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METASTABLE STATES,

QUASI-STATIONARY AND SOFT MEASURES,

MIXING TIME ASYMPTOTICS VIA VARIATIONAL PRINCIPLES

ALESSANDRA BIANCHI AND ALEXANDRE GAUDILLIÈRE

ABSTRACT. We establish metastability in the sense of Lebowitz and Penrose under practi-

cal and simple hypothesis for (families of) Markov chains on finite configuration space in

some asymptotic regime, including the case of configuration space size going to infinity. By

comparing restricted ensemble and quasi-stationary measure, we study point-wise conver-

gence velocity of Yaglom limits and prove asymptotic exponential exit law. We introduce

soft measures as interpolation between restricted ensemble and quasi-stationary measure

to prove an asymptotic exponential transition law on a generally different time scale. By

using potential theoretic tools we prove a new general Poincaré inequality and give sharp

estimates via two-sided variational principles on relaxation time as well as mean exit time

and transition time. We also establish local thermalization on a shorter time scale and give

mixing time asymptotics up to a constant factor through a two-sided variational principal.

All our asymptotics are given with explicit quantitative bounds on the corrective terms.

1. METASTABILITY AFTER LEBOWITZ AND PENROSE

1.1. Phenomenology and modelization. Lebowitz and Penrose characterized metastable
thermodynamic states by the following properties [3]:

(a) only one thermodynamic phase is present,
(b) a system that starts in this state is likely to take a long time to get out,
(c) once the system has gotten out, it is unlikely to return.

We can think, for example, to freezing fog made of small droplets in which only one phase
is present (liquid phase) that remains for a long time in such a state (until collision with
ground or trees, forming then hard rime) and that once frozen will typically not return to
liquid state before pressure or temperature have changed.

To modelize such a state they considered in [3] a deterministic dynamics with equilib-
rium measure µ. First, they associated with the only one phase of the metastable state a
subset R of the configuration space, and described this metastable state by the restricted
ensemble µR = µ(·|R). Second, they proved that the escape rate from R of the system
started in µR is maximal at time t = 0, and that this initial escape rate is very small. Last,
they used standard methods of equilibrium statistical mechanics to deal with (c). As esti-
mate of the returning probability to the metastable state they used the fraction of member
of the equilibrium ensemble that have configuration in R and they noted ([3], Section 8):

This amounts to assuming that a system whose dynamical state has just
left R is no more likely to return to it than one whose dynamical state was
never anywhere near R. The validity of this assumption, at least in the
short run, is dubious, but at least it provides us with some indication of
what to expect.
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In this paper we want to give a different model for the same phenomenology that over-
comes the last difficulty. We will work with stochastic processes rather than determinis-
tic dynamics, but the Lebowitz-Penrose modelization will be our guideline. We will try
to recover this phenomenology under simple and practical hypotheses only. Since the
study of metastability has been considerably enriched after Lebowitz and Penrose work,
we want also to incorporate in our modelization as much as possible of what was previ-
ously achieved. We will then make a brief and partial review of these achievements. On
this review will depend our goals and starting ideas but not our proofs since we want
to make this paper as self-contained as possible. Our model and results are presented in
Section 2.

1.2. A partial review. Since Lebowitz and Penrose paper, an enormous work has been
done to describe the metastability phenomenon. In particular Cassandro, Galves, Olivieri
and Vares introduced the path-wise approach, which focused, in the context of stochastic
processes, on time averages associated with an asymptotic exponential law [5]. This was
further developed by the pioneering works of Neves and Schonmann who studied the typi-
cal paths for stochastic Ising model on a given volume in the low temperature regime ([7],
[8]). This work was then extended to higher dimensions, infinite volume and fixed tem-
perature regimes, locally conservative dynamics and probabilistic cellular automata ([12],
[11], [15], [23], [29], [40]).

As developed in [24], a crucial role was played by large deviation tools inherited from
Wentzell and Freidlin in their reduction procedure from continuous stochastic processes
to finite configuration space Markov chains with exponentially small transition rates [6].
This is especially true for very low temperature regimes, but the same kind of reduction
procedure allowed to deal in various cases with large volume rather than low temperature
limits (see [14] for Curie-Weiss model under random magnetic field, see [24] for further
examples).

Then, using potential theoretic rather than large deviations tools, Bovier, Eckhoff, Gay-
rard and Klein, developed a set of general techniques to compute sharp asymptotics of the
expected value of asymptotic exponential laws associated with the metastability phenome-
non, and revisited (after [4], [10]) the relation between generator spectrum and metasta-
bility ([16], [19], [22]). This allowed, for example, to go beyond logarithmic asymptotics
for stochastic Ising models in the low temperature regime ([17], [25]) and to prove the
first rigorous results in the fully conservative case ([35]), to deal with metastability for
the random hopping time dynamics associated with the Random Energy Model ([18]), to
make a detailed analysis of Sinai’s random walk spectrum ([28]), to extend the study of the
disordered Curie-Weiss model to the case of continuous magnetic field distribution ([30],
[36]).

We then reached to an essentially complete comprehension of the metastability phe-
nomenon in at least two classes of models: very low temperature dynamics in finite fixed
volumes and large volume or continuous configuration space dynamics that can be re-
duced via Wentzell-Freidlin procedure to the previous case. Of course, specific and often
non trivial computations have to be made for each specific model, but there exists a general
approach to the problem that is developed in [24] and, as far as the potential theoretic part
is concerned, [16], [19], and [22] together with [38], that bridges between potential the-
ory and typical path description by reinforcing and generalizing the results of [9] (and it
is worth to note that [38], after [33, 37], contemplates also the case of polynomially small
rather than only exponentially small transition probabilities). For both classes of models,
like one-dimensional metastable systems as considered in [28] or [27], a recurrence prop-
erty to a very localized subset of the configuration space (single configurations identified
to metastable states in the first case, small neighborhoods of the dynamics attractors in the
second case) plays an important role.
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Beyond these two classes of models there are many limit cases, special cases, and partial
results. For example, in [18] we are far from a finite fixed volume situation but single
configurations can still be identified with metastable states and have still enough mass at
equilibrium for potential theoretic or renewal techniques to work. This is not the case
in [35], where potential theoretic tools give only expected values of some hitting times
when the system is started from some specific harmonic measures that are very different
from what one would expect to be a “metastable state” (here, like in the sequel and fol-
lowing Lebowitz and Penrose, we mean a whole measure when referring to a metastable
“state” and not to a single configuration of the configuration space). Any kind of exponen-
tial law is presently also lacking in this case. The same difficulty is faced in [30], but it is
overcome in [36] by mean of a specific coupling argument that gives point-wise estimates
and opens the way to the exponential law. Finally, the beautiful paper by Schonmann
and Shlosman [15] achieves the tour de force of using essentially equilibrium statistical
mechanics computations to deal with the dynamical problem of metastability. In this case
also the exponential law is lacking as well as sharp estimates on the transition time, even
though the simple formulation of such properties is not completely obvious in this fixed
temperature and vanishing magnetic field regime.

1.3. Starting ideas. In the present paper we want to elaborate some tools to describe
the metastability phenomenon beyond the case of a dynamics with a recurrence property
to a very localized subset of the configuration space. We will focus on exponential laws
and sharp asymptotics of their expected values. We note that the exponential law itself
suggests some kind of recurrence property. If it is not a recurrence property to a very
localized subset, it has to be in some sense a recurrence property to a whole “spread
measure”. And this measure should coincide with our metastable state. Now, following
Lebowitz and Penrose, if we associate the metastable state with some subset R of the
configuration space X , then, considering property (b), we have at least two candidates to
describe our metastable state: one is the restricted ensemble µR = µ(·|R) the other is the
quasi-stationary measure

µ∗R = lim
t→+∞

PµR(X(t) ∈ ·|τX\R > t) (1)

where X(t) is the configuration of the system at time t and τX\R is the exit time of R (we

will be more precise in the next section). The main advantage of µR is that µR is often
an explicit measure one can compute with, while µ∗R is only implicitly defined. The main
advantage of µ∗R is that the exit law of R for the system started in µ∗R is an exponential
law. Our first results will then start with a comparison between µR and µ∗R. We will give
simple and practical hypotheses to ensure that they are close in some sense, then we will
be able to prove some kind of recurrence property to µ∗R. All this will be done in the
simplest possible setup: considering a Markov process on a finite configuration space in
some asymptotic regime (including the possibility to send to infinity the cardinality of the
configuration space).

In the present work we will essentially build on the ideas of four different papers: [3]
for the formulation of the problem, [5] for the focus on exponential laws, [16] for the
introduction of potential theoretic techniques in the metastability field to get sharp esti-
mates on some mean hitting times, and Miclo’s work [34] where some concepts of local
equilibrium, and “hitting times” of such equilibriums, are introduced. As far as this last
paper is concerned, it will only work as a source of inspiration: we will not require a full
spectrum knowledge, and we will not introduce any notion of a starting point depending
local equilibrium. Finally, we note that the idea of considering quasi-stationary measures
as metastable states was already contemplated in [20]. Even though some of our results
echo some of [20], we were not able to make any clear comparison, essentially because of
the much more analytical point of view of [20] and the many hypotheses introduced in the
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results of [20]. We note that, on the one hand, [20] deals with a much more general setup
than ours since the authors consider non-reversible Markov processes on a continuous
configuration space, while we look at reversible Markov processes on finite configuration
space. However, the reason why we assume reversibility is to be able to use potential the-
oretic results to get sharp estimates on mean times via variational principles, a question
that is not considered in [20].

2. MODEL AND RESULTS

2.1. Quasi-stationary measure and restricted ensemble. We consider a continuous time
Markov process X on a finite set X with generator defined by

Lf(x) =
∑

y∈X
p(x, y)(f(y)− f(x)) (2)

for x in X and f : X → R, and where p is such that
∑

y p(x, y) = 1. Since X is finite, any

generator can be written like in (2) up to time rescaling. We assume that X is irreducible
and reversible with respect to some probability measure µ, we denote by 〈·, ·〉 the scalar
product in ℓ2(µ), by ‖ · ‖ the associated 2-norm, by D the Dirichlet form defined by

D(f) = 〈f,−Lf〉 = 1

2

∑

x,y∈X
c(x, y) [f(x)− f(y)]2 (3)

where each conductance c(x, y) is equal to

c(x, y) = µ(x)p(x, y), (4)

and by γ the spectral gap

γ = min
Varµ(f)6=0

D(f)

Varµ(f)
. (5)

For R ⊂ X we define in each x ∈ R the escape probability

eR(x) =
∑

y 6∈R
p(x, y) (6)

and we denote by XR the reflected process with generator given by

LRf(x) =
∑

y∈R
pR(x, y)(f(y)− f(x)) (7)

for x in R and f : R → R, and where, for all x, y in R,

pR(x, y) =

{

p(x, y) if x 6= y,
p(x, x) + eR(x) if x = y.

(8)

We will only consider subsets R such that both XR and XX\R are irreducible and we note

that XR inherits from X the reversibility property with respect to the restricted ensemble

µR = µ(·|R). (9)

We identify ℓ2(µR) with the subset of ℓ2(µ) of functions f : X 7→ R such that f |X\R ≡ 0
and we denote by 〈·, ·〉R, ‖·‖R, DR, cR(x, y) and γR the associated scalar product, 2-norm,
Dirichlet form, conductances for x, y in R and spectral gap.

We denote by p∗R the sub-Markovian kernel on R such that, for all x, y in R,

p∗R(x, y) = p(x, y). (10)
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We know from [2] and the Perron-Frobenius theorem that there exists φ∗R > 0 such that
1 − φ∗R is the spectral radius of p∗R and that there is a unique quasi-stationary measure µ∗R
such that µ∗Rp

∗
R = (1− φ∗R)µ

∗
R. In addition we have, for all x, y in R and t ≥ 0,

limt→+∞ Px(X(t) = y|τX\R > t) = µ∗R(y), (11)

Pµ∗R(τX\R > t) = e−φ
∗
Rt, (12)

µ∗R(eR) = φ∗R. (13)

In Sections 2.3 and 6 these properties will be rederived in a slightly more general context.

