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Figure1.emf Figure2.emf Figure3.emf Figure4.emf design effective and efficient sampling plans. There has been considerable emphasis on 16 identifying the different sources of uncertainty associated with mycotoxin concentration 17 estimations, but much less on identifying the effect of the spatial location of the sampling 18 points. This study used a two-dimensional statistical modelling approach to produce detailed 19 information on appropriate sampling strategies for surveillance of mycotoxins in raw food 20 commodities. The emphasis was on deoxynivalenol (DON) and ochratoxin A (OTA) in large 21 lots of grain in storage or bulk transport. The aim was to simulate a range of plausible 22 distributions of mycotoxins in grain from a set of parameters characterising the distributions. 23

For this purpose, a model was developed to generate data sets which were repeatedly sampled 24 to investigate the effect that sampling strategy and the number of incremental samples has on 25 determining the statistical properties of mycotoxin concentration. Results showed that for 26 most sample sizes, a regular grid proved to be more consistent and accurate in the estimation 27 of the mean concentration of DON, which suggests that regular sampling strategies should be 28 preferred to random sampling, where possible. For both strategies, the accuracy of the 29 estimation of the mean concentration increased significantly up to sample sizes of 40-60 30 (depending on the simulation). The effect of sample size was small when it exceeded 60 31 points, which suggests that the maximum sample size required is of this order. Similar 32 For consumer health to be effectively protected it is important that consumer exposure to 40 natural toxic contaminants in food, such as mycotoxins, is minimised. The ability to obtain a 41 representative sample for analysis, from a raw material or processed product, is critical as 42 part of a prevention strategy. Previous studies have proved that designing sampling plans for 43 mycotoxins is particularly problematical because of the heterogeneous distribution of these 44 contaminants in bulk lots of different commodities [START_REF] Stroka | Novel sampling methods 428 for the analysis of mycotoxins and the combination with spectroscopic methods for the 429 rapid evaluation of deoxynivalenol contamination[END_REF], Schatzki, 1995aand 45 1995band Jewers et al., 1988). Because mycotoxin sampling is time-consuming and 46 expensive, a limited number of samples are taken to obtain an estimate of the mean 47 concentration. Normal practice is to take several small quantities of the commodity, known as 48 incremental samples, from different locations (European Commission, 2005). These are 49 mixed together to form the aggregate sample, from which a portion is extracted for analysis. 50

In this paper, the process of collecting several incremental samples is referred to as sampling, 51 the set of discrete incremental samples is called the sample, and the number of incremental 52 samples is the sample size. 53

Previous studies have looked at the complexities associated with the estimation of the mean 54 mycotoxin concentration in bulk commodities. For example, [START_REF] Johansson | 392 Predicting aflatoxin and fumonisin in shelled corn lots using poor-quality grade 393 components[END_REF] looked 55 at the distribution of fumonisin and aflatoxin concentration in maize. They divided test maize 56 samples into damaged kernels, whole kernels and other materials and found that toxins were 57 concentrated in the poor quality components. As a result, they suggested that analyses in 58 smaller samples of poor quality components of the sample provided a better prediction of the 59 level of these mycotoxins in the bulk lot. [START_REF] Whitaker | Standardisation of mycotoxin sampling procedures: an urgent necessity[END_REF] investigated the sources of error in 60 the mycotoxin test procedure for aflatoxin in raw shelled peanuts and described it as the 61 combination of number of errors including at sampling, sample preparation method, and 62 analytical method stages. In his study, the sampling step was identified as the largest source 63 of error. Other studies have looked at the coefficients of variation in relation to sampling, 64 sample preparation and analysis for different aflatoxins [START_REF] Whitaker | Mycotoxins in food: detection and control[END_REF][START_REF] Whitaker | Sampling foods for mycotoxins[END_REF] [START_REF] Coker | 376 Design of sampling plan for mycotoxins in foods and feeds[END_REF] reviewed the complexities 67 associated with the design of sampling plans for different commodity types, sample 68 composition, sample preparation method, analytical sample and batch acceptance level. Their 69 review concluded that approximately 100 incremental samples are required to obtain a 10 kg 70 representative aggregate sample in commodities composed of large particles. For oilseed 71 cakes and meal, fifty incremental samples are sufficient to obtain a representative 5 kg 72 aggregate sample. [START_REF] Miraglia | The role of sampling in 400 mycotoxin contamination: an holistic view[END_REF] identified another source of error associated with the 73 sampling steps. They divided the sampling procedure into primary and secondary sampling. 74

