

# Validation of an optical surface plasmon resonance biosensor assay for screening (fluoro)quinolones in egg, fish, and poultry meat

Anne-Catherine Huet, Caroline Charlier, Stefan Weigel, Samuel Godefroy,

Philippe Delahaut

## ▶ To cite this version:

Anne-Catherine Huet, Caroline Charlier, Stefan Weigel, Samuel Godefroy, Philippe Delahaut. Validation of an optical surface plasmon resonance biosensor assay for screening (fluoro)quinolones in egg, fish, and poultry meat. Food Additives and Contaminants, 2009, 26 (10), pp.1341-1347. 10.1080/02652030903013328 . hal-00573907

# HAL Id: hal-00573907 https://hal.science/hal-00573907

Submitted on 5 Mar 2011

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

#### **Food Additives and Contaminants**



### Validation of an optical surface plasmon resonance biosensor assay for screening (fluoro)quinolones in egg, fish, and poultry meat

| Journal:                         | Food Additives and Contaminants                                                                                                                                                                                                                                                                      |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID:                   | TFAC-2009-069.R1                                                                                                                                                                                                                                                                                     |
| Manuscript Type:                 | Original Research Paper                                                                                                                                                                                                                                                                              |
| Date Submitted by the<br>Author: | 20-Apr-2009                                                                                                                                                                                                                                                                                          |
| Complete List of Authors:        | Huet, Anne-Catherine; CER Groupe, santés animale et humaine<br>Charlier, Caroline; CER Groupe, santés animale et humaine<br>Weigel, Stefan; RIKILT, Institute of Food Safety<br>Godefroy, Samuel; Health Canada, Food Research Division<br>Delahaut, Philippe; CER Groupe, Santés animale et humaine |
| Methods/Techniques:              | Screening - biosensor                                                                                                                                                                                                                                                                                |
| Additives/Contaminants:          | Veterinary drug residues - fluoroquinolones                                                                                                                                                                                                                                                          |
| Food Types:                      | Animal products – meat, Eggs, Fish                                                                                                                                                                                                                                                                   |
|                                  |                                                                                                                                                                                                                                                                                                      |



| 1  | Validation of an optical surface plasmon resonance biosensor                                                      |
|----|-------------------------------------------------------------------------------------------------------------------|
| 2  | assay for screening (fluoro)quinolones in egg, fish, and poultry                                                  |
| 3  | meat                                                                                                              |
| 4  |                                                                                                                   |
| 5  | AC. HUET <sup>1</sup> , C. CHARLIER <sup>1</sup> , S. WEIGEL <sup>2</sup> , S. BENREJEB GODEFROY <sup>3</sup> and |
| 6  | Ph. DELAHAUT <sup>1</sup>                                                                                         |
| 7  |                                                                                                                   |
| 8  | <sup>1</sup> CER Groupe, Santés animale et humaine, Rue Point du Jour 8, 6900 Marloie,                            |
| 9  | Belgium                                                                                                           |
| 10 | <sup>2</sup> RIKILT – Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE                              |
| 11 | Wageningen, The Netherlands                                                                                       |
| 12 | <sup>3</sup> Food Research Division, Health Canada, Ottawa, Ontario, Canada, K1A 0L2                              |
|    |                                                                                                                   |

### 13 Abstract

| 14 | A surface plasmon resonance biosensor immunoassay has been developed for            |
|----|-------------------------------------------------------------------------------------|
| 15 | multi-residue determination of 13 (fluoro)quinolone antibiotics in poultry meat,    |
| 16 | egg, and fish. The following performance characteristics were determined            |
| 17 | according to the guidelines laid down for screening assay validation in the         |
| 18 | European Decision 2002/657/EC: detection capability, specificity/selectivity,       |
| 19 | decision limit, repeatability, ruggedness, and stability. The detection capability  |
| 20 | estimated for norfloxacin, the reference fluoroquinolone, was below 0.5, 1, and 1.5 |
| 21 | ng $g^{-1}$ for poultry meat, egg and fish respectively. The screening assay proved |
| 22 | specific and showed satisfactory sensitivity, below the MRL levels even though      |
| 23 | flumequine and oxolinic acid had lower cross-reactivities. A wide range of non-     |
| 24 | MRL substances were also detected at concentrations below 10 ng g <sup>-1</sup> .   |
| 25 | Repeatability was good with both intra-assay and inter-assay coefficients of        |
| 26 | variation < 6 % and ruggedness was also demonstrated.                               |
| 27 |                                                                                     |

**Keywords:** quinolones, biosensor, surface plasmon resonance, validation

### 29 Introduction

| 30 | Over the last few decades, consumers, regulators, and industry have been very        |
|----|--------------------------------------------------------------------------------------|
| 31 | concerned about the quality and safety of food. Several crises, mainly of animal     |
| 32 | origin, have broken out in the last 20 years, causing a decline of consumption of    |
| 33 | certain foodstuffs. To prevent such crises in the future and to ensure that food is  |
| 34 | safe for consumers, effective monitoring is necessary. This concern has been         |
| 35 | integrated into a European project aiming to develop new technologies to screen      |
| 36 | for multiple chemical contaminants in foods ( <u>http://www.biocop.org/</u> ). Among |
| 37 | these contaminants, fluoroquinolones (FQs) have been chosen as one of the            |
| 38 | priority residue groups.                                                             |

FQs constitute an entirely synthetic class of antibiotics that have found wide application in both human and veterinary clinical practice. The widespread use of FQs in agriculture has resulted in the potential presence of residues of these compounds in foodstuffs of animal origin. In parallel to exposure to low levels of these compounds, an upsetting increase in resistant human pathogens has been observed. This constitutes a public health hazard, primarily through the increased risk of treatment failure (Sarközy, 2001). The European Commission has thus established maximum residue levels (MRLs) for various FQs in different tissues (EMEA, 1998-2002). Rapid diagnostic methods for screening for the presence of all FQs in animal products are therefore needed for effective control, i.e. to ensure the correct use of these antibiotics.