Our first result states that if 1/φ∗R, the mean exit time for the system started in µ∗R,
is large with respect 1/γR, the relaxation time of the reflected process, then the quasi-
stationary measure µ∗R is close to the restricted ensemble µR. More precisely, defining, for
all x in R,

ε∗R =
φ∗R
γR

(14)

h∗R(x) =
µ∗R(x)

µR(x)
(15)

we prove the following.

Proposition 2.1. If ε∗R < 1, then

VarµR(h
∗
R) = ‖h∗R − 1R‖2R ≤ ε∗R

1− ε∗R
(16)

Proof. See Section 3.1. �

Remark. When proving that ε∗R goes to 0 in some asymptotic regime (for example when
the cardinality of the configuration space goes to infinity like in [5], when some parameter
of the dynamics goes to 0 like the temperature in [7] or when both happen like in [32])
one has to give upper bounds on φ∗R and lower bounds on γR. As far are such upper
bounds are concerned we will show that they can be easily obtained using test functions
in some inequalities (see Theorem 2.11 below together with the following remark). In
addition, since one can often easily compute with µR and eR is often explicit, one can
usually estimate

φR = µR(eR) (17)

and use the following lemma that we prove in Section 3.2.

Lemma 2.2. φ∗R ≤ φR.

Lower bounds on γR can be more difficult to obtain. However we note, first, that rough
lower bounds will often be sufficient to our ends, second, that the new Poincaré inequality
we will prove in this paper (Theorem 2.12) can be used to this purpose.

As a consequence of this first result we can control the convergence rate of the Yaglom
limit (11). We note that, by the reversibility of X with respect to µ, p∗R is a self-adjoint

operator on ℓ2(µR) and has real eigenvalues. By the Perron-Frobenius theorem, this implies
the existence of a spectral gap γ∗R > 0 equal to the difference between the first and the
second largest eigenvalue of p∗R.

Proposition 2.3. If ε∗R < 1
3 , then

1

γ∗R
≤ 1

γR

{

1− ε∗R
1− 3ε∗R

}

. (18)

Proof. See Section 3.3. �
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Remark. Since, after the statical study made in [39], we intend to apply our results to the
dynamical study of the cavity algorithm introduced in [26], for which finite effects volume
are of first importance, we need to give asymptotics with quantitative control of corrective
terms. This produces quite long formulas and to simplify the reading we put between
graph parentheses any terms that goes to 1 in a suitable asymptotic regime.

Then we define
ζ∗R = min

x∈R
µR(x)h

∗
R
2(x) = min

x∈R
µ∗R(x)h

∗
R(x) (19)

and, if ε∗R < 1, for any δ ∈]0, 1[,

T ∗
δ,R =

1

γ∗R

(

ln
2

δ(1 − δ)ζ∗R

)

{

1 +

√

ε∗R
1− ε∗R

}

(20)

to get point-wise mixing estimates for Yaglom limits.

Theorem 2.4 (Mixing towards quasi-stationary measure). If ε∗R < 1/3, then for all x, y ∈ R
and δ ∈]0, 1[,

∣

∣

∣

∣

Px(X(t) = y | τX\R > t)

µ∗R(y)
− 1

∣

∣

∣

∣

< δ as soon as t > T ∗
δ,R (21)

Proof. See Section 3.4. �

Remark. In words this says that either the system leaves R before time T ∗
δ,R or it is de-

scribed after that time by µ∗R in the strongest possible sense. This theorem is useful only
if one can provide upper bounds on T ∗

δ,R. We already estimated γ∗R in Proposition 2.3

and we note that, as far as ζ∗R is concerned it only appears in the formula through its
logarithm. Very crude estimates will then often be sufficient. One has for example the
following lemma.

Lemma 2.5. If p(x, x) > 0 for all x ∈ R, then

ζ∗R ≥ min
x∈R

µ∗R
2(x) ≥ e−2∆RDR , (22)

where
∆R = max{− ln pR(x, y) : pR(x, y) > 0 , ∀x, y ∈ R}
DR = min{k ≥ 0 : pkR(x, y) > 0 , ∀x, y ∈ R} .

Proof. See Appendix A. �

We will make a special choice for the parameter δ in (20). We define

δ∗R = ζ∗R min
x∈∂−R

eR(x) (23)

and set
T ∗
R = T ∗

δ∗R,R. (24)

The next lemma is necessary for the following results to make sense.

Lemma 2.6. For ε∗R < 1, it holds

δ∗R ≤ φ∗R ≤ φ∗RT
∗
R ≤ 2ε∗R

(

ln
√
2

δ∗R(1−δ∗R)

)

{

1 +

√

ε∗R
1−ε∗R

}

(25)

Proof. See Section 4.1. �

Remark. We will often refer in the sequel to the regime φ∗RT
∗
R ≪ 1. The lemma implies that

in this regime, δ∗R and φ∗R also go to 0. In addition, it provides a sufficient and practical
condition for being in such a regime: since minx∈∂−R eR(x) is usually an easy to estimate
quantity, one has a lower bound on δ∗R as soon as one can estimate ζ∗R from below, and,
since on the right hand side δ∗R appears only through its logarithm, rough bounds will often
be enough to show that ε∗R goes fast enough to 0.
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We close this section with a first asymptotic exponential law.

Theorem 2.7 (Asymptotic exit law). For any probability measure ν on R, define πR(ν) =
Pν(τX\R < T ∗

R) . If ε∗R < 1/3, then

(i)
{

Eν [τX\R] ≤ T ∗
R + 1−πR(ν)

φ∗R
{1 + δ∗R} ≤ 1

φ∗R
{1 + φ∗RT

∗
R + δ∗R}

Eν [τX\R] ≥ 1−πR(ν)
φ∗R

{1 + φ∗RT
∗
R − δ∗R}

;

(ii) for all t ≥ φ∗RT
∗
R,

{

Pν(τX\R > t
φ∗R

) ≤ (1− πR(ν))e−t
{

eφ
∗
RT

∗
R(1 + δ∗R)

}

Pν(τX\R > t
φ∗R

) ≥ (1− πR(ν))e−t
{

eφ
∗
RT

∗
R(1− δ∗R)

} .

Proof. See Section 4.2 �

Remark. The theorem gives more than asymptotic exponential exit law. The first part
shows in particular that in the regime φ∗RT

∗
R ≪ 1, the quasi-stationary measure maximizes

asymptotically the mean exit time on the set of all possible starting measures. The second
part shows that, provided πR(ν) converges to some limit, the normalized mean exit time
φ∗RτX\R converges in law to a convex combination between a Dirac mass in 0 and an

exponential law with mean 1.

As an example of application we can consider the case of the restricted ensemble.

Lemma 2.8. It holds

πR(µR) = PµR(τX\R ≤ T ∗
R) ≤ φRT

∗
R . (26)

Proof. See Section 4.3. �

Corollary 2.9. If ε∗R < 1/3, then

1
φ∗R

{(1− φRT
∗
R)(1 + φ∗RT

∗
R − δ∗R)} ≤ EµR [τX\R] ≤ 1

φ∗R
{1 + φ∗RT

∗
R + δ∗R} (27)

and, for all t > φ∗RT
∗
R ,

e−t
{

(1− φRT
∗
R)(1− δ∗R)e

φ∗RT
∗
R

}

≤ PµR(τX\R > t
φ∗R

) ≤ e−t
{

(1 + δ∗R)e
φ∗RT

∗
R

}

. (28)

This shows asymptotic exponential exit law in the regime φRT ∗
R ≪ 1 for the system

started in the restricted ensemble.

2.2. (κ, λ)-capacities, mean exit times and a new Poincaré inequality. In this section
we introduce a new object which extends the notion of capacity between sets. For any
κ, λ > 0 and A,B ⊂ X , we first extend the electrical network (X , c), with c(x, y) =

µ(x)p(x, y) = µ(y)p(y, x) for all distinct x, y ∈ X , into a larger electrical network (X̃ , c̃)
by attaching a dangling edge (a, ā) with conductance κµ(a) to each a ∈ A and a dangling
edge (b, b̄) with conductance λµ(b) to each b ∈ B. More precisely, we add |A| + |B| nodes
and edges to the network by setting

X̃ = X ∪ {ā : a ∈ A} ∪ {b̄ : b ∈ B}
and, for all distinct x̃, ỹ ∈ X̃ we define

c̃(x̃, ỹ) =















c(x, y) if (x̃, ỹ) = (x, y) ∈ X × X
κµ(a) if (x̃, ỹ) = (a, ā) for some a ∈ A
λµ(b) if (x̃, ỹ) = (b, b̄) for some b ∈ B
0 otherwise

. (29)



METASTABILITY AND QUASI-STATIONARY MEASURES 8

Definition 2.10. The (κ, λ)-capacity, Cλκ (A,B), is defined as the capacity between the sets

Ā and B̄ in the electrical network (X̃ , c̃), and then is given by

Cλκ (A,B) = min
f̃ :X̃ 7→R







1

2

∑

x̃,ỹ∈X̃

c̃(x̃, ỹ)[f̃(x̃)− f̃(ỹ)]2; f̃|Ā = 1 , f̃|B̄ = 0







= min
f :X 7→R

{

D(f) + κ
∑

a∈A
µ(a)[f(a)− 1]2 + λ

∑

b∈B
µ(b)[f(b)− 0]2

}

= min
f :X 7→R

{

D(f) + κµ(A)EµA
[

(f|A − 1)2
]

+ λµ(B)EµB
[

(f|B − 0)2
]}

.

(30)

Remarks.

i) Since all the points of Ā and B̄ are at potential 1 and 0 respectively in formula (30),
they are electrically equivalent and we could have defined the (κ, λ)-capacity be-
tween A and B by adding just two nodes to the electrical network (X , c). However,
our definition with dangling edges will be more useful in the sequel.

ii) A (κ, λ)-capacity is in some sense easy to estimate since it satisfies a two-sided
variational principle. On one hand, by definition, it is the infimum of some func-
tional, and any test function will provide an upper bound. On the other hand
it is the supremum of another functional on flows from Ā to B̄, which are anti-
symmetric function of oriented edges with null divergence in X , i.e., on functions

ψ̃ : X̃ × X̃ 7→ R such that for all x ∈ X̃ \ (Ā ∪ B̄), divxψ̃ =
∑

x̃∈X̃ ψ̃(x, x̃) = 0.

This is Thomson principle that goes back to [1], Chapter 1, Appendix A (see also
lecture notes [31] for a more modern presentation or textbook [13] for the proof
of an almost equivalent result). Letting

D̃(ψ̃) = 1
2

∑

x̃,ỹ∈X̃

ψ̃(x̃, ỹ)

c(x̃, ỹ)
,

be the energy dissipated by the flow ψ̃ in the network (X̃ , c̃), and φ̃1(Ā, B̄) the set

of unitary flows from Ā to B̄, that is, the set of flows ψ̃ from Ā to B̄ such that
∑

ā∈Ā
divāψ̃ =

∑

ā∈Ā

∑

x̃∈X̃

ψ̃(ā, x̃) = 1 = −
∑

b̄∈B̄
divb̄ψ̃ = −

∑

b̄∈B̄

∑

x̃∈X̃

ψ̃(b̄, x̃) , (31)

or, if D̃(ψ̃) < +∞, such that

−
∑

ā∈Ā
ψ̃(a, ā) = 1 =

∑

b̄∈B̄
ψ̃(b, b̄) , (32)

we have

Cλκ (A,B) = max
ψ̃∈φ̃1(Ā,B̄)

D̃(ψ̃)

= max
ψ∈φ1(A,B)

{

D(ψ) +
∑

a∈A

(divaψ)
2

κµ(a)
+
∑

b∈B

(divbψ)
2

λµ(b)

}

(33)

= max
ψ∈φ1(A,B)

{

D(ψ) + µ(A)
κ EµA

[

(

divψ
µ

)2

|A

]

+ µ(B)
λ EµB

[

(

divψ
µ

)2

|B

]}

,

where φ1(A,B) is the set of unitary flows ψ from A to B and

D(ψ) = 1
2

∑

x,y∈X

ψ(x, y)

c(x, y)
.

Then, any test flow provides a lower bound on Cλκ (A,B).