The primary sampling focuses on determining where, why and when to take samples along 75 the food chain. The secondary sampling aims at determining and establishing how samples 76 should actually be collected, and more importantly how many samples to take to obtain a 77 representative sample. Other studies have identified the difficulties of sampling the spatial 78 aggregation of plant disease and have proposed different methodologies to address this 79 limitation [START_REF] Maanen | Modelling plant disease epidemics[END_REF]. [START_REF] Macarthur | Statistical modelling as an aid to 397 the design of retail sampling plans for mycotoxins in food[END_REF] identified the need to design 80 adequate sampling programmes that take into account the heterogeneity in the spatial 81 distribution of mycotoxins so that decisions on acceptance/rejection of contaminated lots are 82 more accurate. [START_REF] Whitaker | Sampling foods for mycotoxins[END_REF] discussed methods to reduce sampling error and stated that 83 these methods should focus on defining the number of samples required to obtain a specific 84 level of confidence on the mean mycotoxin concentration and on determining the location of 85 the samples to be taken so the likelihood of detecting the mycotoxins is maximised. 86

There has been considerable emphasis on identifying the different sources of 87 uncertainty associated with mycotoxin concentration estimations, but much less on 88 developing the statistical basis for robust sampling plans that account for the spatial 89 distribution of the mycotoxins in bulk commodities. Recent studies (Rivas Casado et al., 90 2009 and[START_REF] Parsons | Development of 405 representative sampling plans for mycotoxins in foods using distribution modelling[END_REF]) have looked at the potential of geostatistics to characterise the 91 spatial distribution of deoxynivalenol (DON) and ochratoxin A (OTA). Results showed that 92 while no spatial structure could be identified for OTA due to its random occurrence, 93 geostatistics was a useful tool to describe the spatial distribution of DON. Some studies have 94 successfully looked at the application of geostatistics to characterise the spatial structure of 95 Apergillus flavus in soil [START_REF] Orum | Using predictions based on 402 geostatistics to monitor trends in Aspergillus flavus strain composition[END_REF], fusarium crown and root rot in tomatoes (Rekah 96 et al., 1999), plant pathogens in diseased plants [START_REF] Chellemi | Analysis of the spatial pattern of 372 plant-pathogens and diseased plants using geostatistics[END_REF], the downy mildew 97 pathogen (Peronospora parasitica) in cabbage [START_REF] Stein | A 425 geostatistical analysis of the spatio-temporal development of downy mildew epidemics 426 in cabbage[END_REF] and citrus tristeza virus 98 [START_REF] Gottwald | Spatial and temporal 386 analyses of citrus tristeza virus in eastern Spain[END_REF]. 99 This study used a two-dimensional statistical modelling approach to produce detailed 100 information on sampling strategies for surveillance of mycotoxins in raw food commodities. 101

The emphasis was on DON and OTA in large lots of grain. 102 103

Materials and Methods 104

The model was developed using the R statistical programming language (R Development 105

Core Team, 2007) to investigate the effect that sample size and strategy have on determining 106 the mean concentration of DON and OTA in bulk commodities. The method was divided in 107 four sequential steps: generation of mycotoxin concentration data, spatial distribution of the 108 generated data, repeated generation of samples and assessment of the performance of each 109 sample size and strategy combination. The model was then run for a range of scenarios. 110 111

Data generation 112

Rivas [START_REF] Rivas Casado | submitted 415 Geostatistical analysis of the spatial distribution of mycotoxin concentration in bulk 416 cereals[END_REF] analysed the spatial structure of DON and OTA in a 26 t 113 truck of wheat with a total of 100 sampled points, from a data set collected by Biselli et al. 114 (2005). The results showed that the distribution of DON was best described by a log-normal 115 distribution of mean 1342 µg kg -1 and standard deviation 340, and presented spatial structure. 116

In contrast, OTA was best described by an exponential distribution with mean 0.57 µg kg -1 117 and standard deviation 1.13, and was randomly distributed in space. Rivas Casado et al. 118 (2009) used geostatistical techniques to investigate the spatial distribution of DON in the 119 truck in more detail. 120