52 Recently, our team developed a generic immunoassay based on surface plasmon

| 53 | resonance (SPR) biosensor technology for a set of 13 (fluoro)Qs in three matrixes           |
|----|---------------------------------------------------------------------------------------------|
| 54 | (Huet et al., 2008). The current paper describes the validation of this qualitative         |
| 55 | screening assay according to the criteria specified in European Commission                  |
| 56 | Decision 2002/657/EC (EEC, 2002). The validation parameters                                 |
| 57 | specificity/selectivity, decision limit (CC $\alpha$ ), detection capability (CC $\beta$ ), |
| 58 | repeatability, ruggedness, and stability are presented in this work. In the literature,     |
| 59 | two main references have been reported which dealt with validation of a                     |
| 60 | multiresidual method by SPR biosensor (Traynor et al., 2003 and Gaudin et al.,              |
| 61 | 2007).                                                                                      |
| 62 |                                                                                             |
| 63 | Materials and methods                                                                       |
| 64 | Apparatus and reagents                                                                      |
| 65 | The Optical SPR Biosensor System Biacore Q and HBS-EP buffer were obtained                  |
| 66 | from Biacore AB (Uppsala, Sweden).                                                          |
| 67 | Sarafloxacin, ofloxacin, flumequine, norfloxacin, ciprofloxacin hydrochloride,              |
| 68 | oxolinic acid, lomefloxacin, enoxacin, and nalidixic acid were provided by Sigma            |
| 69 | (St Louis, MO, USA). Enrofloxacin was obtained from Bayer (Leverkusen,                      |
| 70 | Germany), difloxacin hydrochloride from Chemos GmbH (Regenstauf, Germany),                  |
| 71 | pefloxacin from Rhone Poulenc (Vitry sur Seine, France), danofloxacin from                  |
| 72 | Pfizer Inc (New York, USA), and marbofloxacin was kindly provided by UBE                    |
| 73 | Europe (Lure, France). The related compounds nicotinic acid, nicotinamide, and              |
| 74 | ethoxyquin were purchased from Sigma-Aldrich (St Louis, MO, USA).                           |
| 75 | Acetonitrile was provided by Biosolve (Valkenswaard, the Netherlands); hexane               |
| 76 | from Merck (Haar, Germany); sodium chloride, sodium hydroxide, di-sodium                    |
| 77 | hydrogen phosphate, and potassium dihydrogen phosphate from VWR                             |

| 78  | International (Leuven, Belgium); HPLC-grade water from Acros Organics (Geel,                   |
|-----|------------------------------------------------------------------------------------------------|
| 79  | Belgium).                                                                                      |
| 80  | Antibodies and core-FQ sensor chip preparation                                                 |
| 81  | The polyclonal antibodies raised against norfloxacin hapten-flumequine-BSA                     |
| 82  | were produced in our animal facilities. They were purified by affinity                         |
| 83  | chromatography on a Protein A-Sepharose column (Amersham Biosciences,                          |
| 84  | Belgique) and then concentrated with a centricon (with a molecular weight cut-off              |
| 85  | of 30,000) purchased from Millipore (Brussels, Belgium). Antibody concentration                |
| 86  | was measured by the Bio-Rad protein assay (Bio-Rad Laboratories, Hemel                         |
| 87  | Hempstead, UK). Antibody stock solution was diluted 1/4 (v/v) with HBS-EP                      |
| 88  | buffer just before use.                                                                        |
| 89  |                                                                                                |
| 90  | The core-FQ derivative was immobilised by a standard amine-coupling procedure,                 |
| 91  | it was synthesized from starting product 6-fluoro-4-oxo-1,4-dihydro-3-                         |
| 92  | quinolinecarboxylic acid (Apollo Scientific Limited, Bredbury, UK) on which a 3-               |
| 93  | aminopropyl was added at position 1. Between analyses the chips were stored over               |
| 94  | desiccant at 4°C in a sealed container.                                                        |
| 95  |                                                                                                |
| 96  | The full antibody production and FQ derivative immobilisation protocols have                   |
| 97  | been described in a previous publication (Huet et al., 2008).                                  |
| 98  |                                                                                                |
| 99  | Preparation of standard curves in matrixes                                                     |
| 100 | A stock solution of norfloxacin at 100 $\mu$ g mL <sup>-1</sup> was prepared in methanol. From |
| 101 | this solution, spiking solutions were prepared in HBS-EP buffer. A set of five                 |
| 102 | matrix-matched standards at 0.1, 0.5, 1, 2.5 and 10 ng $g^{-1}$ (poultry meat and egg)         |
|     |                                                                                                |

| 4         |  |
|-----------|--|
| 4         |  |
| 5         |  |
| 6         |  |
| 7         |  |
| 0         |  |
| 0         |  |
| 9         |  |
| 10        |  |
| 11        |  |
| 10        |  |
| 12        |  |
| 13        |  |
| 14        |  |
| 15        |  |
| 16        |  |
| 10        |  |
| 17        |  |
| 18        |  |
| 19        |  |
| 20        |  |
| 21        |  |
| ∠ I<br>00 |  |
| 22        |  |
| 23        |  |
| 24        |  |
| 25        |  |
| 20        |  |
| 20        |  |
| 27        |  |
| 28        |  |
| 29        |  |
| 30        |  |
| 30        |  |
| 31        |  |
| 32        |  |
| 33        |  |
| 34        |  |
| 25        |  |
| 35        |  |
| 36        |  |
| 37        |  |
| 38        |  |
| 30        |  |
| 39        |  |
| 40        |  |
| 41        |  |
| 42        |  |
| 43        |  |
| 11        |  |
| 44        |  |
| 45        |  |
| 46        |  |
| 47        |  |
| 48        |  |
| 40        |  |
| 49        |  |
| 50        |  |
| 51        |  |
| 52        |  |
| 52        |  |
| 55        |  |
| 54        |  |
| 55        |  |
| 56        |  |
| 57        |  |
| 50        |  |
| 50        |  |
| 59        |  |
| 60        |  |

| 103 or 0.1, 1, 2.5, 5 and 100 ng g | <sup>1</sup> (fish) were prepared by fortifying blank extracts. |
|------------------------------------|-----------------------------------------------------------------|
|------------------------------------|-----------------------------------------------------------------|