METASTABILITY AND QUASI-STATIONARY MEASURES 9

iii) We know ([13], [31]) that the infimum and supremum in (30) and (33), are
realized, respectively, by the equilibrium potential V λ

κ = P(·)(GA(σκ) < GB(σλ)),
where GA and GB are the right continuous inverses of the local times in A and B,
while σκ and σλ are independent exponential times with rates κ and λ, and by its
associated normalized current

− c∇V λ
κ

Cλ
κ (A,B)

: (x, y) ∈ X × X 7−→ c(x,y)
Cλ

κ (A,B)
(V λ
κ (x)− V λ

κ (y)) . (34)

We will say more on such quantities in the next section.
iv) The previous definitions and observations extend to the case when κ and λ are

equal to +∞. In that case we identify Ā to A in the extended network if κ = +∞,
or B̄ to B if λ = +∞,and we drop the infinite upper or lower index in the notation,
so that, for example, Cκ(A,B) = C∞

κ (A,B). However, when κ and λ are both
equal to +∞, to avoid any ambiguity we need to require that A ∩ B = ∅. In that
case the notation becomes C(A,B) = C∞

∞ (A,B) and we recover indeed the usual
notion of capacity.

We then get sharp asymptotics on mean exit times for the system started in the quasi-
stationary measure.

Theorem 2.11 (Mean exit time estimates). If ε∗R < 1/3, then, for all κ > 0,

Cκ(R,X\R)
µ(R)

{

1− ε∗R − κ
γR

}

≤ φ∗R ≤ Cκ(R,X\R)
µ(R)

{

1 + φ∗RT
∗
R + δ∗R +

φ∗R
κ

}

(35)

Proof. See Section 5. �

Remarks.

i) In the regime ε∗R + φ∗RT
∗
R ≪ 1 one can choose κ such that φ∗R ≪ κ ≪ γR and get

matching bounds.
ii) Both bounds are in some sense easy to estimate since capacities satisfies a two-

sided variational principal. Moreover, compared with the formula for mean exit
time provided by potential theoretic techniques (see, e.g., [16]), the above in-
equalities require no residual mean potential estimates. (Such estimates, as well
as some harmonic measures will only play a role in the proof of the theorem.)

iii) Resolving the upper bound in φ∗R (φ∗R appears also in the right hand side of the
inequality) one can get good bounds on φ∗R and prove that it decreases fast enough
to guarantee φ∗RT

∗
R ≪ 1.

Our (κ, λ)-capacities provide also spectral gap estimates and a new general Poincaré
inequality. For κ, λ > 0 and A,B ⊂ X we set

φλκ(A,B) =
Cλκ (A,B)

µ(A)µ(B)
= φκλ(B,A) . (36)

Theorem 2.12 (Relaxation time estimates). For all κ, λ > 0 and any R ⊂ X such that XR
and XX\R are both irreducible Markov processes,







1
γ ≥ 1

φλκ(R,X\R)

{

1− Cκ(R,X\R)
κµ(R) − Cλ(R,X\R)

λµ(X\R)

}2

1
γ ≤ 1

φλκ(R,X\R)

{

1 + max
(

κ+φλκ(R,X\R)
γR

, λ+φ
λ
κ(R,X\R)
γX\R

)} . (37)

Proof. See Section 5. �

Remarks.

i) Without loss of generality, we can assume µ(R) ≤ µ(X \R) so that, by (36),

φλκ ≤ 2Cλκ (R,X \R)/µ(R). Then, as a consequence of the previous theorem and
of the monotonicity in κ and λ of (κ, λ)-capacities, we get matching bounds over
1/γ in the regime ε∗R + ε∗X\R + φ∗R/γX\R ≪ 1. One can indeed choose κ such that
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φ∗R ≪ κ≪ γR, as for Theorem 2.11 (Remark i)), and λ such that φ∗R, φ
∗
X\R ≪ λ≪

γX\R. In addition and like previously, all the relevant quantities can be estimated

by two-sided variational principles.
ii) The lower bound is a generalization of the classical isoperimetrical estimate that is

recovered for κ = λ = +∞.
iii) The upper bound is a new Poincaré inequality. This inequality, or an easy to derive

version when one divides the configuration space into more than two subsets,
echoes Poincaré inequalities given in [21]. We are not able to compare in full
generality our result with that of [21] but we note that because of the presence
of some global parameter called γ in [21] one gets generally in our metastable
situation an extra factor 1/min(γR, γX\R) by applying the results of [21].

2.3. Soft measures, local thermalization, transition and mixing times. We address
now the difficulty raised by Lebowitz and Penrose. Whatever the measure we choose
to describe our metastable state, restricted ensemble or quasi-stationary measure, it is
associated with some subset R of the configuration space. Then there is an ambiguity
when one looks at property (b): what is “getting out” of the metastable state? One is
tempted to say that it corresponds in our model to the exit of R. But doing so we are very
unlikely to modelize in any satisfactory way property (c): we can expect that “on the edge”,
when the system just exited R, it has probabilities of the same order to “proceed forward”
and thermalize in X \R and to go “backward” and thermalize in R. Then we would like
to define what would be a “true escape” from R. Theorem 2.4 suggests an answer in the
regime φ∗X\RT

∗
X\R ≪ 1. We could define the true escape has the first excursion of length

T ∗
X\R inside X \R. Since time randomization is almost always a good idea, we are led to

the following definitions.

For any A ⊂ X we call

LA(t) =

∫ t

0
1A(X(s))ds (38)

the local time associated with A up to time t and we denote by GA the right-continuous
inverse of LA:

GA(t) = inf{s ≥ 0 : LR(s) > t}. (39)

For σλ an exponential time with mean 1/λ that is independent from X we define for all x
and y in R

p∗R,λ(x, y) = Px

(

X(τ+R) = y, LX\R(τ
+
R) ≤ σλ

)

(40)

with τ+R the return time in R after the first clock ring τ , i.e., τ+R = τ + τR ◦ θτ with θ
the usual shift operator. (One can see the process X as a process updated according to its
discrete version with transition probability matrix p at each ring of a Poissonian clock with
intensity 1.) We also define, for all x in R,

eR,λ(x) = Px(LX\R(τ
+
R) > σλ) = 1−

∑

y∈R
p∗R,λ(x, y) (41)

and for all x and y in R

pR,λ(x, y) =

{

p∗R,λ(x, y) if x 6= y,

p∗R,λ(x, x) + eR,λ(x) if x = y.
(42)

The Markov process XR,λ on R with generator defined by

LR,λf(x) =
∑

y∈R
pR,λ(f(y)− f(x)) (43)
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is reversible with respect to µR and has spectral gap

γR,λ = min
VarµR(f)6=0

DR,λ(f)

VarµR(f)
(44)

where

DR,λ(f) =
1

2

∑

x,y

cR,λ(x, y)(f(x)− f(y))2 (45)

with

cR,λ(x, y) = µR(x)pR,λ(x, y) = pR,λ(y, x)µR(y). (46)

In addition we define

τX\R,λ = LR(GX\R(σλ)). (47)

We know by the Perron-Frobenius theorem that the spectral radius of p∗R,λ is a simple

positive eigenvalue that is smaller than or equal to 1 and has left and right eigenvectors
with positive coordinates. We call it 1−φ∗R,λ and denote by µ∗R,λ the unique associated left

eigenvector that is also a probability measure on R.

Lemma 2.13. It holds

i) φ∗R,λ = µ∗R,λ(eR,λ) ;

ii) Pµ∗R,λ
(τX\R,λ > t) = e−tφ

∗
R,λ , ∀t ≥ 0 ;

iii) lim
t→∞

Px(X ◦GR(t) = y | τX\R,λ > t) = µ∗R,λ , ∀x, y ∈ R.

Proof. See Section 6.1. �

We say that µ∗R,λ is a quasi-stationary measure associated with a soften barrier, or a

soften quasi-stationary measure, or, more simply, a soft measure. Indeed, µ∗R,λ is the limit-

ing distribution of the process conditioned to survival when it is killed at rate λ outside R.
So, the hardest quasi-stationary measure associated with R, corresponding to λ = +∞,
is the quasi-stationary measure µ∗R, while the softest measure, corresponding to λ = 0, is
the restricted ensemble µR (φ∗R,0 = 0 and µ∗R,0 is the equilibrium measure associated with

p∗R,0 = pR,0, which is reversible with respect to µR). More precisely we have the following.

Lemma 2.14. The function λ ∈ [0,+∞] 7→ µ∗R,λ ∈ ℓ2(µR)∗ is a continuous interpolation

between the restricted ensemble µR and the quasi-stationary distribution µ∗R. In particular,
for any λ0 ∈ [0,+∞] and y ∈ R, we have

lim
λ→λ0

µR,λ(y) = µR,λ0(y) (48)

and for all x ∈ R it holds the commutative limite property

lim
λ→λ0

lim
t→∞

Px(X ◦GR(t) = y | τX\R,λ > t) = lim
t→∞

lim
λ→λ0

Px(X ◦GR(t) = y | τX\R,λ > t) . (49)

Proof. See Section 6.2. �

Analogously to what was done in the case λ = +∞ we set ε∗R,λ = φ∗R,λ/γR,λ, h∗R,λ =

µ∗R,λ/µR and we call γ∗R,λ the gap between the largest and the second eigenvalue of p∗R,λ
(since p∗R,λ is self-adjoint with respect to 〈·, ·〉R it has only real eigenvalues). We also define

φR,λ = µR(eR,λ).

Proposition 2.15. The parameters γR,λ, φ∗R,λ, ε∗R,λ and φR,λ depend continuously on λ. In

addition, when λ decreases to 0, so do φ∗R,λ, ε∗R,λ and φR,λ, while γR,λ increases.

Proof. See Section 6.3. �

The proofs of Sections 3 carry over this more general setup, and we get the following
theorem.
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Theorem 2.16 (Mixing towards soft measures). For all λ ≥ 0, φ∗R,λ ≤ φ∗R, γR,λ ≥ γR and

ε∗R,λ ≤ ε∗R, Proposition 2.1, Proposition 2.3, Theorem 2.4 and Lemma 2.5 hold with an extra

index λ and writing X ◦GR instead of X.

Remark. By continuity and monotonicity, the hypothesis ε∗R,λ < 1 and ε∗R,λ < 1/3 are

always satisfied for λ small enough.

We are now ready to deal with local thermalization. We define inductively, for κ, λ ≥ 0,
the stopping times τi for i ≥ 0:

τ0 = 0, (50)

τ1 = GR(σκ) ∧GX\R(σλ), (51)

τi+1 = τi + τ1 ◦ θτi (52)

Then for δ ∈ (0, 1) we call i0 the smallest i ≥ 1 such that one of the two following condi-
tions holds,

i) X(τi) ∈ R and LR(τi)− LR(τi−1) > T ∗
δ,R,λ, (53)

ii) X(τi) 6∈ R and LX\R(τi)− LX\R(τi−1) > T ∗
δ,X\R,λ, (54)

and we set τδ = τi0.

Theorem 2.17 (Local thermalization). For any δ ∈]0, 1[ and any probability measure ν on
X , if ε∗R,λ < 1/3 and ε∗X\R,κ < 1/3, then ∀x ∈ X ,

max

(∣

∣

∣

∣

∣

Pν(X(τi) = x |X(τδ) ∈ R)

µ∗R,λ(x)
− 1

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

Pν(X(τi) = x |X(τδ) 6∈ R)

µ∗X\R,κ(x)
− 1

∣

∣

∣

∣

∣

)

< δ . (55)

Moreover if ξ = max
(

eκT
∗
δ,R,λ − 1, e

λT ∗
δ,X\R,λ − 1

)

< 1, it holds

Pν

(

T − δ > t
(

1
κ + 1

λ

))

≤ e−t
{

1

1− ξ

}

. (56)

Proof. See Section 6.4. �

Remark. For κ and λ small enough, we have ε∗R,λ < 1/3 and ε∗X\R,λ < 1/3. Then, when

κ and λ decrease to 0, we have non increasing upper bounds on T ∗
δ,R,λ and T ∗

δ,X\R,λ. As a

consequence, the condition ξ < 1 will always be satisfied for κ and λ small enough and the
theorem says that starting from any configuration the system is close to a random mixture
of two states (µ∗R,λ and µ∗X\R,κ, close to µR and µX\R respectively) after a time of order

T ∗
δ,R,λ + T ∗

δ,X\R,κ.

