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Excess heterogeneity, endogeneity and index restrictions

Andrew Chesher�

CeMMAP - the Centre for Microdata Methods and Practice - and University College London

November 9, 2008

Abstract. A discrete or continuous outcome is determined by a struc-

tural function in which the e¤ect of some variables of interest is transmitted

through a scalar index. Multiple sources of stochastic variation can appear as

arguments of the structural function, but not in the index. There may be endo-

geneity, that is observable and unobservable variables may not be independently

distributed. Conditions are provided under which there is local identi�cation

of measures of the relative sensitivity of the index to variations in pairs of its

possibly endogenous arguments, namely ratios of partial derivatives of the index.

JEL codes: C10, C14, C50, C51.

Key words: Control functions, Endogeneity, Identi�cation, Index restric-

tions, Nonseparable models.

1. Introduction

Many questions arising in microeconometric practice lead to the use of models which

include more unobservable latent variables than there are observable stochastic out-

comes, that is excess heterogeneity. The latent variables often represent unobserved

characteristics of individuals and of the environment in which they make decisions.

The inclusion of such variables is common in, for example, models of durations (see

van den Berg, 2001) such as mixed proportional hazard models, in discrete choice
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models, see for example Brownstone and Train (1998), Chesher and Santos Silva

(2002), McFadden and Train (2000), and in count data models, see Cameron and

Trivedi (1998). There is a large econometric literature concerned with random coef-

�cients models which permit this sort of excess heterogeneity. Excess heterogeneity

also arises in other cases, for example when there is measurement error and in panel

data models.

It is common to �nd strong restrictions imposed in models that admit excess het-

erogeneity. Frequently the speci�cation is fully parametric as in the mixed multino-

mial logit models of Brownstone and Train (1998). When parametric restrictions are

not imposed there are usually strong semiparametric restrictions. For example: most

of the single spell duration models used in practice that permit excess heterogene-

ity require there to be a single latent variate that acts multiplicatively on the hazard

function; measurement error and �individual e¤ects�in panel data models are usually

required to be additive.

The aim of this paper is to explore the extent to which strong restrictions such as

these can be relaxed, while preserving a model with the power to identify interesting

structural features.

When there is excess heterogeneity the probability distributions of observable

variables are relatively low dimensional reductions of the distributions of structural

variables, obtained by taking expectations over the distributions of supernumerary

latent variates. Information about fundamental structural features may not survive

the averaging process. In the face of this di¢ culty one possibility is to focus on the

identi�cation of averages of structural features, as in for example Imbens and Newey

(2008). Sometimes knowledge of such averages is not what is required to understand

the impacts of policy changes. It is interesting to explore alternatives. Another

approach is to impose restrictions which shield certain structural objects from the

e¤ects of averaging. This is the approach studied here.

In the models explored here excess heterogeneity can arise from any �nite number
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of sources and there is an index restriction. The index restriction requires the e¤ect on

an outcome of certain variables of interest to pass entirely through a scalar function of

those variables, an index, and that this index be free of latent variates. Continuously

distributed variables that appear in the index are permitted to be endogenous in the

sense that they may covary with any or all of the latent variates that appear in the

model.

The structural features whose identi�ability is studied in this paper are ratios of

derivatives of the index at some speci�ed values of the variables that appear in the

index. This is therefore a study of local identi�cation. These ratios are referred to as

index relative sensitivity (IRS) measures because they measure the relative sensitivity

of the index, and therefore of the outcome, to variation in a pair of its arguments.

When the index is linear the ratios do not depend on the values of the arguments

of the index. Then conditions su¢ cient to achieve local identi�cation of the value of

an IRS measure achieve global identi�cation of the ratio of coe¢ cients of the linear

index.

With more sources of stochastic variation than there are outcomes structural func-

tions necessarily involve non-additive latent variates, as noted in Hurwicz (1950). The

identifying model employed here admits non-additive latent variates and embodies

triangularity restrictions as in Chesher (2003, 2005, 2007a) and Imbens and Newey

(2008).

IRS measures are often of interest in models for binary outcomes. For example in

discrete choice models of travel demand there is interest in the �value of travel time�

de�ned as the ratio of coe¢ cients on travel time and travel cost. There are other

contexts in which the relative sensitivity of an index to variation in its arguments is

of interest. For example in models of intrahousehold allocation there is interest in the

relative sensitivity of expenditures to variations in the incomes of two partners; in

models for the duration of unemployment there is interest in the relative sensitivity of

unemployment duration to variations in unemployment bene�ts and other household
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income or the wage prior to unemployment. In all these cases one or more of the

arguments of the index could be endogenous although this is a possibility frequently

ignored, perhaps because it is not understood how to deal with endogeneity in this

situation. It is this which motivates this study which mainly focusses on identi�cation

issues.

The remainder of the paper is organised as follows. The structural equation,

index restriction and IRS measures are de�ned in Section 2 and examples of micro-

econometric models accommodated within the framework employed here are given

in Section 3. The identi�cation strategy, based on a �control function�argument, is

introduced in Section 4. Related literature is brie�y reviewed in Section 5. Identi�-

cation theorems are given in Section 6 and estimation is brie�y considered in Section

7. The main results associate IRS measures with functions of derivatives of vari-

ous distribution functions involving observable variables. These apply when W , the

outcome of interest, is discrete or continuous. When the outcome is continuous the

IRS measures can be associated with functions of derivatives of conditional quantile

functions and the expressions are given in Section 8. Section 9 concludes.

2. The structural equation and the IRS measures

In the models considered here the outcome of interest is a random variable W deter-

mined by a structural equation of the following form.