- 104 Duplicate injections at each concentration were performed and the mean response
  105 was used to construct a calibration curve.
- 106 *Extraction of samples*
- 107 *Egg and poultry meat:* 2g homogenised muscle or whole egg were extracted with
- 108 8 mL acetonitrile. Each tube was immediately vortexed before vigorous head-
- 109 over-head shaking for 10 min. After centrifugation, all of the supernatant was
- 110 evaporated to dryness. The residue was reconstituted in 1 mL PBS pH 7.4 and
- 111 mixed. Then 1 mL hexane was added and the tubes were vortexed. The sample
- 112 was centrifuged and the hexane layer and any traces of emulsion at the interface
- 113 were removed. The washing step was repeated once again and the reconstituted
- 114 sample was quickly vortexed and centrifuged just before application to the 96-well
- 115 plate.
  - *Fish:* as above except that only a 2-mL aliquot of the supernatant was transferred
    into a new tube and evaporated to dryness.
  - 118 Sample analysis
- 119 Antiserum freshly diluted in HBS-EP buffer was mixed 25% : 75% with sample
- 120 extract and injected for 210 seconds over the sensor chip surface at a flow rate of
- 121  $25\mu l \text{ min}^{-1}$ . The chip surface was regenerated between cycles with a 30-second
- pulse of 10mM NaOH prepared from 1M NaOH with HPLC grade water at a flow
  rate of 10 µl min<sup>-1</sup>.
  - 124 *Method validation*
- 125 Validation of our SPR biosensor method was conducted in accordance with table 9
- 126 of the document of European Commission Decision, 20002/657/EC (EEC, 2002).

#### **Food Additives and Contaminants**

| 127 | Specificity means the ability of a method to distinguish between the analyte being                    |
|-----|-------------------------------------------------------------------------------------------------------|
| 128 | measured and other substances. In keeping with the EU Decision requirements,                          |
| 129 | two approaches were used to test this aspect. Firstly, 20 blank samples from                          |
| 130 | different origins of each of the three studied matrixes (egg, poultry meat, and fish)                 |
| 131 | were analysed by the biosensor procedure to detect the presence of possible                           |
| 132 | interferences from endogenous substances and matrix constituents. Secondly,                           |
| 133 | cross-reactivity (CR) profiles were determined for a range of potentially                             |
| 134 | interfering substances by spiking blank samples at relevant concentration (1000 ng                    |
| 135 | $g^{-1}$ ) with ethoxyquin, nicotinamide, and nicotinic acid considered as FQ analogues.              |
| 136 | The CR profile of the polyclonal antibody was also determined for a range of                          |
| 137 | common (fluoro)Qs. Calibration curves were prepared in each matrix using the                          |
| 138 | compounds of interest in the range 0-1000 ng $g^{-1}$ (0, 0.25, 1, 2.5, 10, 25, 100, and              |
| 139 | 1000). The CR was calculated from the relevant calibration curves as $IC_{50}$                        |
| 140 | (norfloxacin)/ $CR_{50}$ (competitor) x 100, where IC <sub>50</sub> (inhibitory concentration) is the |
| 141 | concentration at midpoint of the standard curve and $CR_{50}$ is the concentration of                 |
| 142 | competitor required to cause the same decrease in signal as obtained with                             |
| 143 | norfloxacin used at its $IC_{50}$ concentration. The calculations were done with the                  |
| 144 | BIAevaluation software provided by Biacore AB (Uppsala, Sweden).                                      |
| 145 |                                                                                                       |
| 146 | The detection capability $CC\beta$ was determined for the reference molecule                          |
| 147 | norfloxacin. According to the Commission Decision, in the case of substances for                      |
| 148 | which no permitted limit has been established, where no quantitative results are                      |
| 149 | available (i.e. qualitative screening), the $CC\beta$ can be determined by investigation              |
| 150 | of fortified blank material at and above the decision limit (CC $\alpha$ ). In this case the          |
| 151 | concentration level at which only $\leq 5\%$ false compliant results remain equals the                |

#### **Food Additives and Contaminants**

| 152 | CC $\beta$ . In practice, the CC $\beta$ was chosen as the lowest tested fortification level |
|-----|----------------------------------------------------------------------------------------------|
| 153 | giving no negative result in an analysis of 20 spiked blanks. This decision should           |
| 154 | avoid the problem of false negatives. At least twenty negative samples of fish,              |
| 155 | egg, and chicken muscle were fortified with norfloxacin at 1.5, 1, and 0.5 ng $g^{-1}$       |
| 156 | respectively, and then assayed in the biosensor assay.                                       |

For the repeatability step, a standard curve and six samples fortified with norfloxacin at the corresponding  $CC\beta$  value were prepared in each studied matrix, and then samples were extracted and injected. This experiment was realized three times in three days, giving intra- and interday variability. The detected concentration of each spiked sample was calculated as were the mean concentrations, the standard deviations (STDEVPA), and the coefficients of

- 164 variation (CVs).