As previously me make a special choice for the parameter δ in previous theorems. We
set

δ∗R,λ = ζ∗R,λ × min
x∈∂−R

eR(x), T ∗
R,λ = T ∗

δ∗R,λ
,R,λ. (57)

Note that here we use minx∈∂−R eR(x) and not minx∈∂−R eR,λ(x) for the sake of concrete-
ness and practical estimates : there is no simple way to give lower bounds on eR,λ(x) while
minx∈∂−R eR(x) is usually an easy to control quantity. In doing so we have no straight
equivalent of Lemma 2.6. We only have the following result.

Lemma 2.18. If ε∗R,λ < 1, then

δ∗R,λ ≤ φ∗R and φ∗R,λ ≤ φ∗R,λT
∗
R,λ ≤ 2ε∗R,λ

(

ln
√
2

δ∗R,λ(1−δ∗R,λ)

)

{

1 +

√

ε∗R,λ

1−ε∗R,λ

}

(58)

Proof. The proof runs similarly to that of Lemma 2.6 and we omit it. �
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Now the proofs Section 4 carry over this more general setup and we get asymptotic
exponential laws for the transition time τX\R,λ that is the time spent in R before “truly

escaping” from R as indicated by Theorem 2.21 below.

Theorem 2.19 (Asymptotic transition law). For all λ ≥ 0, φR,λ ≤ φR and Theorem 2.7
together with its Corollary hold with an extra index λ.

We can also give sharp estimates on the mean transition time and asymptotics of the
mixing time.

Theorem 2.20 (Mean transition time estimates). If ε∗R,λ < 1/3, then, for all κ, λ > 0 and

T > 1
κ + 1

λ , and setting φλκ = φλκ(R,X \R), it holds






φ∗R,λ ≥ Cλ
κ (R,X\R)
µ(R)

{

(α1α2)−µ(R)/(α1α2)
1−µ(R) α4

(

1−max
(

κ+φλκ
γR

, λ+φ
λ
κ

γX\R

))}

φ∗R,λ ≤ Cλ
κ (R,X\R)
µ(R)

{

1 + φ∗R,λT
∗
R,λ + δ∗R,λ +

φ∗R,λ

κ

} , (59)

where

α1 = 1− φ∗R,λ

κ − e
−T

(

1
κ+

1
λ

)−1

α2 = e−φ
∗
R,λT − 1−α1

α1

α3 = e−φ
∗
R,λT

∗
R,λ − 1−α1

α1

α4 = α3(1 + φ∗R,λT
∗
R,λ − δ∗R,λ +

φ∗R,λ

λ )

Proof. See Section 6.5. �

Remark. In the regime ε∗R + ε∗X\R + φ∗R/γX\R ≪ 1 and assuming µ(R) ≤ µ(X \R) one can

choose κ and λ in such a way that φ∗R ≪ κ ≪ γR and φ∗R, φ
∗
X\R ≪ λ ≪ γX\R, choose T

such that
1

κ
+

1

λ
≪ T ≪ 1

φ∗R,λ
(60)

and then get matching bounds provided φ∗R,λT
∗
R,λ ≪ 1. Once again, all the relevant quan-

tities can be estimated via a two-sided variational principle.

Theorem 2.21 (Mixing time asymptotics). If ε∗X\R,0, ε
∗
R,λ < 1/3, we define T = GX\R(σλ)

and, for any x in X we write νx = Px(X(T ) = ·). Then,

‖νx − µX\R‖TV ≤ λT ∗
X\R,0 +

1

2
δ∗X\R,0, (61)

‖νx − µ‖TV ≤ µ(R) + λT ∗
X\R,0 +

1

2
δ∗X\R,0. (62)

In addition, if

η = µ(R) + λT ∗
X\R,0 +

1

2

(

δ∗X\R,0 + δ∗R,λ +
φ∗R,λ
λ

+ φ∗R,λT
∗
R,λ

)

< 1, (63)

then, with

τmix = max
x∈X

inf

{

t ≥ 0 : ‖Px(X(t) = ·)− µ‖TV ≤ 1 + η

2

}

(64)

we have

τmix ≤ 2

(1− η)φ∗R,λ
. (65)

Proof. See Section 6.6. �
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Remark. The theorem makes sense when µ(R) ≤ µ(X \R) and in the regime ε∗R + ε∗X\R +

φ∗RT
∗
X\R,0 ≪ 1. One can then choose λ such that φ∗X\R ≪ λ ≪ T ∗

X\R,0, and, provided

φ∗R,λT
∗
R,λ ≪ 1, our parameter η can be as close to µ(R) ≤ 1/2 as we want. Then, since the

spectral gap goes like φ∗R,λ/µ(X \R) and µ(X \R) ≥ 1/2 the theorem provides the correct

order for the mixing time.

Let us finally summarize our results. To have a mathematical model of the metasta-
bility phenomenon described by properties (a)-(c), we describe metastable states by soft
measures associated with a subset R of a finite configuration space X where runs a re-
versible Markov chain with respect to some probability measure µ in the regime ε∗R+ε∗X\R+

φ∗R/γX\R ≪ 1 and such that µ(R) ≤ µ(X \R). In this regime all soft measures are close

to the restricted ensemble (Theorem 2.16). If we choose κ and λ such that φ∗R ≪ κ ≪ γR
and φ∗R, φ

∗
X\R ≪ λ≪ γX\R then we can show

i) local thermalization towards the soft measure µR,λ or µX\R,κ starting from any

configuration in X and on a short time scale 1
κ + 1

λ (Theorem 2.17),

ii) exponential asymptotic transition time on a long time scale 1
φ∗R,λ

∼ µ(R)
Cλ

κ (R,X\R)
(The-

orems 2.19 and 2.20),

iii) return time to metastable state on a still longer time scale 1
φ∗
X\R,κ

∼ µ(X\R)
Cλ

κ (R,X\R)
(The-

orem 2.20 applied to X \R in place of R).

In addition relaxation and mixing times are of the same order as the mean transition time
(Theorems 2.12 and 2.21) - in particular the relaxation time has the same exact asymptotic
up to a factor µ(X \R) - while exit times are on long, but generally shorter, time scale
(Theorem 2.11). And we note once again, that all relevant quantities can be estimated via
a two-sided variational principles.

3. ANALYSIS IN ℓ2(µR)

3.1. Proof of Proposition 2.1. We recall that the dynamics on R with reflecting barrier on
∂−R, is reversible w.r.t. µR with spectral gap γR. In particular, for any function f ∈ ℓ2(µR),
it holds the Poincaré inequality VarµR(f) ≤ 1

γR
DR(f), where DR(f) is the Dirichlet form

of f given by

DR(f) = 〈f,−LRf〉µ =
∑

x,y∈R
µR(x)f(x)(δx(y)− pR(x, y))f(y) . (66)

Applying the Poincaré inequality to h∗R, we get

VarµR(h
∗
R) ≤

1

γR
DR(h

∗
R) =

1

γR

∑

x,y∈R
µR(x)h

∗
R(x) (δx(y)− pR(x, y)) h

∗
R(y)

=
1

γR



µR(h
∗
R
2)−

∑

x,y∈R
µ∗R(x)pR(x, y)h

∗
R(y)





=
1

γR



µR(h
∗
R
2)−

∑

x,y∈R
µ∗R(x)(p(x, y) + δx(y)eR(x))h

∗
R(y)





≤ 1

γR



µR(h
∗
R
2)−

∑

x,y∈R
µ∗R(x)p

∗
R(x, y)h

∗
R(y)





(67)

where in the first two lines we use that, by definition of h∗R,

µR(x)h
∗
R(x) = µ∗R(x) and µ∗R(h

∗
R) = µR(h

∗
R
2) ,
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and then we exploit the definition of pR and p∗R. From the last line, using that µ∗R is a left
eigenvector of p∗R with eigenvalue (1− φ∗R), we get

VarµR(h
∗
R) ≤

φ∗R
γR

µR(h
∗
R
2) =

φ∗R
γR

VarµR(h
∗
R) +

φ∗R
γR

. (68)

Finally, rearranging the terms in the above inequality and from the hypothesis ε∗R =
φ∗R
γR

<

1, we obtain the required upper bound.

3.2. Proof of Lemma 2.2. Let us denote by L∗

R the sub-Markovian generator associated

to the kernel p∗R. For any function f ∈ ℓ2(µR), this is defined as

(L∗

Rf)(x) = −f(x) +
∑

y∈R
p∗R(x, y)f(y) . (69)

We have

φ∗R = min
f :R7→R

f 6=0

〈f,−L∗

Rf〉R
〈f, f〉R

. (70)

Taking f = 1R as test function, we get

φ∗R ≤
∑

x∈R
µR(x)



1−
∑

y∈R
p∗R(x, y)





=
∑

x∈R
µR(x)



1−
∑

y∈R
p(x, y)





=
∑

x∈R
µR(x)eR(x) = φR ,

(71)

which concludes the proof.

3.3. Proof of Proposition 2.3. The second smallest eigenvalue of the sub-Markovian gen-
erator L∗

R, φ∗R + γ∗R, satisfies the variational formula

φ∗R + γ∗R = min

{〈f,−L∗

Rf〉R
〈f, f〉R

: f 6= 0 , 〈f, h∗R〉R = 0

}

= min
{

〈f,−L∗

Rf〉R : 〈f, h∗R〉R = 0 , 〈f, f〉R = 1
}

(72)

Let f be a function on R that realizes the minimum in the above definition, with 〈f, f〉R =
1. Since 〈f, h∗R〉R = 0, we have

〈f, h∗R − 1R〉R = −〈f,1R〉R = −µR(f)
and then, by the Cauchy-Schwartz inequality together with Proposition 2.1,

µ2R(f) ≤ ‖f‖2R · ‖h∗R − 1R‖2R ≤ ε∗R
1− ε∗R

. (73)

Now, writing the orthogonal decomposition f = µR(f) + g, with µR(g) = 0, we have

1 = ‖f‖2R = µ2R(f) + ‖g‖2R
and thus, from (73),

‖g‖2R = 1− µ2R(f) ≥ 1− ε∗R
1− ε∗R

=
1− 2ε∗R
1− ε∗R

.

Using g as a test function in

γR = min

{DR(h)

‖h‖2R
: h 6= 0 , µR(h) = 0

}

, (74)
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we get

γR ≤ 1− ε∗R
1− 2ε∗R

DR(g) =
1− ε∗R
1− 2ε∗R

DR(f) . (75)

We will conclude the proof using the following result.

Lemma 3.1. For all f ∈ ℓ2(µR), it holds

DR(f) ≤
D(f)

µ(R)
= 〈f,−L∗

Rf〉R . (76)

Proof of Lemma 3.1 . For all x, y ∈ R with x 6= y, pR(x, y) = p(x, y). Then we have

DR(f) =
1

2

∑

x,y∈R
µR(x)pR(x, y) [f(x)− f(y)]2

=
1

2

∑

x,y∈R
µR(x)p(x, y) [f(x)− f(y)]2 ,

(77)

since only the terms in x 6= y matter in this sum. Thus

DR(f) ≤
1

2

∑

x,y∈X
µR(x)p(x, y) [f(x)− f(y)]2 ≤ D(f)

µ(R)
, (78)

and this provides the stated upper bound.