W = h0(�(Y1; : : : ; YM ; Z1; : : : ; ZK); Z
�
1 ; : : : ; Z

�
L; U1; : : : ; UN ) (1)

Scalar W may be discrete or continuous, U � fUngNn=1 are latent variates, Y �

fYmgMm=1 are observable continuously distributed endogenous random variables which

may covary with U , and Z � fZkgKk=1 are observable continuously varying covariates

whose covariation with U is limited to some degree to be speci�ed. � is the index of
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interest, a scalar valued di¤erentiable function.1

The variables Z� � fZ�l gLl=1 are discrete or continuously varying variables which

may appear in the structural function but not in the index. Identi�cation of the

sensitivity of structural functions to these variables is not considered. There could be

other variables entering the index which exhibit discrete variation. Their presence is

not made explicit in the notation and sensitivity of the structural function to variation

in their values is not considered here.

The IRS measures studied here have the following form.

�a;b(y; z) �
Oa�(y; z)
Ob�(y; z)

; (a; b) 2 fy1; : : : ; yM ; z1; : : : ; zKg

Without further restriction their values depend on the values of y � fymgMm=1 and

z � fzkgKk=1. Conditions su¢ cient for local identi�cation of particular �a;b at a

speci�ed value of (Y; Z), (�y; �z), will be considered.

There are structural equations determining the elements of Y as follows.

Ym = hm(Z;Z
�; Vm); m 2 f1; : : : ;Mg (2)

Each function hm is a strictly monotonic function of Vm which is a continuously dis-

tributed latent variate. Y may be endogenous in the sense that V � fVmgMm=1 and U

may not be independently distributed. The structural equations for (W;Y1; : : : ; YM )

thus have a triangular form as in Chesher (2003, 2005) and Imbens and Newey (2008).

3. Examples

This Section gives examples of microeconometric models in which a structural equa-

tion of the form (1) arises.

Example 1 - Mixed hazard duration models
1The results could be extended to the case in which there are multiple indexes as arise in, for

example, multiple discrete choice models.
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Consider hazard functions for a continuously distributed duration (e.g. of unem-

ployment) W conditional on observable Y = y, Z = z, Z� = z� and on unobservable,

possibly vector, E = e of the form:

�(wj�(y; z); z�; e) (3)

where � is a scalar valued function. The conditional distribution function of W given

Y , Z, Z� and E is

FW jY ZZ�E(wjy; z; z�; e) = 1� exp(��(wj�(y; z); z�; e))

where �(wj�(y; z); z�; e) is the integrated hazard function, as follows.

�(wjy; z; z�; e) �
Z w

0
�(!j�(y; z); z�; e)d!

The conditional � -quantile function of W given Y , Z, Z� and E is

QW jY ZZ�E(� jy; z; z�; e) = ��1(� log(1� �)j�(y; z); z�; e)

where ��1 is the inverse integrated hazard function satisfying

a = �(��1(aj�(y; z); z�; e); �(y; z); z�; e)

for all a, y, z, z� and e.

WithD distributed uniformly on (0; 1) independent of Y , Z, Z� and E, the follow-

ing structural equation delivers a random variable W whose conditional distribution

given Y , Z, Z� and E has the hazard function � given in equation (3).

W = ��1(� log(1�D)j�(Y; Z); Z�; E)

De�ning U � (D;E) this is a structural equation of the form set out in equation (1).



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Excess heterogeneity, endogeneity and index restrictions 7

Note that there is no requirement that the excess heterogeneity terms, E, act

multiplicatively on the hazard function and there is no limit on the number of such

terms appearing in the model. The results of the paper concern identi�cation of IRS

measures when Y covaries with E.

The mixed hazard model for single spell data, treated in van den Berg (2001),

has a single source of excess heterogeneity, E, acting multiplicatively in the hazard

function, as follows.

�(W j�(Y; Z); Z�; E) = ��(W j�(Y; Z); Z�)� E

In this case the structural function for W is

W = ���1(� log(1�D)E�1j�(Y; Z); Z�)

where ���1 is the inverse of the function

��(wjy; z; z�) �
Z w

0

��(!j�(y; z); z�)d!

with respect to its w argument. Under the proportionate heterogeneity restriction

the two sources of stochastic variation coalesce into one, with implications for iden-

ti�cation and estimation developed in Chesher (2002).

Example 2 - Heterogeneous binary choice

An example of the sort of binary response model for W 2 f0; 1g that falls in the

class of models considered here is

P [W = 0jY; Z; Z�; E] = � (E0 + E1Z� + �yY + �zZ) (4)

where � is a known or unknown function from <1 ! (0; 1). Here Y , Z and Z� are

observable scalar variables and E � (E0; E1) contains latent variates. The covariate

Z� has a �random coe¢ cient�E1 and there is �random intercept�E0. The variate Y
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is endogenous in the sense that it may covary with E. The coe¢ cients on Y and Z

are nonstochastic and their ratio �y=�z is the structural feature whose identi�cation

is studied in this paper.

Let D be uniformly distributed on (0; 1) conditional on E0, E1,Y , Z and Z�.

Then there is the following structural equation for W .

W =

8><>: 0 ; D � � (E0 + E1Z� + �yY + �zZ)

1 ; D > � (E0 + E1Z
� + �yY + �zZ)

This has the form of equation (1) with U � (D;E), �(Y; Z) � �yY + �zZ. The linear

index restriction in (4) is a restriction additional to that considered in this paper and

is imposed just by way of example.

Blundell and Powell (2003) study identi�cation and estimation in binary choice

models with a linear index depending on endogenous variables, like (4), with a single

source of heterogeneity. The models studied by Brownstone and Train (1998) and

McFadden and Train (2000) have multiple sources of heterogeneity but they do not

permit endogeneity.

Example 3 - Partially linear model

Consider the structural equation

W = Y 0�Y + Z
0�Z + r(Z

�; U)

which is as in the model studied in Robinson (1988) with Y and Z appearing only in

a linear index, Y 0�Y +Z
0�Z . Multiple sources of stochastic variation, U , may appear

in an unknown function r along with covariates Z� which do not feature in the index

of interest. The model studied here admits the possibility that Y is endogenous due

to covariation of Y and U .