Geostatistics analyses the spatial structure of a variable (in this case mycotoxin 121 concentration) using the variogram, a graph that relates the distance between any two points, 122 known as the lag distance, with their semivariance (Figure 1). Generally, points close 123 together have more similar values than those farther apart, giving low semivariance, or 124 conversely high autocorrelation, at short lag distances. Each variogram can be described by a 125 set of parameters: the sill, the range and the nugget. The sill is the a priori variance, σ 2 , of the 126 process and is generally assumed to be equal to the variance of the population [START_REF] Barnes | The variogram sill and the sample variance[END_REF]. 127

The range is the point at which the semivariance approaches the sill, so the autocorrelation 128 between pairs of points becomes 0, marking the limit of spatial dependence: points farther 129 apart than this lag distance are spatially independent. The nugget is the semivariance at a lag 130 distance of 0, and identifies the measurement error and the variations that occur over lag 131 distances less than the shortest sampling interval [START_REF] Webster | Geostatistics for environmental scientists[END_REF]. Geostatistical 132 The geostatistical procedure generated simulations of normal random fields for the 153 given variogram parameters. This was implemented using the geoR and RandomFields 154 packages from the R programming language (R Development Core Team, 2007). This 155 procedure required values for the sill, the range and the mean of the DON population to be 156 generated. It was assumed that the data represented values that had been transformed to give 157 a normal distribution, for example by a log transform, so the mean and sill should be those of 158 the transformed data. The results were transformed back to the original units for 159 interpretation. The procedure could not fully control the properties of the simulated 160 population due to processes for random generation of values, so several were generated for 161 each set of parameters, then the variogram for each was displayed and compared to the target 162 variogram to select the one that best represented the target spatial distribution. 163 

Spatial distribution 165

The sampled area was always represented by a 1 unit x 1 unit square, which could be 166 scaled to the required dimensions. The data values were generated on a regular grid of 2500 167 points (50 x 50) in this area according to the chosen spatial distribution. For OTA, the 168 generated values were randomly assigned to the grid points. For DON, the values were 169 distributed in the space according to the specified sill and range values. The grf function from 170 the RandomFields package in R was used for this purpose. This function generates 171 simulations of normal random fields and distributes them in a unit square accordingly to a 172 given a set of variogram parameters. The generated data set was treated as the true 173 representation of DON or OTA concentration in a bulk commodity from which samples were 174 to be taken. 175

For each set of parameters for either the geostatistical or classical method, M data sets 176 were generated, where M was usually set at 30. The variability of the realisations generated 177 was derived from these M simulations (Figure 2). 178 179

Repeated generation of samples 180

The simulated distribution was sampled using different sample sizes and two 181 sampling strategies, regular square grid and random, to derive statistics to allow them to be 182 compared. Each sample size between 4 and 100 was then selected R times per simulation, 183

where R was fixed at 30. For random sampling, the required number of values was drawn 184 from randomly selected points, so all sample sizes between 4 and 100 were possible, and 185 repetition used new random samples. For regular grids, the only sample sizes considered 186 were those that formed squares, that is the nine regular grids with 2-10 points in each 187 direction giving 4, 9, 16, 25, 36, 49, 64, 81 and 100 points. In this case, repeated samples 188 from the same distribution were taken by changing the origin of the grid. There were thus a 189 total of 87300 (30 x 97 x 30) and 8100 (30 x 9 x 30) automated results for the random and 190 regular grid sampling strategies respectively (Figure 2). The performance of each of the combinations of sample size and sampling strategy 207 was assessed using the Root Mean Squared Error (Equation 5). This statistic combines 208 accuracy and precision. The smaller the RMSE, the better the estimation of the sample mean. 209

The RMSE has the advantage of having the same units as the variable under study (µg kg -1 ). 210 normal when more than 30 repetitions are calculated [START_REF] Cochran | Sampling Techniques[END_REF] and therefore, 217 confidence intervals can be calculated. The size of the confidence interval for each sample 218 size and strategy was calculated by multiplying the standard error of the 30 RMSE values by 219 the standard normal value c for a specified probability level. To model the effect that the 220 sample size had on the RMSE, a locally weighted regression smoothing (LOESS) function 221 [START_REF] Higgins | Introduction to modern nonparametric statistics[END_REF] was fitted to the RMSE confidence interval with the sample size as the 222 independent variable. 223