To prove the equality, we recall that the space ℓ2(µR) is identified with the subset of
functions f ∈ ℓ2(µ) with f|X\R

≡ 0. Since, for all x, y ∈ R, it holds that µR(x) = µ(x)/µ(R)

and p∗R(x, y) = p(x, y), we have

D(f)

µ(R)
=

1

µ(R)

∑

x,y∈X
µ(x)f(x) (δx(y)− p(x, y)) f(y)

=
∑

x,y∈R
µR(x)f(x) (δx(y)− p∗R(x, y)) f(y)

= 〈f,−L∗

Rf〉R ,

(79)

that concludes the proof of the lemma. �

Turning back to the proof of the proposition, and combining inequality (75) with Lemma
3.1, we get

γR ≤ 1− ε∗R
1− 2ε∗R

〈f,−L∗

Rf〉R =
1− ε∗R
1− 2ε∗R

(φ∗R + γ∗R) , (80)

since f was chosen in order to have 〈f,−L∗

Rf〉R = φ∗R + γ∗R. Setting φ∗R = ε∗RγR and
rearranging the terms in the last inequality, we get

(

1− 3ε∗R + ε∗R
2

1− 2ε∗R

)

γR ≤
(

1− ε∗R
1− 2ε∗R

)

γ∗R ,

that under the hypothesis ε∗R < 1/3 implies

1

γ∗R
≤ 1

γR

{

1− ε∗R
1− 3ε∗R

}

.
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3.4. Proof of Theorem 2.4. The proof is based on a classical trick to control mixing times
with relaxation times. For any probability measure ν on R, any f : R → R such that
µ∗R(f) 6= 0 and any s, t ≥ 0, one can check that

Eν [f(X(s+ t))1{τX\R>s+t}]− µ∗R(f)Pν(τX\R > s+ t)

=
∑

y∈R

(

Pν(X(s) = y , τX\R > s)− Pν(τX\R > s)µ∗R(y)
)

×
(

Ey[f(X(t))1{τX\R>t}]− Py(τX\R > t)µ∗R(f)
)

.

(81)

Indeed, one can rewrite the right hand side of the above equality as the sum of four terms,
two of which coincide with the two terms in the left hand side by the Markov property,
while the other two terms cancel using the quasi-stationarity property, i.e.

Eµ∗R

[

f | τX\R > t
]

= µ∗R(f) . (82)

As a consequence one gets
∣

∣Eν [f(X(s+ t))1{τX\R>t}]− µ∗R(f)Pν(τX\R > s+ t)
∣

∣

=
∣

∣

∑

y∈R
µR(y)

(

Pν(X(s) = y , τX\R > s)

µR(y)
− Pν(τX\R > s)h∗R(y)

)

×
(

Ey[f(X(t))1{τX\R>t}]− Py(τX\R > t)µ∗R(f)
)

∣

∣

and, by the Cauchy-Schwartz inequality
∣

∣Eν [f(X(s+ t))1{τX\R>t}]− µ∗R(f)Pν(τX\R > s+ t)
∣

∣

≤
∥

∥

∥

Pν(X(s)=· , τX\R>s)

µR(·) − Pν(τX\R > s)h∗R(·)
∥

∥

∥

R

×
∥

∥

∥E(·)[f(X(t))1{τX\R>t}]− P(·)(τX\R > t)µ∗R(f)
∥

∥

∥

R
.

(83)

We now estimate these two factors. Noting that

Pν(X(s) = · , τX\R > s) = νesL
∗

R(·) and E(·)[f(X(t))1{τX\R>t}] = etL
∗

Rf(·) ,

and diagonalizing the self-adjoint operator L∗

R in orthonormal basis, one gets

∥

∥

∥

Pν(X(s)=· , τX\R>s)

µR(·) − ‖ ν
µR

‖R

h∗R
‖h∗R‖

R
cos θν e

−φ∗Rs
∥

∥

∥

2

R
≤ ‖ ν

µR
‖R sin2 θνe

−2s(φ∗R+γ∗R) , (84)

with θν ∈ [0, π/2[ such that ‖ ν
µR

‖R‖h∗R‖R cos θν = 〈 ν
µR
, h∗R〉 = ν(h∗R) , and

∥

∥

∥E(·)[f(X(t))1{τX\R>t}]− ‖f‖R

h∗R
‖h∗R‖

R
cos θf e

−φ∗Rt
∥

∥

∥

2

R
≤ ‖f‖2

R
sin2 θfe

−2t(φ∗R+γ∗R) (85)

with θf ∈ [0, π] \ {π/2} such that ‖f‖
R
‖h∗R‖R

cos θf = 〈f, h∗R〉 = µ∗R(f) .
Moreover, since

Pν(τX\R > s) = µR
(

Pν(X(s)=· , τX\R>s)

µR(·)

)

,

from inequality (84) we get
∣

∣

∣
Pν(τX\R > s)− ‖ ν

µR
‖
R

cos θν
‖h∗R‖

R
e−φ

∗
Rs
∣

∣

∣
=
∣

∣

∣
µR
(

Pν(τX\R>s)

µR(·) − ‖ ν
µR

‖
R

h∗R
‖h∗R‖

R
cos θν e

−φ∗Rs
)∣

∣

∣

≤
〈1R, ∣∣∣Pν(τX\R>s)

µR(·) − ‖ ν
µR

‖
R

h∗R
‖h∗R‖

R
cos θν e

−φ∗Rs
∣

∣

∣

〉

R
≤ ‖ ν

µR
‖
R
sin θνe

−s(φ∗R+γ∗R) .

(86)
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Using inequalities (84) and (86), we finally get
∥

∥

∥

Pν(X(s)=· , τX\R>s)

µR(·) − Pν( τX\R > s)h∗R(·)
∥

∥

R

≤
∥

∥

∥

Pν(X(s)=· , τX\R>s)

µR(·) − ‖ ν
µR

‖
R

h∗R
‖h∗R‖

R
cos θν e

−φ∗Rs
∥

∥

∥

R

+
∥

∥

∥

(

Pν(τX\R > s)− ‖ ν
µR

‖
R

cos θν
‖h∗R‖

R
e−φ

∗
Rs
)

h∗R

∥

∥

∥

R
≤ ‖ ν

µR
‖R(1 + ‖h∗R‖R) sin θν e−s(φ

∗
R+γ∗R) .

(87)

which provides an estimate of the first factor in (83).

To what concerns the second factor, noting that

P(·)(τX\R > t) = E(·)[1R(X(t))1{τX\R>t}]

and that, from the definition of cos θf applied to f = 1R,

cos θ1R
= 1

‖h∗R‖
R

and sin2 θ1R
=

‖h∗R‖2
R
−1

‖h∗R‖2
R

=
VarµR (h∗R)

‖h∗R‖2
R

,

we get
∥

∥

∥P(·)(τX\R > t)− h∗R
‖h∗R‖2

R

e−φ
∗
Rt
∥

∥

∥

2
≤ VarµR(h∗R)

‖h∗R‖2
R

e−2t(φ∗R+γ∗R) , (88)

and from inequalities (85) and (88),

∥

∥E(·)[f(X(t)) 1{τX\R>t}]− P(·)(τX\R > t)µ∗R(f)
∥

∥

∥

R

≤
∥

∥

∥
E(·)[f(X(t))1{τX\R>t}]− ‖f‖

R

h∗R
‖h∗R‖

R
cos θf e

−φ∗Rt
∥

∥

∥

R

+
∥

∥

∥
P(·)(τX\R > t)‖f‖

R
‖h∗R‖

R
cos θf − ‖f‖

R

h∗R
‖h∗R‖

R
cos θf e

−φ∗Rt
∥

∥

∥

R

≤ ‖f‖
R
sin θfe

−t(φ∗R+γ∗R) + ‖f‖
R
‖h∗R‖R

√

VarµR(h∗R)

‖h∗R‖
R

cos θf e
−t(φ∗R+γ∗R)

=

(

‖f‖
R
sin θf +

µ∗R(f)
√

VarµR (h∗R)

‖h∗R‖
R

)

e−t(φ
∗
R+γ∗R) .

(89)

which provides an estimate of the second factor in (83).

Inserting (87) and (89) in Eq. (83), we then obtain
∣

∣Eν [f(X(s+ t))1{τX\R>t}]− µ∗R(f)Pν(τX\R > s+ t)
∣

∣

≤ ‖ ν
µR

‖
R
(1 + ‖h∗R‖R) sin θν

(

‖f‖
R
sin θf +

µ∗R(f)
√

VarµR(h∗R)

‖h∗R‖
R

)

e−(s+t)(φ∗R+γ∗R) .
(90)

To conclude our proof we will make two more steps. First notice that from (86) one also
get that, for any t ≥ 0,

Pν(τX\R > t) ≥ ‖ ν
µR

‖
R

(

cos θν
‖h∗R‖

R
e−tφ

∗
R − sin θν e

−t(φ∗R+γ∗R)
)

.

In particular, as soon as the following condition is verified

sin θν e
−t(φ∗R+γ∗R) ≤ δ cos θν

‖h∗R‖
R
e−φ

∗
Rt ⇐⇒ ‖h∗R‖

R
tan θν e

−φ∗Rt ≤ δ , (91)

it holds

Pν(τX\R > t) ≥ (1 − δ)‖ ν
µR

‖R
cos θν
‖h∗R‖

R
e−φ

∗
Rt . (92)



METASTABILITY AND QUASI-STATIONARY MEASURES 19

Now, dividing both terms of (90) by µ∗R(f)Pν(τX\R > s + t), we reach an inequality that

controls the Yaglom limit and that, provided condition (91) and from the last inequality,
reads as

∣

∣

∣

Eν [f(X(t)) | τX\R>t]

µ∗R(f) − 1
∣

∣

∣
≤ 1+‖h∗R‖

R
1−δ tan θν

(

tan θf +
√

VarµR(h
∗
R)

)

e−γ
∗
Rt . (93)

As a final step we apply this inequality to ν = δx and f = δy. For this choice of ν and f ,
and by definition of θν and θf , one has

tan θν ≤
1

cos θν
=

‖h∗R‖R
√

µR(x)h∗R(x)
and tan θf ≤ 1

cos θf
=

‖h∗R‖R
√

µR(y)h∗R(y)
,

Thus, from (93), we obtain that under condition (91)
∣

∣

∣

∣

Px((X(t)=y) | τX\R>t)
µ∗R(y) − 1

∣

∣

∣

∣

≤ e−γ
∗
Rt

(1+‖h∗R‖
R
)‖h∗R‖2

R

(1−δ)
√
µR(x)h∗R(x)

(

1√
µR(y)h∗R(y)

+

√

VarµR (h∗R)

‖h∗R‖
R

)

≤ e−γ
∗
Rt 1

1−δ

(

1 +

√

1 +
ε∗R

1−ε∗R

)

(

1 +
ε∗R

1−ε∗R

)

1√
ζ∗R

(

1√
ζ∗R

+

√

ε∗R
1−ε∗R

)

,

(94)

where in the second line we used that ‖h∗R‖R ≥ 1, the estimate given in Proposition 2.1,
and we introduced the quantity ζ∗R defined in (19).

The right hand side of the last inequality is smaller than δ as soon as

t ≥ 1
γ∗R

[

ln 2
δ(1−δ)ζ∗R

+ ln

((

1
2 +

1
2

√

1 +
ε∗R

1−ε∗R

)

(

1 +
ε∗R

1−ε∗R

)

(

1 +

√

ζ∗Rε
∗
R

1−ε∗R

))]

, (95)

which also implies (91).
Finally, from the hypothesis ε∗R < 1/3, from the concavity of the logarithm and of the

square root function, and using that ζ∗R ≤ 1, then δ(1 − δ) ≤ 1/4 and ln 8 ≥ 1 + 5/(4
√
2),

after some computation one obtains that the condition (95) is implied by the stronger
condition

t ≥ 1
γ∗R

(

ln 2
δ(1−δ)ζ∗R

)

{

1 +

√

ε∗R
1−ε∗R

}

, (96)

which concludes the proof.