In another formulation accommodated within the framework employed in this
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paper:

W = Z�0U + t(Y; Z)

the potentially endogenous variables appear in an unknown function, t, and the co-

e¢ cients in the linear index are stochastic.

4. Identification

The strategy employed in developing identi�cation conditions for IRS measures is

now outlined. This is done for the case in which the covariates Z�, which appear in

the structural function (1) but not in the index �, are not present. Their presence

would not change the argument below except in inessential details.2

Let the joint distribution function of U given Z and V be denoted by FU jZV .

Conditions are placed on the equations for the elements of Y su¢ cient to ensure that

FU jZY (ujz; y) = FU jZV (ujz; v)jv=g(z;y)

where g(z; y) � fgm(z; ym)gMm=1 and each gm is the inverse function of hm with

respect to its Vm argument. Each function gm is such that, for all z and ym:

ym = hm(z; gm(z; ym)):

It follows that the conditional distribution function of the outcome of interest,

W , given Y = y and Z = z at W = w can be expressed as a function of w, z, the

index of interest, �(y; z), and the M indexes gm(z; y), m 2 f1; : : : ;Mg, as follows.

FW jZY (wjz; y) = s(�(y; z); g1(z; y1); : : : ; gM (z; yM ); w; z)

The dependence of the function s on z through its last argument arises from the
2At various points where there is conditioning on Z there would have to be conditioning on Z

and Z�. The point at which identi�cation is sought would be ( �w; �y; �z; �z�). There is no point at
which partial derivatives with respect to elements of Z� are considered and so no limitation on the
covariation of Z� and (U; V ) is needed.
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dependence of FU jZV (ujz; v) on z. This dependence will typically be subject to re-

strictions and will often be assumed absent.

The conditional distribution functions FW jZY and FY1jZ ; : : : ; FYM jZ can be known

because they are conditional distribution functions involving observable variates,

and, if Y and Z exhibit continuous variation around a point (�y; �z), their Y - and

Z-derivatives at that point can also be known.

An IRS measure �a;b(�y; �z), (a; b) 2 fy1; : : : ; yM ; z1; : : : ; zKg is identi�ed if the

derivatives Oa�(�y; �z) and Ob�(�y; �z) are identi�ed up to a common non-zero �nite

valued factor of proportionality. This will happen if there are su¢ cient restrictions

on the structural equations (1) and (2) and on the distribution of (U; V ) conditional

on Z to permit the values of Oa�(�y; �z) and Ob�(�y; �z) to be deduced up to a common

non-zero �nite valued factor of proportionality from knowledge of the Y - and Z-

derivatives of FW jZY and FY1jZ ; : : : ; FYM jZ at (�y; �z).

In Section 6 precise identi�cation conditions are set out and a Theorem stating

an identi�cation result is stated. The proof is in the Appendix.

To give a �avour of the result of the Theorem, consider the case in which in the

index there is a single endogenous variable, Y1, and a covariate Z1. In the structural

equation for Y1 there is a covariate, Z2, variation in which does not a¤ect the value

of the index at (�y; �z). This local exclusion restriction, together with covariation

restrictions requiring (a) U given V is independent of Z � fZ1; Z2g and (b) that at

a point (�y1; �z), with �z � f�z1; �z2g:

rz1FV1jZ = rz2FV1jZ = 0 (5)

imply the following:

�y1z1(�y1; �z) =
ry1FW jZY1 �ry1FY1jZ

�rz2FW jZY1
rz2FY1jZ

�
rz1FW jZY1 �rz1FY1jZ

�rz2FW jZY1
rz2FY1jZ

� (6)
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where all functions are evaluated at (�y1; �z) and at any value of w.3 This serves to

identify �y1z1(�y1; �z). Note that the exclusion of U from the index results in �y1z1(�y1; �z)

being overidenti�ed - a condition manifested by the invariance of (6) to the choice of

w.

When W is continuously distributed the derivatives of conditional distribution

functions that appear in (6) can be replaced by ratios of derivatives of conditional

quantile functions, as explained in Section 8. After some simpli�cation this results

in the following alternative to (6).

�y1z1(�y1; �z1) =
ry1QW jZY1 +

�rz2QW jZY1
rz2QY1jZ

�
rz1QW jZY1 �rz1QY1jZ

�rz2QW jZY1
rz2QY1jZ

� (7)

Here QW jZY1 is shorthand for the �-quantile function ofW given Z and Y1, and QY1jZ

is shorthand for the conditional �1-quantile of Y1 given Z. In (7) the arguments of

these quantile functions are evaluated at Y1 = �y1, Z = �z, at �1 = ��1, where ��1

satis�es

�y1 = QY1jZ(��1j�z)

and at any value of �.

The numerator and denominator of (7) are identical to the expressions given in

Chesher (2003) for respectively the Y1- and Z1-derivatives of a structural function

with a single nonadditive latent variable.

W = h(Y1; Z1; U)

when U is a scalar and so the sole source of stochastic variation, in continuously dis-

tributed W given Y1 and Z1. When there are multiple sources of stochastic variation

the numerator and denominator of (7) are not equal to these structural derivatives.

However, with the index and other restrictions imposed here, their ratio is equal to

3The independence condition on U given V need only hold for V and Z in a neighbourhood of
(�z; �v1) where �v1 is such that h1(�z; �v1) = �y1.
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the ratio of the index derivatives.

Estimates of an IRS measure can be built from parametric, semi- or nonparametric

estimates of conditional distribution functions and their derivatives, or, when W is

continuously distributed, on estimates of conditional quantile functions and their

derivatives. This is brie�y discussed in respectively Sections 7 and 8.

5. Related literature

The basic idea employed in this paper dates back as far as Tinbergen (1930) in which

the problem of identi�cation in linear simultaneous equations systems was attacked

by developing conditions under which values of structural form parameters could

be deduced from values of parameters of regression functions - the reduced form

equations of the linear simultaneous system.