To prove the ruggedness of the developed SPR-based FQ assay, the same experiment was performed three times by changing one factor per experiment, namely (i) the pH of the buffer (phosphate-buffered saline, PBS) in which dried residues were reconstituted: pH 6.4 instead of PBS pH 7.4; (ii) the operator; (iii) the time of evaporation (it was doubled). Each experiment was conducted as follows: one calibration curve of norfloxacin was extracted simultaneously with five blank samples of different origins and five blank samples fortified with norfloxacin at its  $CC\beta$  value in the matrix used. The detected concentration of each spiked sample and each known negative sample was calculated for the egg, fish, and chicken muscle matrix.

| 177 | Results | and | discussion |
|-----|---------|-----|------------|
|-----|---------|-----|------------|

| 178 | As explained by Spinks in 2000, the current need is to develop assays for more       |
|-----|--------------------------------------------------------------------------------------|
| 179 | than one analyte per test and to increase sample throughput. Progress in             |
| 180 | immunoassay development is constrained by the availability of antibodies with        |
| 181 | appropriate affinity and specificity characteristics. It was a real challenge to     |
| 182 | develop a single efficient biosensor immunoassay for the entire class of FQ          |
| 183 | antibiotics. Four immunogens and one engineered antibody were synthesised, and       |
| 184 | three different FQ derivatives were immobilised on the sensor chip surface. Huet     |
| 185 | et al. (2008) described all the tested approaches in detail, revealing for the first |
| 186 | time the new concept of the bi-active antibody. The most difficult aspect of         |
| 187 | development was taking into account the fact that some substances have different     |
| 188 | MRLs, others have no MRLs, and the use of some is prohibited in animals from         |
| 189 | which eggs are produced for human consumption.                                       |
|     |                                                                                      |

All samples were determined free of FQ residues by LC-MS/MS before being used in the biosensor procedure. One norfloxacin calibration curve was prepared and extracted for each experiment of the validation study (see experimental section). The midpoints of all these standard curves were evaluated with the BIAevaluation software and compared with the expected values, midpoints at about 1, 1.5, and 3 ng  $g^{-1}$  having been previously determined for poultry muscle, egg, and fish, respectively. All IC<sub>50</sub> values obtained in the validation study were in keeping with the values just mentioned since they ranged from 0.8 to 1.2 ng  $g^{-1}$  for poultry, from 0.9 to 2 ng  $g^{-1}$  for egg and from 2.6 to 4.1 ng  $g^{-1}$  for fish. 

201 Specificity/selectivity

| 202 | The specificity of the entire procedure was investigated against the following             |
|-----|--------------------------------------------------------------------------------------------|
| 203 | quinolones: norfloxacin, flumequine, enrofloxacin, ciprofloxacin, sarafloxacin,            |
| 204 | pefloxacin, enoxacin, difloxacin, lomefloxacin, danofloxacin, ofloxacin,                   |
| 205 | marbofloxacin, and oxolinic acid. The calibrants selected for the test were added          |
| 206 | at six levels concentration. The CR of the binding protein used in the assay is            |
| 207 | shown in table 1. The specificity of the antibody towards norfloxacin is the 100%          |
| 208 | reference. It was confirmed that the selected antibody could detect 11                     |
| 209 | fluoroquinolones with high cross-reactivities ranging from 26 to 183 %. Lower              |
| 210 | cross-reactions (between 1 and 14 %) were observed for flumequine and oxolinic             |
| 211 | acid. Although low, these cross-reactivities remain acceptable, as the European            |
| 212 | Union has established a maximum residue limit (MRL) at 100 ng g <sup>-1</sup> for oxolinic |
| 213 | acid in fish and chicken muscle, at 600 for flumequine in fish, and at 400 ng $g^{-1}$ for |
| 214 | flumequine in poultry muscle. The cross-reactivity profile was already presented           |
| 215 | in the previous article (Huet et al., 2008), the results were compared and some            |
| 216 | differences appeared. The assay's sensitivity was better with lower $IC_{50}$ values in    |
| 217 | this work. The two CR profiles for oxolinic acid were quite different, much lower          |
| 218 | here. These differences are explained by the use of an antibody purified on a              |
| 219 | protein A-Sepharose column in this publication whereas a crude antibody was                |
| 220 | working last year. On the other hand, there was no measurable cross-reactivity             |
| 221 | with the common FQ analogues ethoxyquin, nicotinamide, and nicotinic acid at               |
| 222 | high concentration.                                                                        |
| 223 |                                                                                            |
| 224 | The specificity of the SPR assay was also demonstrated after analysis of 20 known          |
| 225 | negative poultry meat, egg, and fish samples. These showed no interference, when           |