4. AROUND THE EXPONENTIAL LAW

4.1. Proof of Lemma 2.6. The proof uses the super-harmonicity of h∗R on R, where h∗R
is thought as a function in ℓ2(µ) with h∗R(x) = 0 for x 6= R. To prove that h∗R is a super-
harmonic function, notice that, for all x, z ∈ R,

(Lh∗R)(x) = −h∗R(x) +
∑

y∈X
p(x, y)h∗R(y)

= −h∗R(x) +
∑

y∈X
p(x, y)

µ∗R(y)

µR(y)

= −h∗R(x) + lim
t→∞

∑

y∈X

p(y, x)

µR(x)

Pz(X(t) = y , τX\R > t)

Pz(τX\R > t)

= −h∗R(x) + lim
t→∞

∑

y∈X

Pz(X(t+ τ) = x , τX\R > t+ τ)

µR(x)Pz(τX\R > t)
,

(97)

where t+ τ is the time of the first clock ring after t. Then

(Lh∗R)(x) ≤ −h∗R(x) + lim
t→∞

∑

y∈X

Pz(X(t+ τ) = x | τX\R > t+ τ)

µR(x)
= −h∗R(x) + h∗R(x) = 0 .
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This implies that h∗R reaches is minimum in R on ∂−R. As a consequence, being µR(h∗R) =
1, there exists x0 ∈ ∂−R such that h∗R(x0) ≤ 1. Setting eR = minx∈∂−R eR(x) and recalling
that ζ∗R = minx∈R µ∗R(x)h

∗
R(x), we then have

δ∗R = eR ζ
∗
R ≤ eRµ

∗
R(x0)h

∗
R(x0) ≤ eR(x0)µ

∗
R(x0) ≤ φ∗R , (98)

which proves the first inequality.

Now, since γ∗R ≤ 2, δ∗R(1 − δ∗R)ζ
∗
R ≤ δ∗R(1 − δ∗R) ≤ 1/4 and (ln 8)/2 ≥ 1, from the

definition of T ∗
R we get that T ∗

R ≥ 1 and prove the second inequality.

The last inequality is equivalent to

ln 2
δ∗R(1−δ∗R)ζ∗R

= ln
√
2

δ∗R(1−δ∗R) + ln
√
2

ζ∗R
≤ 2 ln

√
2

δ∗R(1−δ∗R)

and it follows from δ∗R(1− δ∗R) ≤ δ∗R ≤ ζ∗R.

4.2. Proof of Theorem 2.7. We write

Eν [τX\R] = πR(ν)Eν [τX\R | τX\R < T ∗
R] + (1− πR(ν))Eν [τX\R | τX\R > T ∗

R] ,

and notice that trivially

0 ≤ Eν [τX\R | τX\R < T ∗
R] ≤ T ∗

R .

Moreover, by Theorem 2.4, one gets

T ∗
R +

1

φ∗R
{1− δ∗R} ≤ Eν [τX\R | τX\R > T ∗

R] ≤ T ∗
R +

1

φ∗R
{1 + δ∗R} .

Altogether this proves statement (i).
In the same way, we can write

Pν(τX\R > t
φ∗R

) = πR(ν)Pν(τX\R > t
φ∗R

| τX\R < T ∗
R)

+ (1− πR(ν))Pν(τX\R > t
φ∗R

| τX\R > T ∗
R) ,

If t > φ∗RT
∗
R, the first term in the r.h.s cancel and we get

Pν

(

τX\R > t
φ∗R

)

= (1− πR(ν))Pν
(

τX\R > t
φ∗R

| τX\R > T ∗
R
)

.

By Theorem 2.4, we also have

∣

∣

∣

∣

Pν

(

τX\R > t
φ∗R

| τX\R > T ∗
R
)

− e
−φ∗R(

t
φ∗R

−T ∗
R)
∣

∣

∣

∣

≤ δ∗Re
−φ∗R(

t
φ∗R

−T ∗
R)
,

that, together with the previous equality, provides the relation (ii).

4.3. Proof of Lemma 2.8. Let X̂ denote the discrete version of X, such that X follows X̂
at each ring of a Poissonian clock of intensity 1, and let N(t) denote the number of rings
up to time t. By the natural coupling between the dynamics XR and its discrete version

X̂R we have

PµR(τX\R ≤ T ∗
R) =

∑

k≥1

PµR(τ̂X\R = k)P(N(T ∗
R) ≥ k)

≤
∑

k≥1

∑

x∈R
PµR(X̂R(k − 1) = x)eR(x)P(N(T ∗

R) ≥ k)

= φRE[N(T ∗
R)] = φRT

∗
R .

(99)
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5. WORKING WITH (κ, λ)-CAPACITIES

5.1. Proof of the upper bound in Theorem 2.11. Let X̃ denote the continuous time

Markov chain on X̃ defined, for κ̃ > 0,by the generator

(L̃f)(x̃) =







κ̃(f(x)− f(x̃)) if x̃ = x̄ ∈ R̄
(Lf)(x) + κ(f(x̄)− f(x)) if x̃ = x ∈ R
(Lf)(x) if x̃ = x ∈ X \R

. (100)

This is a reversible process with respect to a measure µ̃ defined as

µ̃(x̃) =

{

µ(x) ifx̃ = x ∈ X
κ
κ̃µ(x) ifx̃ = x̄ ∈ R̄ . (101)

Note that µ̃ is not a probability measure. Let us denote by ν̃R̄ the harmonic measure on R̄
associated with X \R, i.e., the probability measure on R̄ defined by

ν̃R̄(x̄) =
−µ̃(x̄)(L̃Ṽκ)(x̄)
Cκ(R,X \R)

(102)

and with

Ṽκ(x̃) =







Vκ(x) = Px(σκ < τX\R) if x̃ = x ∈ R
1 if x̃ = x̄ ∈ R̄
0 if x̃ = x ∈ X \R

.

With obvious notation, we then have

Eν̃R̄[τ̃X\R] =
µ̃(Ṽκ)

Cκ(R,X \R)
. (103)

Such kind of formula was introduced for the study of metastability in [16]. We refer to
lecture notes [31] for a derivation.

Now setting ν(x) = ν̃R̄(x̄) for all x ∈ R, we can write

Eν̃R̄[τ̃X\R] = 1
κ̃ + Eν[τX\R] + Eν [τX\R] · κ · 1

κ̃ = 1
κ̃ + Eν [τX\R](1 +

κ
κ̃) .

and
µ̃(Ṽκ)

Cκ(R,X \R)
=
µ(Vκ) +

∑

x̄∈R̄ µ̃(x̄)

Cκ(R,X \R)
=
µ(Vκ) +

κ
κ̃µ(R)

Cκ(R,X \R)
.

Inserting the above equalities in (103) and multiplying by κ̃, we then get

1 + Eν[τX\R](κ̃ + κ) =
κ̃µ(Vκ) + κµ(R)

Cκ(R,X \R)
. (104)

Note that µ(R), µ(Vκ), Cκ(R,X \R) and Eν [τX\R] do not depend on κ̃. Then, in the limit

of a vanishing κ̃, it holds

1 + κEν [τX\R] =
κµ(R)

Cκ(R,X \R)
. (105)

By Theorem 2.7, this implies

κ
φ∗R

{1 + φ∗RT
∗
R + δ∗R}+ 1 ≥ κµ(R)

Cκ(R,X\R)

that is equivalent to the upper bound in (35).

For future use, we note that dividing Eq. (104) by κ̃, and then sending κ̃ to +∞, we get

Eν [τX\R] =
µ(Vκ)

Cκ(R,X \R)
. (106)

Together with (105), this implies
µ(Vκ)

Cκ(R,X\R) =
µ(R)

Cκ(R,X\R) − 1
κ or equivalently



METASTABILITY AND QUASI-STATIONARY MEASURES 22

Lemma 5.1.

µR(Vκ) = 1− Cκ(R,X \R)

κµ(R)
(107)

5.2. Proof of the upper bound in Theorem 2.12. For any f ∈ ℓ2(µ), we have

Varµ(f) = µ(Varµ(f |1R)) + Varµ(µ(f |1R))
= µ(R)VarµR(f|R) + µ(X \R)VarµX\R

(f|X\R
)

+ µ(R)µ(X \R)
(

µR(f|R)− µX\R(f|X\R
)
)2

.

(108)

Now, using the test function

f̃ =
f − µX\R(f|X\R

)

µX\R(f|R)− µX\R(f|X\R
)

in the definition (30) of (κ, λ)-capacity, we get

Cλκ (R,X \R) ≤ D(f̃) + κµ(R)VarµR(f̃|R) + λµ(X \R)VarµX\R
(f̃|X\R

)

=
(

µR(f|R)− µX\R(f|X\R
)
)−2(

D(f) + κµ(R)VarµR(f|R) + λµ(X \R)VarµX\R
(f|X\R

)
)

,

which provides an upper bound over
(

µR(f|R)− µX\R(f|X\R
)
)2

. Applying that bound in

Eq. (108), and from the definition of φλκ(A,B), we get

Varµ(f) ≤ µ(R)VarµR(f|R) + µ(X \R)VarµX\R
(f|X\R

)

+
(

D(f) + κµ(R)VarµR(f|R) + λµ(X \R)VarµX\R
(f|X\R

)
)

φλκ(R,X \R)
−1

(109)

≤ D(f)
φλκ(R,X\R)

+
µ(R)DR(f|R )

γR

(

1 + κ
φλκ(R,X\R)

)

+
µ(X\R)DX\R(f|X\R

)

γX\R

(

1 + κ
φλκ(R,X\R)

)

≤ D(f)
φλκ(R,X\R)

{

1 + max
(

φλκ(R,X\R)+κ
γR

; φ
λ
κ(R,X\R)+λ

γX\R

)}

,

where in the last step we used that

D(f) ≤ µ(R)DR(f|R) + µ(X \R)DX\R(f|X\R
) .

The upper bound in (37) follows directly.

5.3. Proof of the lower bound of Theorem 2.11. From inequality (109)applied to f =
h∗R and λ = +∞, and since h∗R|X\R

= 0, we get

Varµ(h
∗
R) ≤ µ(R)VarµR(h

∗
R) +

D(h∗R)

Cλκ (R,X \R)
µ(R)(1 − µ(R))

{

1 + κ
γR

}

. (110)

On the other and, by (108),

Varµ(h
∗
R) = µ(R)VarµR(h

∗
R) + µ(R)(1− µ(R)) .

Inserting this formula in (110), the term µ(R)VarµR(h
∗
R) cancels and then, dividing by

µ(R), we have

1− µ(R) ≤ D(h∗R)

Cλκ (R,X \R)
(1 − µ(R))

{

1 + κ
γR

}

. (111)

Now, modifying the transition probabilities along the edges that connect X \R to R with-

out changing the (non-diagonal) ratios
c(x,y)
c(x′,y′) but modifying also µ, in order to keep a

probability measure on X , we can send µ(R) to 0 without changing µR, h∗R and the ratio
D(h∗R)/Cκ(R,X \R). Then we obtain, for the modified system as well as for the original
system,

Cλκ (R,X \R)
{

1 + κ
γR

}−1
≤ D(h∗R) . (112)
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Now, dividing by µ(R)‖h∗R‖2R and using that, by Prop. 2.1, ‖h∗R‖2R = VarµR(h
∗
R) + 1 ≤

1/(1 − ε∗R), we get

Cλκ (R,X \R)

µ(R)

{

1− εR
1 + κ

γR

}

≤ Cλκ(R,X \R)

µ(R)‖h∗R‖2R

{

1 + κ
γR

}−1
≤ D(h∗R)

‖h∗R‖2Rµ(R)
= φ∗R , (113)

where the last equality comes from Lemma 3.1 and the fact that

〈h∗R,−L∗

Rh
∗
R〉R = φ∗R .

Finally, using the convexity of the function x 7→ 1
1+x , we obtain

Cλκ (R,X \R)

µ(R)

{

1− εR − κ
γR

}

≤ φ∗R , (114)

which concludes the proof of the lower bound in (35).

5.4. Proof of the lower bound in Theorem 2.12. We use the test function V λ
κ , for which

we know that (see (30))

D(V λ
κ ) + κµ(R)EµR

[

(

V λ
κ |R − 1

)2
]

+ λµ(X \R)EµX\R

[

(

V λ
κ |X\R

− 0
)2
]

= Cλκ (R,X \R)

so that

D(V λ
κ ) ≤ Cλκ (R,X \R) . (115)

We then look for a lower bound on Varµ(V
λ
κ ). From (108) we have

Varµ(V
λ
κ ) ≥ µ(R)µ(X \R)

(

µR(V
λ
κ |R)− µX\R(V

λ
κ |X\R

)
)2

,

thus we need to estimate µR(V λ
κ |R) and µX\R(V

λ
κ |X\R

).