The conditional distribution functions FW jZY and FYmjZ , m 2 f1; : : : ;Mg are

regression functions, namely of 1[W � w] on Z and Y , and of 1[Ym � ym] on Z, m 2

f1; : : : ;Mg. The values of the Y - and Z-derivatives of the conditional distribution

functions at ( �w; �y; �z) are the coe¢ cients of a linear approximation to these regression

functions, and these coe¢ cients are functions of the structural parameters of interest,

namely the index derivatives at (�y; �z). The latter are identi�ed when their values can

be deduced from knowledge of the values of these coe¢ cients. Viewed in this way

it is not surprising that the identi�cation conditions and their development echo the

classical linear simultaneous equations identi�cation analysis given full expression in

Koopmans, Rubin and Leipnik (1950).

Index restrictions like that considered here have been used in many other papers

including Han (1987), Robinson (1988), Powell, Stock and Stoker (1989), Newey and

Stoker (1993), Chaudhuri, Doksum and Samarov (1997) and Kahn (2001). Much of

the semiparametric literature dealing with models embodying index restrictions does

not address the issue of endogeneity. Newey (1985), Lewbel (1998, 2000), Lewbel

and Linton (2002), Honoré and Hu (2002), Hong and Tamer (2003) and Blundell and
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Powell (2003) do consider endogeneity but, aiming at identifying di¤erent structural

features, employ di¤erent identifying restrictions.

Chesher (2003) takes a similar approach to that taken in this paper, providing

conditions under which values of partial derivatives of structural functions at a point

of interest are identi�ed. Critical among these conditions is the requirement that

the number of sources of stochastic variation permitted by a model be equal to the

number of observable stochastic outcomes. This paper weakens this restriction but

at the cost of (a) imposing an index restriction and (b) obtaining identi�cation of

IRS measures rather than derivatives of structural functions. This paper considers

identi�cation of index sensitivity when there is continuous variation in endogenous

variables and covariates. In contrast Chesher (2005) and (2007a) study structural

function identi�cation when there is discrete variation in respectively endogenous

variables and instruments. Chesher (2007b) considers discrete outcomes, which are

permitted in this paper, but employs a single equation instrumental variables model

in contrast to the triangular system employed here.

The mixed hazard model with multiplicative heterogeneity studied in Example

1 in Section 3 in which two sources of stochastic variation coalesce to one e¤ective

source was studied in Chesher (2002).

6. Identification of index derivatives

This Section introduces four restrictions and then gives a Theorem which states that

a model embodying these restrictions identi�es index derivatives up to a common

factor of proportionality. Some remarks on the assumptions are provided as they are

introduced. The Theorem is proved in an Appendix.

To simplify the notation the covariates Z� which appear in the structural equation

(1) and in the examples of Section 3 are assumed absent. Their inclusion requires

minor changes to the assumptions and, with these amendments, results in no change

to the result of the Theorem.4

4This point is ampli�ed in the Appendix after the proof of the Theorem.
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Restriction 1. W , Y � fYigMi=1, U � fUigNi=1 and V � fVigMi=1 are random

variables, with Y and V continuously distributed and Z � fZigKi=1 are variables

exhibiting continuous variation in a neighbourhood of a point �z. The support of U

given V and Z does not depend on the values of V or Z. The conditional density

functions of Vm given Z, m 2 f1; : : : ;Mg are positive valued at �z and their support

does not depend upon the value of Z.

The Theorem will concern the identi�cation of the values of index partial deriv-

atives at a point X � ( �w; �y; �z). The random variable W is the outcome of interest,

Y is a list of potentially endogenous variables. U and V are lists of unobservable,

latent variates whose covariation with Z, a list of covariates may be limited to some

degree by Restriction 4 below. Y is required to be continuously distributed, and

Z is required to exhibit continuous variation, because of the focus here on partial

derivatives of a nonparametrically speci�ed index.5

Restriction 2. For any value of Z, U and V , unique values of W and Y are

determined by the structural equations

W = h0(�(Y; Z); U)

Ym = hm(Z; Vm); m 2 f1; : : : ;Mg

where � is a scalar valued function. Each function hm is strictly monotonic with

respect to variation in Vm.

In the equations for the elements of Y speci�ed in Restriction 2 each element of

Y depends on Z and an element of V but not on other elements of Y or V . This

is a restricted version of an alternative set up in which these equations are in full

triangular form, each Ym, m > 1, depending on Ym�1; : : : ; Y1, Z, and latent variates

Vm; Vm�1; : : : ; V1 with Ym strictly monotonic in Vm. This is the construction used in

Chesher (2003). Identi�cation results similar to those developed here can be obtained

5 Identi�cation when endogenous variables have discrete distributions, is studied in Chesher
(2003b). The identifying restrictions of that paper do not permit excess heterogeneity.
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in the context of this full triangular system.

The inverse function of each function hm with respect to Vm exists by virtue of

the strict monotonicity condition. It is denoted by gm. For any z and ym:

ym = hm(z; gm(ym; z)); m 2 f1; : : : ;Mg:

Let g(y; z) denote the M � 1 vector of inverse functions fgm(ym; z)gMm=1.

Under Restrictions 1 and 2 the conditional distribution function of W given Y

and Z is

FW jY Z(wjy; z) =

Z
� � �
Z

h0(�(y;z);u)�w

dFU jV Z(ujg(y; z); z) (8)

� s(�(y; z); g(y; z); w; z) (9)

and for m 2 f1; : : : ;Mg the marginal distribution function of Ym given Z is

FYmjZ(ymjz) = FVmjZ(gm(ym; z))jz) (10)

� rm(gm(ym; z); z): (11)

The function s de�ned in (9) and the functions r1; : : : ; rM de�ned in (11) play a

crucial role in the statement and proof of the Theorem.

Restriction 3. At X , de�ned after Restriction 1, the conditional distribution

function of W given Y and Z, FW jY Z(wjy; z), is di¤erentiable with respect to y

and z, and for m 2 f1; : : : ;Mg the conditional distribution function of Ym given Z,

FYmjZ(ymjz) is di¤erentiable with respect to ym and z.