224

Level of contamination 225

The analysis was repeated using three different means, for both DON and OTA, to 226 have a representative result for a range of concentrations. The selected concentrations were 227 (European Commission, 2006). For DON the model was run 229 with log-normal DON data sets with mean 6.43, 7.14 and 7.82, that is log e 625 µg kg -1 , 230 log e 1261 µg kg -1 and log e 2490 µg kg -1 , respectively. For OTA, the model was run with 231 concentrations 0.6 µg kg -1 (found in the data from [START_REF] Biselli | Investigation of variability associated 368 with testing lots of wheat kernels for deoxynivalenol and ochratoxin A (case study 369 truck)[END_REF], 5 µg kg -1 and 232 10 µg kg -1 . The spatial structure parameters found in the data from Biselli et al. were used as 233 reference values to generate DON data for any of the three mean concentrations considered. 234

The variogram parameters used were sill 0.07, range 4 m, and nugget 0. 235 A total of 30 simulations (M=30) of log-normal DON data sets with mean 7.14 and 30 236 simulations of exponential OTA data sets with mean 0.6 µg kg -1 were generated to assess the 237 reliability of the methods for data generation. The results showed that there was little 238 variation between simulation, so subsequently only one was run for each set of parameters. 239 240

Results

242

For DON, the results for the assessment of the reliability of the geostatistical method 243 for data generation showed that the approximations to the requested population mean and 244 standard deviation were close to the target values: for the 30 simulations the average of the 245 population mean was 7.15, which was close to the 7.14 target mean. The maximum and 246 minimum population mean obtained were 7.26 and 7.00, respectively. The standard deviation 247 (σ = 0.27) obtained was also very close to the target value (σ = 0.23), this being determined 248 by the sill of the spatial structure. 249

The simulated DON spatial structure showed that the nugget and the sill were close to 250 the required values. The mean sill was 0.069 with a standard deviation of 0.0068 which was 251 very close to the 0.07 target. This was consistent with the results obtained for the standard 252 deviation of the population. The mean nugget was 0.0010 with a standard deviation of 0.0037 253 which was also very close to the 0 target nugget. The values of the range did not accurately 254 adjust to the target value. The mean range obtained for the 30 repetitions was 0.165 units with 255 a standard deviation of 0.056, which differed considerably from the target value of 0.4 units. 256

For OTA and a target mean of 0.6 µg kg -1 , the thirty simulations had a mean value of 257 0.602 µg kg -1 and a standard deviation of 0.012. This showed that there was little variation 258 between generated data sets for the same target value. 259 For both cases, the statistics derived by repeated sampling from different simulations 260 with the same parameters differed little between simulations. As noted above, it was 261 concluded that it was sufficient to generate one simulated population for each set of 262

parameters. 263

The RMSE changed in proportion to the mean concentration. For example, for the 264 simulation of DON with mean concentration of 625 µg kg -1 and for different samples, the 265 RMSE was 90-300 µg kg -1 (14-48% of the mean) and for the simulation with mean 266 concentration of 2490 µg kg -1 it was 300-1100 µg kg -1 (12-44%). Similar results were seen 267 for OTA. 268

The general pattern observed for the majority of the LOESS equations fitted showed a 269 decrease in the slope of the curve at 40-60 samples (Figure 3), beyond which the RMSE did 270 not decrease as significantly for each increment in the sample size. The RMSE is made up of 271 the sample standard deviation and the bias. The bias should tend to 0 when increasing the 272 sample size and therefore the main contribution to the RMSE for large samples is the 273 standard deviation of the sample. For sample sizes close to the population size, the RMSE 274 would be very close to the standard deviation of the population and no further gain in 275 accuracy could be obtained. This point was reached at 40-60 samples. 276