analyzed against a corresponding matrix curve. Determination of the CCα is not

#### **Food Additives and Contaminants**

| 227 | required by document 2002/657/EC but can easily be calculated from the data               |
|-----|-------------------------------------------------------------------------------------------|
| 228 | obtained so far. The decision limit CC $\alpha$ , determined as the concentration         |
| 229 | corresponding to the mean response for negative samples minus three times the             |
| 230 | standard deviation, was 0.13 (poultry meat), 0.29 (egg), and 0.31 ng $g^{-1}$ (fish).     |
| 231 |                                                                                           |
| 232 | Detection capabilities                                                                    |
| 233 | To calculate the detection capability (CC $\beta$ ), 20 known negative samples were       |
| 234 | spiked with the reference molecule norfloxacin, chosen because the polyclonal             |
| 235 | antibody used as binding protein was raised against a norfloxacin hapten.                 |
| 236 | Norfloxacin is also commonly used for treatment of animals in many countries              |
| 237 | (Webber and Piddock, 2001) and very often mentioned in the literature. The                |
| 238 | negative samples of fish, egg, and chicken muscle were fortified with norfloxacin         |
| 239 | at 1.5, 1 and 0.5 ng $g^{-1}$ respectively and then assayed in the biosensor assay. All   |
| 240 | fortified samples were declared positive (above their respective cut-off values).         |
| 241 | The CC $\beta$ of the assay thus proved inferior to the tested level of fortification. To |
| 242 | ascertain if a sample was negative or not, the cut-off level for each matrix was          |
| 243 | determined from the graphs presented in figure 1, which combine the calculated            |
| 244 | mean norfloxacin concentrations for blank samples and for samples spiked at the           |
| 245 | appropriate $CC\beta$ level. The means calculated for blank and fortified samples were    |
| 246 | found to be different and the variability of known negative samples was much              |
| 247 | lower than that of samples containing norfloxacin. To limit the number of pseudo-         |
| 248 | false positives, all cut-off levels were set near the mean of the spiked samples, as      |
| 249 | in the case of MRL-regulated compound/matrix combinations, a considerable rate            |
| 250 | of pseudo-false positive results can be generated; for instance samples containing        |
| 251 | FQs, but below the MRL. In fact, this high sensitivity of the assay is essential to       |

| 252 | detect flumequine and oxolinic acid at satisfactory levels even if it implies the                              |
|-----|----------------------------------------------------------------------------------------------------------------|
| 253 | acceptance of a certain pseudo-false positives rate. This aspect is well-known in                              |
| 254 | the field of immunochemical screening assays using a generic antibody                                          |
| 255 | (Scortichini et al., 2009). The cut-off values were set at 1.5, 1, and 0.5 ng $g^{-1}$ for                     |
| 256 | fish, egg, and poultry meat respectively. More precisely, when the calculated                                  |
| 257 | concentration of an unknown sample was below the corresponding cut-off level,                                  |
| 258 | this sample was considered negative, but when it was above or equal to the cut-off                             |
| 259 | level, the sample was considered suspect and to require analysis by a confirmatory                             |
| 260 | method for identifying and quantifying (fluoro)Qs.                                                             |
| 261 |                                                                                                                |
| 262 | The determination of cross-reactivities with other (fluoro)Qs (specificity/                                    |
| 263 | selectivity section) then enabled us to calculate the detection capabilities of all                            |
| 264 | investigated compounds. This was done for each matrix according to the following                               |
| 265 | formula: CC $\beta$ compound = (CC $\beta$ norfloxacin / corresponding CR) X 100. The                          |
| 266 | obtained values are presented in table 2. They range from 0.9 to 3.7 ng $g^{-1}$ for the                       |
| 267 | fish matrix, from 0.5 to 2.2 ng g <sup>-1</sup> for the egg matrix, and from 0.4 to 1.9 ng g <sup>-1</sup> for |
| 268 | chicken muscle, except for flumequine and oxolinic acid which show higher                                      |
| 269 | values due to their lower specificity. The assay could nevertheless detect both                                |
| 270 | residues at or below their half-MRL levels. These results are satisfactory, since the                          |
| 271 | $CC\beta$ values for all (fluoro)Qs were well below the established MRL levels set by                          |
| 272 | EMEA for specified analyte/matrix combinations (table 1). Moreover, the assay                                  |
| 273 | proved sensitive enough to detect also the non-MRL substances at levels below 10                               |
| 274 | $ng g^{-1}$ .                                                                                                  |
| 275 |                                                                                                                |
|     |                                                                                                                |

*Repeatability* 

#### **Food Additives and Contaminants**

| 277 | As explained in the experimental section, six replicate samples were spiked with           |
|-----|--------------------------------------------------------------------------------------------|
| 278 | norfloxacin at the appropriate $CC\beta$ level and then extracted simultaneously with      |
| 279 | one calibration curve. The experiment was performed three different times for              |
| 280 | each matrix of interest. The intra- $(n = 6)$ and interday variations $(n = 3)$ calculated |
| 281 | are listed in tables 3 and 4, respectively. CVs varied from 2.8 to 5.8 $\%$ under          |
| 282 | intraday repeatability-testing conditions and from 1.9 to 5.7 % under interday             |
| 283 | repeatability-testing conditions. Since a CV of 15% was set for the desired                |
| 284 | repeatability, these repeatability results are satisfactory.                               |
| 285 |                                                                                            |
| 286 | Ruggedness                                                                                 |
| 287 | A series of key parameters (the pH of reconstitution buffer (PBS), the operator,           |
| 288 | and the duration of evaporation) were investigated. Usually, reconstitution of             |
| 289 | dried residues after evaporation is carried out in 1 ml PBS adjusted to pH 7.4. In         |
| 290 | this experiment 16 samples per matrix, corresponding to 6 calibration points and           |
| 291 | 10 known negative samples of which 5 were fortified at the corresponding $CC\beta$         |
| 292 | level were reconstituted in 1 ml PBS at pH 6.4. All blank samples were declared            |
| 293 | negative because the results were lower than the respective cut-off levels (0.5, 1,        |
| 294 | and 1.5 ng $g^{-1}$ respectively in poultry meat, egg, and fish). The result for one       |
| 295 | sample of chicken muscle, however, was very near to the cut-off value for this             |
| 296 | matrix. This suggests that reconstitution in PBS with a small change in pH could           |
| 297 | generate a false positive in this matrix. All spiked samples were declared positive,       |
| 298 | giving values slightly higher than with the unchanged protocol.                            |
| 299 |                                                                                            |
| 300 | A different operator carried out all the steps described under the instructions for        |
| 301 | use of the prototype kit: preparation of calibrant solutions and spiking solutions,        |