This relatively high level assumption on FW jY Z and FYmjZ , m 2 f1; : : : ;Mg,

requires di¤erentiability of the structural functions h0, �, and hm, m 2 f1; : : : ;Mg.

The conditional distribution function of W given Y and Z is not required to be

di¤erentiable with respect to w, so W can be a discrete random variable.

The conditional distribution functions FW jY Z and FYmjZ ,m 2 f1; : : :Mg are iden-
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ti�ed and their derivatives at X with respect to elements of y and z are identi�ed

because y and z exhibit continuous variation at X under Restriction 1. So the iden-

ti�ability of index derivatives hangs on whether there are additional restrictions such

that their values (up to a common nonzero scale factor) can be deduced from knowl-

edge of the derivatives of the conditional distribution functions FW jY Z and FYmjZ ,

m 2 f1; : : : ;Mg.

Arrays of partial derivatives, all evaluated at X , are now de�ned. Let r� indicate

a partial derivative with respect to the variable ���. Arguments of functions are

suppressed. s� denotes the value of the (scalar) partial derivative r�s at X

Ry
M�M

�

266664
ry1FY1jZ � � � 0

...
. . .

...

0 � � � ryMFYM jZ

377775 Rz
K�M

�

266664
rz1FY1jZ � � � rz1FYM jZ

...
. . .

...

rzKFY1jZ � � � rzKFYM jZ

377775

Sy
M�1

�

266664
ry1FW jY Z

...

ryMFW jY Z

377775 Sz
K�1

�

266664
rz1FW jY Z

...

rzKFW jY Z

377775

�y
M�1

� s� �

266664
ry1�

...

ryM �

377775 �z
K�1

� s� �

266664
rz1�

...

rzK�

377775 

M�1

�

266664
rg1s=rg1rm

...

rgM s=rgM rM

377775

sz
K�1

�

266664
rz1s

...

rzKs

377775 rz
K�M

�

266664
rz1r1 � � � rz1rM
...

. . .
...

rzKr1 � � � rzKrM

377775
The terms rgmrm, which �gure in the de�nition of the vector 
, are positive

by virtue of Assumption 1. In the array rz a partial derivative rzirm arises on

di¤erentiating rm(gm(ym; z); z) with respect to the ith element of its �nal argument,

holding gm(ym; z) �xed, a non-zero value arising if there is some dependence between

Vm and Zi.
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The index derivatives, which are the structural features of interest, appear in the

de�nition of the vectors �y and �z multiplied by a common factor, s�.

Restriction 4. De�ne � � �rz
. There are G restrictions on �y, �z, 
, sz and

� as follows.

Ay�y +Az�z +A

 +Assz +A�� = a (12)

The arrays a and Ay, Az, etc., are nonstochastic conditional on Z = �z. s� is �nite

and nonzero.

Restrictions on sz limit the degree of covariation of U and Z given V . A typical

derivative in the vector sz is as follows.

Ozks =
Z
� � �
Z

h0(�(�y;�z);u)� �w

d
�
OzkFU jV Z(ujg(�y; �z); z)

��
z=�z

�

A derivative Ozks will be zero when the partial derivative OzkFU jV Z(ujg(�y; �z); z)
��
z=�z

is zero for all u in the set de�ned by h0(�(�y; �z); u) � �w. In practice, since the

structural function is unknown, this can only be assured, when U is multidimensional,

by requiring U to be independent of Zk given V = g(�y; �z) for variations in z in a

neighbourhood of �z.

However, when U is scalar and h0 is monotonic in U ,

jOzksj =
���OzkFU jV Z(h�10 (�(�y; �z); �w)jg(�y; �z); z)��z=�z���

which can be zero under a restriction on the dependence of U on Zk given V =

g(�y; �z) for variations in zk in a neighbourhood of �zk, a restriction which is local to

U = h�10 (�(�y; �z); �w). This is the case considered in Chesher (2003) where it is shown

that the index restriction is not required to achieve identi�cation of partial derivatives

of the structural function when U is scalar.

Restrictions on 
 limit the covariation of U and elements of V . Restrictions on

rz, which may imply restrictions on �, limit the degree of covariation of V and Z.
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Restrictions on �y and �z limit the sensitivity of the index to elements of Y and Z.

Homogeneous restrictions6 on the index derivatives imply the same homogeneous

restrictions on �y and �z. In the absence of parametric restrictions there will typically

be no prior knowledge of the value of s� so in practice non-homogeneous restrictions

on �y and �z are unlikely to arise.

After the following de�nitions the identi�cation Theorem can be stated.

� �

266664
IM 0 Ry 0 0

0 IK Rz �IK IK

Ay Az A
 As A�

377775  �

266666666664

�y

�z




sz

�

377777777775
� �

266664
Sy

Sz

a

377775

Note that � is an array with dimension (G+M +K)� (2M +3K) and  and � are

vectors with respectively (2M + 3K) and (G+M +K) elements.

Theorem 1

Under Restrictions 1 - 4 � = � and  is identi�ed if and only if rank(�) =

2M + 3K for which a necessary condition is G �M + 2K.

The proof is given in the Appendix.

The vectors �y and �z contain values of derivatives of the index at X , multiplied

by a common scale factor. They measure the sensitivity of the conditional distribution

function of W given Y and Z that arises from variations in Y and Z passing purely

through the index �. However they do not generally measure the sensitivity of the

value delivered by the structural equation h0 to variations in Y and Z passing purely

through the index. Accordingly they may be of no economic interest in themselves.

The IRS measures are ratios of index derivatives in which the common scale

factor, s�, is of course absent, so identi�cation of �y and �z implies identi�cation of

IRS measures as long as s� is nonzero, as required by Restriction 4.

