes (×) and strong coupling (+).
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Figure 8: Relative errors(%) of SEA results compared with the direct numerical simulation. Errors
on energy of plate 1 (black), energy of plate 2 (grey), injected power (white). The reference situation
(o) and strong coupling (+) lead to good results on injected power as well as vibrational energies.
But, large attenuation (∆), low modal overlap (∇) and low number of modes (x) show discrepancies
between SEA and direct numerical simulation.

additional physical parameters, which, in turn, will increase the number of dimensionless parame-
ters.

But the complexity not only appear in the geometry, but also in the physical properties of
the structure. Stiffeners, ribs, joints, attached equipments, varying thickness and so on, are some
examples of what are actual structures. Each time, complexity results in a greater number of
dimensionless parameters necessary to fully describe the structure from the mathematical point of
view.

But the question is now to know if these additional parameters are necessary from the practical
point of view. In the case of complex geometry, the additional parameters carry information only
on geometry. But, it is well-known that the state of diffuse field does not depend on the detail of
geometry. The theory of mixing billiards [45] establishes the conditions under which a geometry
leads to diffuse field and, in the same time, gives some counter-examples of geometries which never
lead to diffuse field. But, generally speaking, geometrical complexity is a property favourable for
diffuse field. The more complex is the shape of billiards, the greater is the chance to have diffuse
field. Thus, one can expect that these additional dimensionless parameters are not so important
in SEA.

The case of structural complexity is different. Stiffeners, ribs and other structural elements
modify frequency and shape of eigenmodes. As well, they can have a strong influence on the
modal density and/or the modal overlap. This can drastically modify SEA results. But it is well-
known that friction in joints can be the most important cause of dissipation of vibrational energy.
Once again, this can modify SEA results. More important, a strong structural modification can
also affect the homogeneity of mode groups. This would question the splitting of the structures
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into sub-systems. And the SEA model itself could become irrelevant.

So, in principle, the dimensional analysis performed in this paper only applies for the case of
assembled rectangular plates. Its application to more complex geometries seems to be reasonable.
If this the case, the numbers Ni, Mi and m̄i for i = 1...n and γi,i+1 for i = 1...n − 1 constitute
a set of 4n − 1 independent dimensionless parameters in which SEA validity domain is included.
But for structural complexity, the analysis must be re-done and each particular case could give a
different set of dimensionless parameters. The only certainty is that the numbers Ni, Mi m̄i, γi,i+1

are necessary but they are not sufficient.

8 Conclusion

In this paper, the validity of SEA has been examined from the dimensional analysis point of view.
Four conditions of validity have been clarified in the space of dimensionless parameters given by
the dimensional analysis. The equivalence between two sets of dimensional parameters has been
established. The ’primary’ set of parameters is frequency κ, damping loss factor η, shape ε and the
transmission efficiency τ while the set of SEA parameters is the mode count N , the modal overlap
M , the normalized attenuation factor m̄ and the coupling strength γ.

The conditions of validity drawn in the plane sections of the ’primary’ space give the diagrams
of validity. Although theoretically an infinite number of sections is necessary to entirely define the
domain, the section along the κi, ηi-plane is the most interesting one for at least two reasons. First
of all, when analysing and actual structures, engineers who want to control the energy flow usually
add damping on some components. And to know the low frequency limit of SEA is indeed the
most important concern to apply SEA with success. Secondly, the five surfaces associated with
the conditions of validity cut the κi, ηi-plane. Therefore, all the information is available on this
diagram.

It has not been proved that these four conditions are the only ones to entirely define the validity
domain of SEA. Some other assumptions such as the nature of excitation, the problem of variance
in SEA have not been discussed in this text. For instance, to have a small variance on vibrational
energies can be considered as an additional assumption of SEA. But a direct numerical simulation of
variance by Monte Carlo’s method would require to increase the number of physical parameters (for
instance by considering < k > and var(k) instead of only k) and therefore to add a dimensionless
parameter (that could be the statistical overlap [15] in this case). It is also possible that further
assumptions of SEA will be discovered in future. But anyway, these additional assumptions will
lead to additional lines in the diagrams presented in this paper.
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