For DON, the graphs of RMSE + 95% confidence interval (Figure 4a) showed that the 277 results of regular grid sampling were more consistent than random sampling. For a given 278 sample size, the RMSE for random sampling was sometimes as low as or lower than that for 279 regular grid sampling, but in most cases it was higher. This is probably the result of bias 280 introduced by clusters of relatively closely spaced, and therefore correlated, points. This 281 suggests that it is better to use regular grid sampling strategies when spatial structure is 282 expected for the mycotoxin concentration. For OTA (Figure 4b), the difference between the 283 strategies was small. The scatter-plots for the RMSE + 95% confidence interval showed 284 overlapping results for the two methods. In general, for the OTA data sets the difference 285 between the two sampling strategies was negligible. 286 The model was reliable at generating data sets with the target DON and OTA mean 292 concentration. However, in some cases the model failed to reproduce the target spatial 293 structure for DON. When the maximum range value generated was below the target range, a 294 less smooth spatial distribution than intended was generated. In general this would be 295 expected to reduce the differences between random and regular sampling, and to increase the 296 bias. Despite this, clear differences were found between the two sampling methods. If the 297 intention in future was to simulate a particular observed distribution, this could be done by 298 increasing the target value of the range until the result from the simulated data matched the 299 observation. In this case the aim was to examine a range of possible distributions. Consistent 300 results were obtained across all mean concentrations, and contrasts were found between 301 random and regular sampling. 302

For both strategies and both mycotoxins, the accuracy of the estimation of the mean 303 concentration increased significantly up to sample sizes of 40-60 (depending on the 304 simulation). The effect of sample size was small when it exceeded 60 points, which suggests 305 that the maximum sample size required is of this order. European Commission regulations 306 specify 60 incremental samples from grain lots of 10-20 t and 100 incremental samples from 307 lots over 20 t (European Commission, 2005). The model results show that these would be 308 adequate in the cases simulated. On this basis, there is no evidence to recommend either a 309 reduction or an increase in the number of incremental samples. These results are also 310 consistent with the findings of [START_REF] Coker | 376 Design of sampling plan for mycotoxins in foods and feeds[END_REF] that 50-100 samples are required for 311 different aggregate sample masses. 312

The model was designed to simulate lots of the order of 10-100 t. There is no 313 evidence on the spatial structure at smaller or larger scales so the results should not be 314 extended at these scales without further data collection and analysis. 315

The samples used in the simulation are idealised: each is the exact value at a single 316 point, and the mean is calculated precisely. In practice each incremental sample takes a small 317 mass of grain, these are mixed and the concentration is measured in a subsample. Thus there 318 are two additional sources of error: the difference between finite incremental samples and 319 point measurements, and the difference between the mean of the idealised samples and the 320 concentration measured from the aggregated sample. The effects of mixing and subsampling 321 have been investigated by [START_REF] Whitaker | Mycotoxins in food: detection and control[END_REF][START_REF] Whitaker | Sampling foods for mycotoxins[END_REF], and should be considered when examining 322 the total uncertainty. The mass of an incremental sample is normally 0.1-1.0 kg, which 323 implies that the dimensions are of the order of 0.1 m. This is small compared to the scale at 324 The random sampling method in the model is truly random: all points are equally 327 likely to be sampled, independent of which others have been selected. In practice, when 328 someone samples from a bed of grain, they are unlikely to take two samples very close 329 together, so real sampling behaviour is likely to be intermediate between random sampling 330 and regular grid sampling. 331

The model was based on a single set of data for DON and OTA. Further research 332 would be needed before drawing more general conclusions. 333

The model does not consider the variation in mycotoxin concentration with depth, but 334 only in two horizontal dimensions, because no data were available. Indeed, sampling using a 335 conventional sample spear aggregates over the depth from one point on the surface. The data 336 used to develop the model came from this type of sampling, so it is intended to be an 337 empirically based representation of normal practice. Recent works on geostatistical science 338 provide a methodology to develop 3D geostatistical models [START_REF] Culshaw | From concept toward reality: developing the attributed 3D geological 378 model of the shallow subsurface[END_REF]339 Stavropoulou et al., 2007) The model focused on the effect that the sampling protocol has on determining the 345 statistical properties of mycotoxin concentration. The conclusions drawn in this study must 346 be understood as preliminary outcomes of the model. The assumptions made in the 347 development of the model and its limitations must be considered when interpreting the 348

conclusions. 349

This study showed that the accuracy of the estimation of the mean concentration 350 increased significantly up to sample sizes of 40-60, which is consistent with the number of 351 incremental samples taken from bulk lots under EU regulations. This applied to both spatially 352 structured and randomly distributed data across the range of mean concentrations used. 353