By the monotonicity in λ, for all x ∈ R we get

V λ
κ (x) = Px(GR(σκ)) < GX\R(σλ)) ≥ Px(σκ < τX\R) = Vκ(x) ,

which implies, together with Lemma 5.1,

µR(V
λ
κ |R) ≥ 1− Cλ

κ (R,X\R)
κµ(R) .

In the same way we have

µX\R(V
λ
κ |X\R

) ≤ Cλ
κ (R,X\R)
λµ(X\R) .

Altogether, we finally get

γ ≤ D(V λ
κ )

Varµ(V λ
κ )

≤ Cλ
κ (R,X\R)

µ(R)µ(X\R)

(

1− Cλ
κ (R,X\R)
κµ(R) − Cλ

κ (R,X\R)
λµ(X\R)

)−2
. (116)

6. WORKING WITH SOFT MEASURES

6.1. Proof of Lemma 2.13. If λ = 0 the first statement holds trivially since, in that case,
φ∗R,λ = 0 = µ∗R,λ(eR,λ). If λ > 0, we can write

Pµ∗R,λ
(τX\R,λ ≤ t) =

∑

k≥1

Pµ∗R,λ
(NR(t) ≥ k)(1− φ∗R,λ)

k−1µ∗R,λ(eR,λ) ,

where N(t) is the number of clock rings inside R for the Poissonian clock associated to X.
Taking the limit as t→ ∞ in the above equation, we get that

1 = µ∗R,λ(eR,λ)/φ
∗
R,λ ⇐⇒ φ∗R,λ = µ∗R,λ(eR,λ) ,

which provides identity i).
Let us now define the operator L∗

R,λ on ℓ2(µR) as

(L∗

R,λf)(x) = −f(x) +
∑

y∈R
p∗R,λ(x, y)f(y) ∀x ∈ R , f ∈ ℓ2(µR) (117)
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and notice that, for any probability measure ν on X , it holds

Eν

[

f(X ◦GR(t)1{τX\R,λ>t})
]

= ν
(

etL
∗

R,λf
)

. (118)

The exponential law given in ii) follows from the above identity applied to ν = µ∗R,λ and

f = 1R.

Finally, since 1− φ∗R,λ is a simple eigenvalue equal to the spectral radius of p∗R,λ, for any

x, y ∈ R and in the large t regime, we have

Px(X ◦GR(t = y) , τX\R,λ > t) ∼ cxµ
∗
R,λ(y)e

−tφ∗R,λ , (119)

where cxµ
∗
R,λ is the canonical projection of δx on the one-dimensional eigenspace associ-

ated with µ∗R,λ. Note that cx is positive, otherwise we would have Pµ∗R,λ
(τX\R,λ > t) ≤

(1−µ∗R,λ(x))e−tφ
∗
R,λ + o(e−tφ

∗
R,λ) while µ∗R,λ > 0 and this would contradict the exponential

law. From (119), and taking the limit of t→ ∞, it follows

lim
t→∞

Px(X ◦GR(t = y) | τX\R,λ > t) = µ∗R,λ .

6.2. Proof of Lemma 2.14. The result is once again a consequence of Perron-Frobenius
theorem. Let χλ(y) denote the characteristic polynomial of L∗

R,λ, that can be written as

χλ(y) = (y − φ∗R,λ)a(y). If a(y) = (y − φ∗R,λ)q(y) + r(y) is the Euclidian division of a(y) by

(y − φ∗R,λ), then r(y) ≡ r(0) 6= 0, and we have the Bézout identity

1
r(0)a(y)− 1

r(0)q(y)(y − φ∗R,λ) = 1 . (120)

In particular, for any x ∈ R, 1
r(0)δxa(L

∗

R,λ) = cxµ
∗
R,λ is the canonical projection of δx on

the eigenspace associated to µ∗R,λ, and since cx > 0 as previously noticed, we have

µ∗R,λ =
δxa(L

∗

R,λ)
∑

y∈R δxa(L
∗

R,λ)δy
. (121)

Since a(y) = χλ(y)
(y−φ∗R,λ

) , the above equation expresses the map λ 7→ µ∗R,λ as a composition

of continuous functions of λ.

6.3. Proof of Proposition 2.15. As far as φR,λ is concerned, continuity and monotonicity
derive from continuity and monotonicity of eR,λ(x) for any x ∈ R. We then consider the
other parameters. The continuity follows from the continuity of the eigenvalues as root of
the characteristic polynomial. To prove the monotonicity, we notice that when λ decreases
to zero, p∗R,λ(x, y) grows for for all x and y in R as well as cR,λ(x, y) for any distinct

x, y ∈ R. From the variational characterization of φ∗R,λ, i.e.

φ∗R,λ = min
{

〈f,−L∗

R,λf〉R : 〈f, f〉R = 1 , f > 0
}

(122)

= min
〈f,f〉R=1
f>0

∑

x,y∈R
µR(x)f(x)



f(x)−
∑

y∈R
p∗R,λ(x, y)f(y)



 (123)

where the restriction f > 0 comes from the fact that, by the Perron-Frobenius theorem, the
right eigenvector has positive coordinates, we see that φ∗R,λ is decreasing in λ. Similarly,

using

γR,λ = min







1
2

∑

x,t∈R
cR,λ(x, y)(f(x) − f(y))2 : VarµR(f) = 1







, (124)
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we see that γR,λ is increasing in λ. As a consequence ε∗R,λ is decreasing in λ, and we have

εR,0 =
φ∗R,0
γR,0

=
µ∗R,0(eR,0)

γR,0
= 0 . (125)

6.4. Proof of Theorem 2.17. Proof of (55): We first write

Pν(X(τδ) = x |X(τδ) ∈ R) =
1

Pν(X(Tδ) ∈ R)

∑

i≥0

∑

xi∈X
Pν(i0 > i,X(τi) = xi) (126)

× Pxi(X ◦GR(σκ) = x, GR(σκ) < GX\R(σλ) , σκ > T ∗
δ,R,λ)

Now, conditioning on σκ and setting P
σκ
xi = Pxi(· |σκ), we get

Pν(X(τδ) = x |X(τδ) ∈ R) =
1

Pν(X(Tδ) ∈ R)

∑

i≥0

∑

xi∈X
Pν(i0 > i,X(τi) = xi)

× E
[

P
σκ
xi (X ◦GR(σκ) = x, GR(σκ) < GX\R(σλ) , σκ > T ∗

δ,R,λ)
]

=
1

Pν(X(Tδ) ∈ R)

∑

i≥0

∑

xi∈X
Pν(i0 > i,X(τi) = xi)

× E

[1{σκ>T ∗
δ,R,λ}P

σκ
xi (X ◦GR(σκ) = x |σκ < τX\R,λ)P

σκ
xi (σκ < τX\R,λ)

]

,

(127)

where the second equality comes from the independence between X, σκ and σλ. Since

Pν(X(Tδ) ∈ R) =
∑

i≥0

∑

xi∈X
Pν(i0 > i,X(τi) = xi)E

[1{σκ>T ∗
δ,R,λ

}P
σκ
xi (σκ < τX\R,λ)

]

,

(128)
from (127) we get

Pν(X(τδ) = x |X(τδ) ∈ R)

µ∗R,λ
− 1 =

1

Pν(X(Tδ) ∈ R)

∑

i≥0

∑

xi∈X
Pν(i0 > i,X(τi) = xi)

× E

[1{σκ>T ∗
δ,R,λ

}P
σκ
xi (σκ < τX\R,λ)

(

P
σκ
xi (X ◦GR(σκ) = x |σκ < τX\R,λ)

µ∗R,λ
− 1

)]

.

(129)

An analogous expression can be found for
Pν(X(τδ)=x |X(τδ)∈X\R)

µ∗
X\R,κ

−1. The result then follows

from Th.2.16, and in particular for the equivalent of Th. 2.4.

To prove inequality (56), we first state the following lemma.

Lemma 6.1. Let T > 0 and {σi : i ≥ 1} be a sequence of independent exponential random

variables of rate κ such that eκT − 1 < 1. If N = min{i ≥ 1 : σi > T}, then

P





N
∑

j=1

σi >
t

κ



 ≤ e−t

1− (eκT − 1)
(130)
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Proof of Lemma 6.1. Using the property of the exponential distribution, we have

P





N
∑

j=1

σi >
t

κ



 =
∑

n≥1

P(N = n)P





N
∑

j=1

σi >
t

κ

∣

∣σ1 < T, . . . , σn−1 < T, σn > T





≤
∑

n≥1

P(N = n)P

(

σn >
t

κ
− (n− 1)T

∣

∣σn > T

)

=
∑

n≥1

P(N = n)P

(

σn >
t

κ
− nT

)

=
∑

n≥1

(1− e−κT )n−1e−κT e−t+nκT

= e−t
∑

n≥1

(eκT − 1)n−1 =
e−t

1− (eκT − 1)
,

(131)

which concludes the proof. �

Coming back to the proof of Th. 2.17, we first notice that if τδ > t( 1κ+
1
λ), then LR(τδ) >

1
κ or LX\R(τδ) >

1
λ . As a consequence, defining

AR = {κLR(τδ) ∨ λLX\R(τδ) = κLR(τδ) > t}
AX\R = {κLR(τδ) ∨ λLX\R(τδ) = λLX\R(τδ) > t} (132)

so that P(AR) + P(AX\R) ≤ 1, we have

Pν(τδ > t( 1κ + 1
λ)) = Pν(τδ > t( 1κ + 1

λ )|AR)Pν(AR) + Pν(τδ > t( 1κ + 1
λ)|AX\R)Pν(AX\R) .

Using the independence between σκ, σλ and X, together with the previous lemma, we
finally get

Pν

(

T − δ > t
(

1
κ + 1

λ

))

≤ e−t
{

1
1−ξ

}

(

Pν(AR) + Pν(AX\R)
)

≤ e−t
{

1
1−ξ

}

.

6.5. Proof of Theorem 2.20. Considering the extended electrical network associated with
Cλκ (A,B), the proof of the upper bound is similar to that of Theorem 2.11 and we omit it.

As far as the lower bound is concerned, the situation is much more delicate. In the proof
of the analog Theorem 2.11 we used a partial Poincaré inequality to control the mean exit
time from R. Here we will do the same, with the difference that we will have to work
on the whole space X and not only on R. Since µ∗R,λ is concentrated on R, we will first

compare it with another quasi-stationary measure, µ̃∗X , that spreads on the whole space
X . Then we will control the escape rate of µ̃∗X from X with the spectral gap estimated in
Theorem 2.12. This second step will be the easier one.

Let µ̃∗X be the quasi-stationary measure on X associated with the Markovian process X̃

on X̃ = X ∪ X \R with generator L̃ defined, for some λ̃ > 0, by

(L̃f)(x̃) =







(Lf)(x) if x̃ = x ∈ R
(Lf)(x) + λ(f(x̃)− f(x)) if x̃ = x ∈ X \R
λ̃(f(x̃)− f(x)) if x̃ = x̄ ∈ X \R

. (133)

With obvious notation, for any x ∈ X and any probability measure ν on X , we have

µ̃∗X (x) = lim
t→∞

Pν(X̃(t) = x | τ̃
X\R

> t) . (134)

We want to show that µ̃∗X is in some sense close to µ∗R,λ. The difficulty comes from the fact

that while µ̃∗X is defined through the global time of the dynamics, µ∗R,λ is defined through

the local time in R. In particular, it is not true that µ∗R,λ = µ̃∗X (· |R).
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For any a > 1 and T > 0, there is a large enough t > T such that, for all x ∈ R,

µ̃∗X (x) ≥
1

a

Pµ∗R,λ
(X(t) = x, τ̃

X\R
> t)

Pµ∗R,λ
(τ̃

X\R
> t)

. (135)

Recalling the definition of the times τi given at page 12, we set

T = min{τi ≥ 0 : τi > t− T} .