6For example zero restrictions and restrictions requiring equality of two or more index derivatives.
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In practice it will be common to impose the 2K restrictions sz = 0 and rz = 0,

the latter implying � = 0. These restrictions limit the covariation of (U; V ) and Z at

Z = �z and would be satis�ed if (U; V ) and Z were independently distributed. De�ne

the following arrays.

�+ �

266664
IM 0 Ry

0 IK Rz

Ay Az A


377775  + �

266664
�y

�z




377775 �+ �

266664
Sy

Sz

a

377775
The following Corollary is relevant to this case.

Corollary 1

Under Restrictions 1 - 4 and the additional restrictions (i) sz = 0, (ii) rz = 0,

the values of �y, �z and 
 are identi�ed if and only if

rank�+ = 2M +K (13)

for which a necessary condition is G �M . In that case de�ne

X � AyRy +AzRz �A
 x � AySy +AzSz � a (14)

If the rank condition (13) is satis�ed, then, for any rank M , M �G matrix P ,


 =
�
X 0P 0PX

��1
X 0P 0Px

�y = Sy �Ry


�z = Sz �Rz
:

The proof is in the Appendix.

As noted after Restriction 4, when U is multidimensional the condition sz = 0,

imposed in Corollary 1, will be di¢ cult to maintain without restricting U to be

independent of Z given V . Suppose now that this independence restriction is imposed
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along with rz = 0, as in Corollary 1 and, further, suppose that the conditions imposed

in Restriction 4 do not involve 
 (so A
 = 0) and are homogeneous (so a = 0).

De�ne the following arrays in which dependence of elements on the value, w, of

the outcome W is made explicit.

�\ �

266664
IM 0 Ry

0 IK Rz

Ay Az 0

377775  \(w) �

266664
�y(w)

�z(w)


(w)

377775 �\(w) �

266664
Sy(w)

Sz(w)

0

377775
�y(w) � O�s(�(�y; �z); g(�y; �z); w; �z)�y �z(w) � O�s(�(�y; �z); g(�y; �z); w; �z)�z


m(w) � Ogms(�(�y; �z); g(�y; �z); w; �z)=Ogmrm; m 2 f1; : : : ;Mg

For some � � <1 and a bounded nonnegative valued functionB(w) with
R
w2� dB(w) =

1, de�ne

�\ �
Z
w2�

�\(w)dB(w)

 \ �
Z
w2�

 \(w)dB(w) �

266666666664

�\y

�\z


\

377777777775
with B(w) chosen so that �\ and  \ have bounded elements. There is the following

Corollary to Theorem 1.

Corollary 2

Under Restrictions 1 - 4 and the additional restrictions: (i) rz = 0, (ii) U is

independent of Z given V , (iii) A
 = 0, (iv) a = 0; �\ \ = �\, and  \ is identi�ed

if and only if

rank�\ = 2M +K
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for which a necessary condition is G �M .

The proof is straightforward on noting that �\ \(w) = �\(w) implies �\ \ = �\.

The rank condition of Corollary 2 is the same as that of Corollary 1 with A
 = 0.

Corollary 2 leads to identi�cation of IRS measures as long as there exists a weighting

function B(w) such that

O�s\ �
Z
w2�

O�s(�(�y; �z); g(�y; �z); w; �z)dB(w)

is nonzero and �nite, because �\y = O�s\�y and �\z = O�s\�z and the common factor

O�s\ will then cancel upon forming up an IRS measure.

7. Estimation

Theorem 1 and its two Corollaries point to estimation procedures. For example, with

nonparametric estimates of the conditional distribution function derivatives, R̂y, R̂z,

Ŝy and Ŝz, estimates, �̂ and �̂, of � and �, can be assembled incorporating the

restrictions to hand, and a minimum distance estimator

 ̂ = argmin
 

�
�̂ � �̂

�0


�
�̂ � �̂

�

can be calculated using a suitable positive de�nite matrix 
.7

Corollary 1 points to explicit expressions for estimators of 
, �y and �z when the

restrictions rz = 0 and sz = 0 are imposed. Estimates of the arrays of distribution

function derivatives together with the restrictions to hand, lead to estimates X̂ and

x̂ of X and x in (14) and thus to the estimator


̂ =
�
X̂ 0P 0PX̂

��1
X̂ 0P 0Px̂

7 In order to obtain consistent estimates, R̂y, R̂z, Ŝy and Ŝz, it will be necessary to impose the
identifying restrictions proposed here over some region of which (�y; �z) is an interior point, and to
impose further conditions on the distribution of (U; V ) given Z.
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with �̂y = Ŝy � R̂y
̂ and �̂z = Ŝz � R̂z
̂ following directly.

Corollary 2, which imposes additional restrictions, points to estimators based on

integrated (with respect to w) weighted derivatives of distribution functions.

In the overidenti�ed case the asymptotic e¢ ciency of the estimators will depend

on the choice of the matrices 
 and P . The identi�cation result has been obtained

under index restrictions and it will be desirable to impose these when the distribution

function derivatives are estimated. When there are many endogenous variables or

high dimensional heterogeneity nonparametric plug-in estimators may be di¢ cult to

implement in practice and one might wish to impose additional semiparametric or

parametric restrictions or consider alternative estimation procedures.

8. Identification via conditional quantile functions

So far the outcome, W , has not been required to be continuously distributed. Now

suppose that it is, at least conditional on Y and Z lying in a neighbourhood of

(�y; �z). In this case the matrices of conditional distribution function derivatives that

appear in Theorem 1 and Corollary 1 can be re-expressed in terms of derivatives of

conditional quantile functions.

This is so because for a random variable A, continuously distributed conditional

on B lying in a neighbourhood of b,

ObFAjB(ajb) = �
ObQAjB(� jb)
O�QAjB(� jb)

����
�=FAjB(ajb)

(15)

OaFAjB(ajb) =
1

O�QAjB(� jb)

����
�=FAjB(ajb)

(16)

where FAjB and QAjB are the conditional distribution and quantile functions of A

given B = b. This follows directly from the de�nition of QAjB(� jb) as the inverse

function of FAjB(ajb) with respect to the argument a, that is, for all � and b:

� = FAjB(QAjB(� jb)jb).
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Equations (15) and (16) do not hold when A has a discrete distribution given B = b

because in that case O�QAjB(� jb) is almost everywhere zero.