A regular grid proved to be more consistent and accurate in the estimation of the 354 mean concentration where there was spatial structure (DON). The difference between the two 355 sampling strategies was negligible for randomly distributed data (OTA). This suggests that 356 regular sampling strategies should be preferred to random sampling, where possible. 357 ) from sample size 4-100 obtained for the random and regular grid sampling strategies. The model was run to simulate a bulk commodity with (a) a mean DON concentration of 7.14 (log e 1260 µg kg -1 ) and a spatial distribution described by a variogram with range 4 m, sill 0.07 and nugget 0; and (b) a mean OTA concentration of 0.6 µg kg -1 and random spatial distribution. The final simulated values were mean 6.5, range 3.66, sill 0.067 and nugget 0.0091 for DON and mean 0.577 for OTA.

  sample size apply to OTA, although the difference between regular and Introduction 39

  effective when the variable has a normal (Gaussian) distribution. For this 133 purpose, the data were log transformed (natural log) to meet the normality requirement. The 134 results showed that the spatial structure of DON could be described by a variogram with 135 range 4.35 m, sill 0.07 and nugget 0.013. The spatial structure defined by these parameters 136 was assumed to be representative of DON in bulk commodities, in the absence of other data, 137 and was therefore used as a reference condition for data generation. 138 Two different procedures for data generation were used based on the findings 139 described by Rivas Casado et al. (2009): classical statistics for OTA and geostatistics for 140 generation of DON concentration. The classical statistics procedure allowed the generation of 141 random deviates of an exponential distribution with a density function: the concentration of the mycotoxin and λ (λ > 0) is the rate parameter estimated the sample mean concentration. This only required the mean concentration of the 151 mycotoxin as an input parameter for the generation of data. 152

191 192

 191 Assessment of the performance of sample size-strategy combinations 193Two statistics must be considered for the quantification of sample and population 194 differences: accuracy and precision. Accuracy is measured by the bias b, which is the 195 difference between the sample mean concentration µ ˆ and the population mean concentration 196 Equation3). If the mean of the sample is equal to the mean of the population, then µ ˆ is 197 said to be unbiased, otherwise it is said to be biased degree of mutual agreement between all the points in the sample and 202 is estimated by the standard deviation of the sample σˆ:

  RMSE inr where i is the simulation number (1 ≤ i ≤ 30), n is the sample size 214 (4 ≤ n ≤ 100) and r is the repetition (1 ≤ r ≤ 30) was obtained by repeatedly calculating 215 RMSE values for a specific sample size. The distribution of RMSE values is approximately 216

  and above the maximum level of DON (1250 µg kg -1 ) and OTA (5 µg kg -1 ) set 228 by the European Commission

  in the model and its limitations, particularly the distributions 290 used, must be considered when interpreting the results and should be verified in practice. 291

  is intended to operate. It is therefore reasonable to treat the incremental 325 samples as point measurements. 326

Figure 1 .

 1 Figure 1. Example of a variogram function showing the sill, range and nugget parameters.

Figure 2 .

 2 Figure 2. The iterative process followed by the model.

Figure 3 .

 3 Figure3. Example of the changes in the value of RMSE (µg kg -1 ) from sample size 4-100 observed for DON for random (a) and regular (b) sampling strategies. The model was run to simulate a bulk commodity with mean DON concentration 7.14 (log e 1260 µg kg -1 ) and a spatial distribution described by a variogram with range 4 m, sill 0.07 and nugget 0. The final simulated values were mean 6.5, range 3.66, sill 0.067 and nugget 0.0091.

Figure 4 .

 4 Figure 4. Example of the changes in the value of the RMSE plus the upper 95% confidence interval (µg kg -1 ) from sample size 4-100 obtained for the random and regular grid sampling strategies. The model was run to simulate a bulk commodity with (a) a mean DON concentration of 7.14 (log e 1260 µg kg -1 ) and a spatial distribution described by a variogram with range 4 m, sill 0.07 and nugget 0; and (b) a mean OTA concentration of 0.6 µg kg -1 and random spatial distribution. The final simulated values were mean 6.5, range 3.66, sill 0.067 and nugget 0.0091 for DON and mean 0.577 for OTA.
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