The numerator in (135) then satisfies

Pµ∗R,λ
(X(t) = x, τ̃

X\R
> t) ≥ Pµ∗R,λ

(X(t) = x, τ̃
X\R

> t > T )

= Eµ∗R,λ

[

Eµ∗R,λ

[1{X(t)=x, τ̃
X\R

>t}|FT
]1{t∧τ̃

X\R
>T }

]

= Eµ∗R,λ

[

PX(T )(X(t− T ) = x, τ̃
X\R

> t− T )1{t∧τ̃
X\R

>T }

]

To what concerns the denominator, we have

Pµ∗R,λ
(τ̃

X\R
> t) ≤ Pµ∗R,λ

(τ̃
X\R

> t∧T ) = Pµ∗R,λ
(T < t∧ τ̃

X\R
)+Pµ∗R,λ

(T ∧ τ̃
X\R

> t) . (136)

Now, since Pµ∗R,λ
(X(τ1) = · | τ̃

X\R
> τ1) = µ∗R,λ, we get

Pµ∗R,λ
(T ∧ τ̃

X\R
> t)

Pµ∗R,λ
(T < t ∧ τ̃

X\R
)
≤

Pµ∗R,λ
(τ1 > T )

Pµ∗R,λ
(τ1 < T, X(τ1) ∈ R)

.

Now, similarly to the proof of Theorem (2.17) but, since we do not care about condi-
tions (53-54), without the correcting factor 1

1−ξ , we have, on one hand,

Pµ∗R,λ
(τ1 > T ) ≤ e

−T
(

1
κ+

1
λ

)−1

(137)

and, on the other hand,

Pµ∗R,λ
(τ1 < T, X(τ1) ∈ R) = Pµ∗R,λ

(X(τ1) ∈ R)− Pµ∗R,λ
(τ1 > T , X(τ1) ∈ R)

= 1− φ∗R,λ

φ∗R,λ
+κ − Pµ∗R,λ

(σκ + τR,κ > T, τR,κ < σλ)

≥ 1− φ∗R,λ

κ − Pµ∗R,λ
(σκ + σλ > T )

≥ 1− φ∗R,λ

κ e
−T

(

1
κ+

1
λ

)−1

(138)

where the last inequality comes from the following direct computation for κ 6= λ and
α = T/

(

1
κ + 1

λ

)

Pµ∗R,λ
(σκ + σλ > T ) = e−α

(

λe−κα/λ − κe−λα/κ

λ− κ

)

≤ e−α = e
−T

(

1
κ+

1
λ

)−1

,

and a continuity argument for the case κ = λ.
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We conclude that

Pµ∗R,λ
(τ̃

X\R
> t) ≤ Pµ∗R,λ

(T < t ∧ τ̃
X\R

)






1 +

e
−T

(

1
κ+

1
λ

)−1

1− φ∗R,λ

κ − e
−T

(

1
κ+

1
λ

)−1







≤ Pµ∗R,λ
(T < t ∧ τ̃

X\R
)

1− φ∗R,λ

κ

1− φ∗R,λ

κ − e
−T

(

1
κ+

1
λ

)−1

≤
Pµ∗R,λ

(T < t ∧ τ̃
X\R

)

1− φ∗R,λ

κ − e
−T

(

1
κ+

1
λ

)−1
,

(139)

and coming back to (135), with α1 = 1− φ∗R,λ

κ − e
−T

(

1
κ+

1
λ

)−1

,

µ̃∗X (x) ≥
α1

a

Eµ∗R,λ

[

PX(T )(X(t − T ) = x, τ̃
X\R

> t− T )1{t∧τ̃
X\R

>T }

]

Pµ∗R,λ
(T < t ∧ τ̃

X\R
)

. (140)

Now we note that starting from µ∗R,λ, and conditionally on {T < t∧ τ̃
X\R

}, the law of X(T )

is close to µ∗R in total variation. Indeed,

µ∗R,λ = Pµ∗R,λ
(X(τ1) = · |x(τ1 ∈ R))

= Pµ∗R,λ
(X(τ1) = · |x(τ1 ∈ R), τ1 < T )Pµ∗R,λ

(τ1 < T |x(τ1 ∈ R))

+ Pµ∗R,λ
(X(τ1) = · |x(τ1 ∈ R), τ1 > T )Pµ∗R,λ

(τ1 > T |x(τ1 ∈ R))

(141)

and, by (138)

Pµ∗R,λ
(τ1 < T |X(τ1) ∈ R) ≥ Pµ∗R,λ

(τ1 < T, X(τ1) ∈ R) ≥ 1− φ∗R,λ

κ e
−T

(

1
κ+

1
λ

)−1

= α1 .

As a consequence
∥

∥

∥
Pµ∗R,λ

(X(T ) = · | T < t ∧ τ̃
X\R

)− µ∗R

∥

∥

∥

TV
≤ 1− α1

α1
. (142)

This is useful because, from the estimate

PX(T )(X(t − T ) = x, τ̃
X\R

> t− T ) ≥ PX(T )(X(t− T ) = x, τX\R,λ > t− T )

≥ PX(T )(X(t − T ) = x | τX\R,λ > t− T )PX(T )(τX\R,λ > T )

and since Pµ∗R,λ
(τX\R,λ > T ) = e−φ

∗
R,λT , we get that for all a > 1,

µ̃∗X (x) ≥
α1

a

(

e
−φ∗R,λT−

1−α1

α1

)

ν(x) = α1α2

a ν(x) , (143)

where ν(x) is a probability measure such that ‖ν − µ∗R,λ‖TV ≤ 1−α1

α1
. In particular,

πR,λ(ν) ≤ πR,λ(µ
∗
R,λ) +

1−α1

α1
= 1− e−φ

∗
R,λT

∗
R,λ + 1−α1

α1
= 1− α3 ,

where, we recall, πR,λ(ν) = Pν(τX\R,λ < T ∗
R), and by Theorem (2.19) we get

Eν[τ̃
X\R

] = Eν [τ̃
X\R

+ σλ] ≥ α3

φ∗R,λ

{

1 + φ∗R,λT
∗
R,λ − δ∗R,λ

}

+ 1
λ = α4

φ∗R,λ
(144)

Finally, dropping the coefficient 1/a in (143) since the inequality holds for all a > 1, we
get

1

φ̃∗X ,
= Eµ̃∗X

[τ̃
X\R

] ≥
∑

x∈R
µ̃∗X (x)Ex[τ̃X\R

] ≥ α1α2Eν[τ̃
X\R

] ≥ α1α2α4

φ∗R,λ
. (145)
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This gives a lower bound on φ∗R,λ, provided we have an estimate on φ̃∗X . We get such an

estimate by comparison with the spectral gap. By Lemma 3.1 applied with R = X and,

with obvious notation, f = h̃∗X , we have

φ̃∗X ≥ D(h̃∗X )

‖h̃∗X ‖2
=

‖h̃∗X ‖2 − 1

‖h̃∗X ‖2
D(h̃∗X )

Varµ(h̃
∗
X )

≥
(

1− 1

‖h̃∗X ‖2

)

γ. (146)

Now,

‖h̃∗X ‖2 ≥
∑

x∈R
µ(x)

(

µ̃∗X (x)

µ(x)

)2

(147)

= µ(R)
∑

x∈R
µR(x)

(

µ̃∗X (x)

µ(x)

)2

(148)

≥ µ(R)

(

∑

x∈R
µR(x)

µ̃∗X (x)

µ(x)

)2

(149)

=
1

µ(R)
(µ̃∗X (R))2 ≥ (α1α2)

2

µ(R)
ν2(R) =

(α1α2)
2

µ(R)
. (150)

so that, by Theorem 2.12,

φ̃∗X ≥
(

1− µ(R)

(α1α2)2

)

Cλκ (R,X \R)

µ(R)(1− µ(R))







1

1 + max(κ+φ
λ
κ

γR
, λ+φ

λ
κ

γX\R
)







. (151)

Plugging this last estimate in (145) and using the convexity of x 7→ 1/(1 + x), we get the
desired result.

6.6. Proof of Theorem 2.21. By Theorem 2.16, for all x in X ,

max
y∈R

∣

∣

∣

∣

∣

∣

Px

(

X(T ) = y
∣

∣

∣
σλ > T ∗

X\R,0

)

µX\R(y)
− 1

∣

∣

∣

∣

∣

∣

≤ δ∗X\R,0. (152)

Then

‖νx − µX\R‖TV ≤ 1

2
δ∗X\R,0 + P

(

σλ < T ∗
X\R,0

)

(153)

=
1

2
δ∗X\R,0 + 1− e

−λT ∗
X\R,0 (154)

≤ 1

2
δ∗X\R,0 + λT ∗

X\R,0. (155)

Also ‖µX\R−µ‖ = µ(R) and the upper on ‖νx−µ‖TV follows from the triangular inequality.

Now, for all t > 0,

‖Px(X(t) = ·)− µ‖TV ≤ ‖νx − µ‖TV + Px(T > t) (156)

and to prove our mixing time estimate, it is sufficient to show

Px

(

T >
2

(1− η)φ∗R,λ

)

≤ 1 + η

2
− µ(R)− λT ∗

X\R,0 −
1

2
δ∗X\R,0. (157)

To obtain such an estimate we give an upper bound on the mean value of T and use Markov
inequality.

With T ′ = σλ ∧ τR, conditionally to X(T ′) ∈ R, we have

EX(T ′) [τR,λ] ≤
1

φ∗R,λ

{

1 + φ∗R,λT
∗
R,λ + δ∗R,λ

}

(158)
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Then

Ex[T ] ≤ E[σλ] + Ex

[

EX(T ′) [τR,λ]
∣

∣

∣X(T ′) ∈ R
]

(159)

≤ 1

λ
+

1

φ∗R,λ

{

1 + φ∗R,λT
∗
R,λ + δ∗R,λ

}

(160)

and

Px

(

T >
2

(1− η)φ∗R,λ

)

≤ 1− η

2

φ∗R,λ
λ

+
1− η

2
+

1− η

2

(

φ∗R,λT
∗
R,λ + δ∗R,λ

)

(161)

≤ 1 + η

2
− η +

1

2

(

φ∗R,λ
λ

+ φ∗R,λT
∗
R,λ + δ∗R,λ

)

(162)

=
1 + η

2
− µ(R)− λT ∗

X\R,0 −
1

2
δ∗X\R,0. (163)

APPENDIX A. A VERY CRUDE ESTIMATE

We prove here lemma 2.5. The first inequality is obvious from the definition of ζ∗R. Let

X̂ denote the discrete version of X, such that X follows X̂ at each ring of a Poissonian
clock of intensity 1, and let N(t) denote the number of rings up to time t. Then, for z ∈ R,
we have

µ∗R(z) = lim
t→∞

Px(X(t) = z | τX\R > t)

= lim
t→∞

∑

k≥0

Px(X̂(k) = z | τ̂X\R > k)P(N(t) = k)

≥ lim
t→∞

∑

k≥0

Px(X̂(k +DR) = z | τ̂X\R > k +DR)P(N(t) = k +DR)

= lim
t→∞

∑

k≥0

∑

y∈R
Px(X̂(k) = y | τ̂X\R > k)Py(X̂(DR) = z | τ̂X\R > DR)

× P(N(t) = k +DR) ,

(164)

where we used the notation τ̂X\R for the hitting time of the chain X̂ on X\R. Since for all

y ∈ R we have

Py(X̂(DR) = z | τ̂X\R > DR) ≥ Py(X̂(DR) = z , τ̂X\R > DR) ≥ e−∆RDR ,

we get

µ∗R(z) ≥ e−∆RDR lim
t→∞

∑

k≥0

∑

y∈R
Px(X̂(k) = y | τ̂X\R > k)P(N(t) = k +DR)

= e−∆RDR lim
t→∞

P(N(t) ≥ DR) = e−∆RDR .

(165)
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[37] J. BELTRÁN, C. LANDIM, Metastability of reversible condensed zero range processes on a finite set,

arXiv:0910.4089.



METASTABILITY AND QUASI-STATIONARY MEASURES 32
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[39] A. GAUDILLIÈRE, B. SCOPPOLA, E. SCOPPOLA AND M. VIALE, Phase transitions for the cavity approach to

the clique problem on random graphs, arXiv:1011.2945

[40] R. CERF, F. MANZO, Nucleation and growth for the Ising model in d dimensions at very low temperatures,

arXiv:1102.174
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