This Section explores an alternative, quantile function based approach to identi-

�cation for the case in which the outcome W is continuously distributed given Y and

Z lie in a neighbourhood of (�y; �z). The development is done for the case considered in

Corollary 1 in which rz = 0 and sz = 0. Also, there are assumed to be no restrictions

on 
 and the restrictions on �y and �z are assumed homogeneous, that is in (12),

A
 = 0 and a = 0.

Let �� � f��mgMm=1 be probabilities such that each �ym is the ��m-quantile of Ym

conditional on Z = �z, that is, for m 2 f1; : : : ;Mg:

�ym = QYmjZ(��mj�z) ��m = FYmjZ(�ymj�z):

Let �� be such that �w is the ��-quantile of W given Y = �y and Z = �z, that is:

�w = QW jY Z(��j�y; �z) �� = FW jY Z( �wj�y; �z):

Note that the point X � ( �w; �y; �z) is identical to ~X � (��; �� ; �z). Restriction 1 is

modi�ed to require W given Y = �y and Z = �z to be continuously distributed with

positive density at W = �w.

Restriction 10. W , Y � fYigMi=1, U � fUigNi=1 and V � fVigMi=1 are random

variables, with W , Y and V continuously distributed and Z � fZigKi=1are variables

exhibiting continuous variation in a neighbourhood of a point �z. The support of U

given V and Z does not depend on the values of V or Z. The conditional density

functions of Vm given Z, m 2 f1; : : : ;Mg are positive valued at �z and their support

does not depend upon the value of Z. The conditional density of W given Y = �y and

Z = �z is positive at W = �w.

De�ne the following arrays of quantile function derivatives. Arguments of func-
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tions, all evaluated at ~X , are suppressed.

G�
M�M

�

266664
r�1QY1jZ � � � 0

...
. . .

...

0 � � � r�MQYM jZ

377775 Gz
K�M

�

266664
rz1QY1jZ � � � rz1QYM jZ

...
. . .

...

rzKQY1jZ � � � rzKQYM jZ

377775

Hy
M�1

�

266664
ry1QW jY Z

...

ryMQW jY Z

377775 Hz
Ko1

�

266664
rz1QW jY Z

...

rzKQW jY Z

377775
Using (15) and (16) the arrays, Ry, Rz, Sy and Sz, of conditional distribution

function derivatives can be re-expressed in terms of conditional quantile function

derivatives as follows.

Ry = G�1� Rz = �GzG�1� Sy = �
1

r�QW jY Z
Hy Sz = �

1

r�QW jY Z
Hz

The following reparameterisation is employed.

~�y � r�QW jY Z�y ~�z � r�QW jY Z�z ~
 � r�QW jY ZG
�1
� 


Assumption 10 ensures r�QW jY Z > 0 and the nonsingularity of G� . There is then

Corollary 3 to Theorem 1.

Corollary 3

Under Restrictions 1 0, 2 - 4, and the additional restrictions (i) sz = 0, (ii) rz = 0,

with no restrictions on 
, and with homogeneous restrictions on ~�y and ~�z, the values

of ~�y, ~�z and ~
 are identi�ed if and only if

rank

266664
IM 0 IM

0 IK �Gz

Ay Az 0

377775 = 2M +K (17)
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for which a necessary condition is G �M . In that case, with ~X and ~x de�ned by

~X � �Ay +AzGz ~x � AyHy +AzHz (18)

if the rank condition (13) is satis�ed, for any rank M , M �G matrix P ,

~
 =
�
~X 0P 0P ~X

��1
~X 0P 0P ~x (19)

~�y = �Hy � ~
 (20)

~�z = �Hz +Gz~
: (21)

The proof is in the Appendix.

Corollary 3 suggests an alternative route to estimation of IRS measures when W

is continuously distributed, as follows.

1. Calculate an estimate of the ��m-quantile of Ym given Z = �z form 2 f1; : : : ;Mg.

This produces estimates, ŷm, of �ym for m 2 f1; : : : ;Mg.

2. Calculate estimates of the z-derivatives of the ��m-quantile of Ym given Z = �z

for m 2 f1; : : : ;Mg. This produces an estimate of Gz.

3. Calculate estimates of the y- and z- derivatives of the ��-quantile of W given

Y = ŷm and Z = �z. This produces estimates of Hy and Hz.

4. Using the restrictions to hand (Ay and Az) substitute estimates in (18) and for

a suitable choice of P calculate an estimate of ~
 using (19) and then of ~�y and

~�z using (20) and (21).

5. Ratios of estimates of ~�y and ~�z are the desired estimates of ratios of elements

of �y and �z.

With nonparametric identi�cation assured one could conduct estimation imposing

additional semiparametric or parametric restrictions. Even if that is not done it would
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be sensible to impose the index restrictions that underlie the identi�cation result on

the conditional quantile estimates.

The rank condition of Corollary 3 is a special case of the single equation rank

condition given in Chesher (2003). However the estimation procedure proposed above

di¤ers from that proposed there because di¤erent �parameters�are being considered.

Chesher (2003) considers estimation of partial derivatives of a structural function

whereas in this paper partial derivatives of an index that appears as an argument of

a structural function are the objects of interest.

With more sources of stochastic variation than observable outcomes (the case

N > 1 in this paper) the results of Chesher (2003) on identi�cation and estimation

of derivatives of structural functions do not apply. The index restriction used in this

paper is a key to making progress in problems with excess heterogeneity.

9. Concluding remarks

This paper has developed an identifying model for problems in which structural func-

tions involve multiple latent variables and endogenous observed arguments. Examples

of microeconometric models in which these features arise include count and duration

data models admitting across individual heterogeneity and models in which household

outcomes are determined by characteristics and experiences of individual household

members.