| 302 | fortification, extraction, preparation of solutions for the run, running assay. The  |
|-----|--------------------------------------------------------------------------------------|
| 303 | change of operator did not affect the performance of the method. The third           |
| 304 | parameter, the drying time, being quite variable in the routine execution of the     |
| 305 | assay, we multiplied it by two. No variation was observed except that fortified      |
| 306 | samples gave values slightly higher than with the unchanged protocol.                |
| 307 |                                                                                      |
| 308 | The midpoints of the calibration curves obtained in this ruggedness experiment are   |
| 309 | summarized in the table 5. The sensitivity proved similar to that of the usual       |
| 310 | method except less sensitivity for the fish and egg matrixes reconstituted in PBS at |
| 311 | lower pH.                                                                            |
| 312 |                                                                                      |
| 313 | Stability                                                                            |
| 314 | No stability study was performed since this SPR assay is a qualitative screening     |
| 315 | method and could mean to unreliable observations. As described in a recent           |
| 316 | publication (2007), the team of Gaudin et al. showed that their biosensor method     |
| 317 | was not suitable for conducting stability studies due to the variability of          |
| 318 | quantitative results. For instance, they observed an increase of residue             |
| 319 | concentration in spiked samples stored at -20°C for 20 weeks; no scientific          |
| 320 | explanation was found for this kind of phenomenon.                                   |
| 321 |                                                                                      |
| 322 | The literature does provide, however, some stability data worth mentioning here.     |
| 323 | The stability of some FQs in solution has been demonstrated by Okerman et al.,       |
| 324 | 2007. In this study, frozen stock solutions of flumequine, enrofloxacin, and         |
| 325 | marbofloxacin were evaluated in an agar diffusion test. Diameters of inhibition      |
| 326 | zones were measured at monthly intervals for 6 months, and the decline in active     |

#### **Food Additives and Contaminants**

| 327 | substance was calculated. Stock solutions of 1 mg ml <sup>-1</sup> in 0.1 N NaOH were kept                 |
|-----|------------------------------------------------------------------------------------------------------------|
| 328 | at -20°C until needed and were never exposed to direct strong light. The loss of                           |
| 329 | activity was less than 10% after 6 months of storage at -20°C. The studied FQs are                         |
| 330 | thus relatively stable.                                                                                    |
| 331 |                                                                                                            |
| 332 | The stability of FQs in chicken muscle has been demonstrated by Bailac et al.,                             |
| 333 | 2006 and Shu-Chu et al., 2003, but we have found no information in the literature                          |
| 334 | for the two other matrixes. The stability of spiked chicken samples at low (25 ng                          |
| 335 | g <sup>-1</sup> ) and high concentration (250 ng g <sup>-1</sup> ) was evaluated by liquid chromatography- |
| 336 | ultraviolet (LC-UV). In Bailac et al., 2006, the matrix was fortified with 7                               |
| 337 | different quinolones: ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin,                             |
| 338 | difloxacin, oxolinic acid, and flumequine. Then these samples were stored at -                             |
| 339 | 20°C for 3 months. Afterwards, they were analyzed and compared with fresh                                  |
| 340 | chicken samples fortified at the same levels. The results proved the long-term                             |
| 341 | stability of most of FQs in chicken muscle, showing no significant differences in                          |
| 342 | concentration. In Shu-Chu et al., 2003, the stability of incurred chicken muscle                           |
| 343 | samples was evaluated by HPLC. The authors studied the stability of residual                               |
| 344 | enrofloxacin after refrigeration in wu ku chicken muscle. Incurred samples were                            |
| 345 | stored at 4°C for 1, 4, and 7 days to test the stability of enrofloxacin. The level of                     |
| 346 | residual enrofloxacin in samples was found not to have decreased after 7 days at                           |
| 347 | 4°C.                                                                                                       |
| 348 |                                                                                                            |
| 349 | Method comparison                                                                                          |
| 350 | Besides the in-house validation of the method, the new method was compared                                 |
| 351 | with established methods for the determination of FQ residues in the target                                |

| 352 | matrixes. The methods chosen were an FQ-specific microbiological screening             |
|-----|----------------------------------------------------------------------------------------|
| 353 | assay and a liquid chromatography-mass spectrometric (LC-MS) confirmatory              |
| 354 | method. This method comparison study demonstrated the performance of our               |
| 355 | developed SPR biosensor screening assay, since all spiked and incurred samples         |
| 356 | containing one of the investigated FQ antibiotics, sometimes even at very low          |
| 357 | concentration, were identified as suspicious by the biosensor method. Further          |
| 358 | practical details and complete results are presented in a publication (Weigel et al.,  |
| 359 | 2009).                                                                                 |
| 360 |                                                                                        |
| 361 | Conclusions                                                                            |
| 362 | Multi-residue identification of 13 fluoroquinolones in fish, egg, and poultry          |
| 363 | muscle by means of our SPR-based biosensor assay has been successfully                 |
| 364 | validated. Satisfactory results were obtained with respect to selectivity/specificity, |
| 365 | detection capability, repeatability, and ruggedness of analysis in each matrix. The    |
| 366 | pH of the reconstitution buffer might, however, influence the chicken matrix and       |
| 367 | lead to false positives. Stability data from a bibliographical study are included in   |
| 368 | the paper.                                                                             |
| 369 |                                                                                        |
| 370 | Acknowledgements                                                                       |
| 371 | This project was financially supported by the European Commission, project             |
| 372 | "New technologies to screen multiple chemical contaminants in foods". BioCop,          |
| 373 | contract FOOD-CT-2004-06988.                                                           |
| 374 |                                                                                        |
| 375 | References                                                                             |
|     |                                                                                        |