The identifying models use an index restriction that shields certain structural

features from stochastic variation and a triangular construction which allows a control

function argument to be used when there are appropriate exclusion (and inclusion)

restrictions. The control function approach requires continuity in the distribution of

endogenous variables. It is interesting to ask whether, in the absence of continuously

varying endogenous variables, a partial identi�cation result such as in Chesher (2005)

could be obtained after imposing further restrictions.
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Appendix: Proofs

A1. Proof of Theorem 1

The partial derivatives of the conditional distribution functions (8) and (10) with

respect to elements, ym and zk of y and z are as follows. Arguments of functions, all

evaluated at X , are suppressed.

rymFW jY Z = r�srym� +rgmsrymgm (A1.1)

rzkFW jY Z = r�srzk� +

MX
m=1

rgmsrzkgm +rzks (A1.2)

rymFYmjZ = rgmrmrymgm (A1.3)

rzkFYmjZ = rgmrmrzkgm +rzkrm (A1.4)

In addition to the arrays of derivatives de�ned after Restriction 4, use will be

made of the following arrays.

gy �

266664
ry1g1 � � � 0

...
. . .

...

0 � � � ryM gM

377775 sg �

266664
rg1s

...

rgM s

377775

rg �

266664
rg1r1 � � � 0

...
. . .

...

0 � � � rgM rM

377775 gz �

266664
rz1g1 � � � rz1gM
...

. . .
...

rzKg1 � � � rzKgM

377775
Equations (A1.1) - (A1.4) imply the following expressions involving the arrays of

derivatives de�ned above and after Restriction 4.

Sy = s��y + gysg (A1.5)

Sz = s��z + gzsg + sz (A1.6)

Ry = gyrg (A1.7)

Rz = gzrg + rz (A1.8)
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Note that rg is nonsingular because, by virtue of Restriction 1, each diagonal

element of the diagonal matrix rg is positive. So equations (A1.7) and (A1.8) imply

that

gy = Ryr
�1
g

gz = (Rz � rz) r�1g

and therefore, on substituting for gy and gz in (A1.5) and (A1.6) and rearranging,

there is the following.

r�s�y = Sy �Ryr�1g sg

r�s�z = Sz � (Rz � rz) r�1g sg + sz

Rewriting these equations in terms of �y � r�s�y, �z � r�s�z, 
 � r�1g sg and

� � �rz
 gives

�y = Sy �Ry


�z = Sz �Rz
 � � + sz

and forming up the arrays �, � and  as de�ned in Theorem 1 using the restrictions

of Restriction 4 yields the equation � = � as stated in the Theorem. The rank

condition follows directly on noting that  has 2M + 3K elements. The matrix �

has M +G+K rows which leads directly to the stated order condition. �

A2. Amendments when covariates Z� appear in the structural function

Suppose covariates Z� are included in the structural equation forW of Restriction

2, as in (1). These covariates are required not to appear in the index � but they will

appear as arguments of the structural functions hm, m 2 f1; : : : ;Mg of Restriction 2.

In the assumptions and proof, conditioning on Z will be, throughout, on Z and Z�.

The point �z referred to in Restriction 1 will be (�z; �z�) and the point X � ( �w; �y; �z)
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referred to in Restriction 3 and in the arrays de�ned before Restriction 4 will be

X � ( �w; �y; �z; �z�). Variation in Z� is not considered and so Restriction 4 and the

statement of Theorem 1 are unchanged.

A3. Proof of Corollary 1

With the restrictions sz = 0, rz = 0, � and  simplify giving266664
IM 0 Ry

0 IK Rz

Ay Az A


377775
266664
�y

�z




377775 =
266664
Sy

Sz

a

377775
from which the stated rank and order conditions follow directly. Taking this matrix

expression apart there is

�y = Sy �Ry


�z = Sz �Rz


and since

Ay�y +Az�z +A

 = a

on substituting in this last expression for �y and �z and rearranging there is the

following equation.

(AyRy +AzRz �A
) 
 = AySy +AzSz � a (A3.1)

De�ne X � AyRy+AzRz�A
 and x � AySy+AzSz�a. Then (A3.1) can be written

as X
 = x. If the rank condition holds (which requires G � M) then, for any rank

M �G matrix P with rank M , there is

X 0P 0PX
 = X 0P 0Px
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and since, when the rank condition holds, by construction, X 0P 0PX has rank M ,


 =
�
X 0P 0PX

��1
X 0P 0Px

which completes the proof of Corollary 1. �

A4. Proof of Corollary 3

Under the conditions stated the equations satis�ed by �y, �z and 
 are as follows.

�y = Sy �Ry


�z = Sz �Rz


Ay�y +Az�z = 0

In terms of quantile function derivatives these equations are as follows.

�y = � 1

r�QW jY Z
Hy �G�1� 


�z = � 1

r�QW jY Z
Hz +GzG

�1
� 


Ay�y +Az�z = 0

Multiplying left and right hand sides of these equations by r�QW jY Z (non zero

by Restriction 10) and rewriting in terms of the parameters ~�y, ~�zand ~
 gives

~�y = �Hy � ~
 (A4.1)

~�z = �Hz +Gz~
 (A4.2)

Ay~�y +Az~�z = 0 (A4.3)
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and the following matrix equation.

266664
IM 0 IM

0 IK �Gz

Ay Az 0

377775
266664
~�y

~�z

~


377775 =
266664
�Hy

�Hz

0

377775
The rank and order conditions of the Corollary follow directly.

Substituting for ~�y and ~�z in (A4.3) using (A4.1) and (A4.2) and rearranging

gives

(�Ay +AzGz) ~
 = AyHy +AzHz

that is ~X~
 = ~x using the de�nitions of ~X and ~x given in the Corollary. Arguing as

in the proof of Corollary 1 gives the rest of the required results. �
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