#### **Food Additives and Contaminants**

| 3<br>4               | 376 | Bailac S, Barron D, Barbosa J. 2006. New extraction procedure to improve the        |
|----------------------|-----|-------------------------------------------------------------------------------------|
| 5<br>6               | 377 | determination of quinolones in poultry muscle by liquid chromatography with         |
| 7<br>8               | 378 | ultraviolet and mass spectrometric detection. Anal Chim Acta. 580(2): 163-9.        |
| 9<br>10<br>11        | 379 | EEC. 2002. Commission Decision 2002/657/EC. Off. J. Eur. Commun. L 221: 0008-       |
| 12<br>13             | 380 | 0036.                                                                               |
| 14<br>15             | 381 | EMEA. 1998-2002. European Council Regulation 2377/90/EEC concerning the             |
| 16<br>17             |     |                                                                                     |
| 18                   | 382 | establishment of MRLs in the European Union. European Agency for the                |
| 20                   | 383 | Evaluation of Medicinal Products.                                                   |
| 22<br>23             | 384 | Gaudin V, Hedou C, Sanders P. 2007. Validation of a Biacore method for screening    |
| 24<br>25             | 385 | eight sulfonamides in milk and porcine muscle tissues according to European         |
| 26<br>27             | 386 | decision 2002/657/EC. J AOAC Int. 90(6): 1706-15.                                   |
| 28<br>29<br>30       | 387 | Huet AC, Charlier C, Singh G, Godefroy SB, Leivo J, Vehniainen M, Nielen MW,        |
| 31<br>32             | 388 | Weigel S, Delahaut P. 2008. Development of an optical surface plasmon               |
| 33<br>34             | 389 | resonance biosensor assay for (fluoro)quinolones in egg, fish, and poultry          |
| 35<br>36<br>37       | 390 | meat. Anal Chim Acta. 623(2): 195-203.                                              |
| 38<br>39             | 391 | Okerman L, Van Hende J, De Zutter L. 2007. Stability of frozen stock solutions of   |
| 40<br>41             | 392 | beta-lactam antibiotics, cephalosporins, tetracyclines and quinolones used in       |
| 42<br>43<br>44       | 393 | antibiotic residue screening and antibiotic susceptibility testing. Anal Chim       |
| 45<br>46             | 394 | Acta. 586(1-2): 284-8.                                                              |
| 47<br>48             | 395 | Sarközy G. 2001. Ouinolones: a class of antimicrobial agents. Vet. MedCzech. 46(9-  |
| 49<br>50             | 396 | 10): 257-274                                                                        |
| 51<br>52<br>52       | 207 | Scortichini G. Annunziata I. Di Girolamo V. Buratti P. Galarini P. 2000. Validation |
| 53<br>54             | 591 | Scottenini G, Annunziata L, Di Gholanio V, Buratti K, Galarini K. 2009. Vandation   |
| 55<br>56             | 398 | of an enzyme-linked immunosorbent assay screening for quinolones in egg,            |
| 57<br>58<br>59<br>60 | 399 | poultry muscle and feed samples. Anal Chim Acta. 637: 273-8.                        |

| 1  |
|----|
| 2  |
| 2  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 1  |
| 8  |
| 9  |
| 10 |
| 11 |
| 10 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 17 |
| 18 |
| 19 |
| 20 |
| 21 |
| 20 |
| 22 |
| 23 |
| 24 |
| 25 |
| 26 |
| 20 |
| 27 |
| 28 |
| 29 |
| 30 |
| 24 |
| 31 |
| 32 |
| 33 |
| 34 |
| 35 |
| 33 |
| 36 |
| 37 |
| 38 |
| 39 |
| 10 |
| 40 |
| 41 |
| 42 |
| 43 |
| 44 |
| 15 |
| 40 |
| 46 |
| 47 |
| 48 |
| 49 |
|    |
| 50 |
| 51 |
| 52 |
| 53 |
| 51 |
| 54 |
| 55 |
| 56 |
| 57 |
| 58 |
| 50 |
| 59 |
| 60 |

| 400 | Shu-Chu S, Mei-Hua C, Chin-Lin C, Pi-Chiou C, Shin-Shou C. 2003. Simultaneous   |
|-----|---------------------------------------------------------------------------------|
| 401 | determination of quinolones in livestock and marine products by high            |
| 402 | performance liquid chromatography. Journal of Food and Drug Analysis.           |
| 403 | 11(2): 114-127.                                                                 |
| 404 | Spinks CA. 2000. Broad-specificity immunoassay of low molecular weight food     |
| 405 | contaminants: new paths to utopia. Trends in Food Science and Technology.       |
| 406 | 11: 210-217.                                                                    |
| 407 | Traynor IM, Crooks SRH, Bowers J, Elliott CT. 2003. Detection of multi-Beta-    |
| 408 | Agonist residue in liver matrix by use of a surface plasma resonance biosensor. |
| 409 | Anal Chim Acta. 483:187-191.                                                    |
| 410 | Webber M, Piddock LJ. 2001. Quinolone resistance in Escherichia coli. Vet Res.  |
| 411 | 32(3-4): 275-84.                                                                |
| 412 | Weigel S, Pikkemaat MG, Elferink JWA, Mulder PPJ, Huet AC, Delahaut P, Schittko |
| 413 | S, Flerus R, Nielen MWF. 2009. Comparison of a new fluoroquinolone              |
| 414 | biosensor screening assay with established methods. Food Addit Contam.          |
| 415 | Accepted, in press.                                                             |
| 416 |                                                                                 |
| 417 |                                                                                 |
|     |                                                                                 |

### **Tables**

- 419 Table 1. IC<sub>50</sub> values and CR profile of FQ binding protein with a range of
- 420 (fluoro)quiolones in the matrixes

|               | fish             |        | egg <sup>b</sup> |        | chicken muscle   |        |
|---------------|------------------|--------|------------------|--------|------------------|--------|
|               | IC <sub>50</sub> | CR (%) | IC <sub>50</sub> | CR (%) | IC <sub>50</sub> | CR (%) |
|               | $(ng g^{-1})$    |        | $(ng g^{-1})$    |        | $(ng g^{-1})$    |        |
| norfloxacin   | 2.4              | 100    | 0.9              | 100    | 0.6              | 100    |
| ciprofloxacin | $2.3(50)^{a}$    | 106    | 1.1              | 82     | $0.7(50)^{a}$    | 82     |
| danofloxacin  | 3.4 (100)        | 71     | 0.7              | 124    | 1.1 (200)        | 50     |
| difloxacin    | 4.3 (300)        | 57     | 0.8              | 106    | 1.2 (300)        | 45     |
| enoxacin      | 5.7              | 43     | 1.6              | 56     | 2.1              | 26     |
| enrofloxacin  | $1.5(50)^{a}$    | 163    | 0.5              | 183    | $0.5(50)^{a}$    | 118    |
| flumequine    | 106 (600)        | 2      | 46               | 2      | 75 (400)         | 1      |
| lomefloxacin  | 5.1              | 48     | 2.0              | 45     | 1.3              | 43     |
| marbofloxacin | 3.6              | 67     | 0.7              | 122    | 0.7              | 80     |
| ofloxacin     | 2.7              | 91     | 0.8              | 117    | 0.9              | 65     |
| oxolinic acid | 23 (100)         | 11     | 6                | 14     | 12 (100)         | 5      |
| pefloxacin    | 2.0              | 125    | 0.5              | 180    | 0.5              | 116    |
| sarafloxacin  | 6.0 (30)         | 41     | 1.9              | 47     | 1.9              | 30     |

The corresponding MRL value is indicated as ()

<sup>a</sup> Sum of ciprofloxacin and enrofloxacin =  $100 \text{ ng g}^{-1}$ 

- <sup>b</sup> Not for use in animals for which eggs are produced for human consumption
- 425 Table 2. Calculated CC $\beta$ , expressed in ng g<sup>-1</sup>, for all studied (fluoro)Qs, as

## 426 determined by antibody cross-reactivity

|               | fish | egg | chicken muscle |  |
|---------------|------|-----|----------------|--|
| norfloxacin   | 1.5  | 1.0 | 0.5            |  |
| ciprofloxacin | 1.4  | 1.2 | 0.6            |  |
| danofloxacin  | 2.1  | 0.8 | 1.0            |  |
| difloxacin    | 2.6  | 0.9 | 1.1            |  |
| enoxacin      | 3.5  | 1.8 | 1.9            |  |
| enrofloxacin  | 0.9  | 0.5 | 0.4            |  |
| flumequine    | 65   | 52  | 68             |  |
| lomefloxacin  | 3.1  | 2.2 | 1.2            |  |
| marbofloxacin | 2.2  | 0.8 | 0.6            |  |
| ofloxacin     | 1.6  | 0.9 | 0.8            |  |
| oxolinic acid | 14   | 7.0 | 11             |  |
| pefloxacin    | 1.2  | 0.6 | 0.4            |  |
| sarafloxacin  | 3.7  | 2.1 | 1.7            |  |

Table 3. Intra-assay parameters determined for the FQs SPR-assay (n=6)

| spiking concentration | fish | egg | chicken |
|-----------------------|------|-----|---------|
| 1 0                   |      | 66  |         |

| norfloxacin, ng g <sup>-1</sup>        |      | 1.5  |      |      | 1    |      |      | 0.5  |      |
|----------------------------------------|------|------|------|------|------|------|------|------|------|
| mean, ng g <sup>-1</sup>               | 1.8  | 2.0  | 2.0  | 1.3  | 1.3  | 1.1  | 0.7  | 0.7  | 0.6  |
| standard deviation, ng g <sup>-1</sup> | 0.08 | 0.12 | 0.10 | 0.06 | 0.05 | 0.04 | 0.02 | 0.02 | 0.02 |
| coefficient variation, %               | 4.2  | 5.8  | 4.9  | 4.4  | 4.0  | 3.7  | 3.5  | 2.8  | 3.6  |

430 Table 4. Inter-assay parameters determined for the FQs SPR-assay (n=3)

| spiking concentration<br>norfloxacin, ng g <sup>-1</sup> | fish<br>1.5 | egg<br>1 | chicken<br>0.5 |
|----------------------------------------------------------|-------------|----------|----------------|
| mean, ng g <sup>-1</sup>                                 | 1.9         | 1.2      | 0.7            |
| standard deviation, ng g <sup>-1</sup>                   | 0.11        | 0.07     | 0.01           |
| coefficient variation, %                                 | 5.7         | 5.4      | 1.9            |

432 Table 5. Summary of midpoints of curve coming from the calibration curves of

433 norfloxacin realized during the ruggedness study and calculated thanks the

434 BIAevaluation software. These values were expressed in ng  $g^{-1}$ 

|                      | fish | egg | chicken |
|----------------------|------|-----|---------|
| standard method      | 3.0  | 1.5 | 1.0     |
| small change in pH   | 4.0  | 2.5 | 1.2     |
| operator             | 3.3  | 1.4 | 1.0     |
| extended evaporation | 3.3  | 1.5 | 1.0     |
| ure                  |      |     |         |

### 436 Figure

- 437 Figure 1. Cut-off level determination for the analysis of egg (a), fish (b) and
- 438 chicken muscle (c). Each point represents the reference FQ, norfloxacin
- 439 concentration obtained from the analyses of different samples (blank and spiked at
- 440 CC $\beta$  value). The black lines represent the corresponding standard deviations
- 441 (mean  $\pm$  3 standard deviation SD). The cut-off values are represented on the graph

442 with dotted lines

### Page 21 of 21

### **Food Additives and Contaminants**





