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We analyse the dynamics of trapped matter shells in spherically symmetric inhomogeneous Λ-
CDM models. The investigation uses a Generalised Lemaître-Tolman-Bondi description with initial
conditions subject to the constraints of having spatially asymptotic cosmological expansion, initial
Hubble-type flow and a regular initial density distribution. We discuss the effects of shell crossing
and use a qualitative description of the local trapped matter shells to explore global properties of
the models. Once shell crossing occurs, we find a splitting of the global shells separating expansion
from collapse into, at most, two global shells: an inner and an outer limit trapped matter shell.
In the case of expanding models, the outer limit trapped matter shell necessarily exists. We also
study the role of shear in this process, compare our analysis with the Newtonian framework and
give concrete examples using density profile models of structure formation in cosmology.

PACS numbers: 98.80.-k, 98.80.Cq, 98.80.Jk, 95.30.Sf , 04.40.Nr, 04.20.Jb

I. INTRODUCTION

Studies of non-linear structure formation in cosmology,
namely spherical top hat collapse models, often assume
that there is no influence of the cosmological background
on a finite domain which has disconnected from the back-
ground dynamics (see e.g. [1–4]).

We have looked at this problem in more detail in
Ref. [5] and found local conditions under which such sep-
aration could be justified for inhomogeneous cosmologi-
cal models. In particular, we have studied the possibil-
ity for perfect fluid solutions to exhibit locally defined
separating shells between collapsing and the expanding
(cosmological) regions.

The simplest examples given in [5] were set in an inho-
mogeneous universe of dust with a positive cosmological
constant and the nature of the dust spherical shells al-
lowed the system to be entirely determined from its initial
conditions, at least, until the eventual occurrence of shell
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crossing.
However, shell crossings or caustics are expected to

happen in these settings with more general initial condi-
tions than in [5] and an interesting question is whether
our previous results are robust with respect to the occur-
rence of shell crossing. This is the main concern in this
paper, which can be regarded a natural follow up of our
previous work [5].

Shell crossing in spherical symmetry has already been
studied in several past works, although in contexts differ-
ent from the one of present paper. For Lemaître-Tolman-
Bondi (hereafter LTB) spacetimes shell crossing condi-
tions were established by Hellaby and Lake [6] in terms
of the metric data and more recently re-written by Suss-
man in terms of quasi-local scalars [8, 9]. Goncalves [10],
has shown that shell crossing exists for Λ-LTB spacetimes
with charge. In [11], it has been shown that shell-crossing
occurs for a large class of initial conditions in models of
formation of voids and some cases of fluids with pressure
gradients.

There were also several works about the strength of
shell crossing singularities, with the general conclusion
that it is a weak singularity in the sense of Tipler [12].
This then raised the question of the continuity of the
metric across these singularities and, very interestingly,
solutions of dynamical extension through shell crossing
singularities of LTB have been proved to exist, by Nolan
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[13], while the case including a cosmological constant and
electric charges has been discussed by Gonçalves [10].

A complementary treatment was given by Nunez et al.
[14] for metric extensions through shell crossing based
on the interactions between shells, which translate in a
conservation relation between mass and momenta, for
timelike massive shells. Physically, this conservation re-
lation summarises the microphysics of the fluid, however
for dust, only purely gravitational interaction occurs be-
tween crossing shells, hence the rest mass of each shell is
conserved [15].

Here, we shall not deal with the problem of metric ex-
tensions after shell crossing and, motivated by the above
results, we shall assume the validity of the field equations
in between shell crossing events and the continuity of the
radial coordinates. Our main concern here will be to
study the effects of shell crossing on the existence and sta-
bility of separating shells in spherical symmetry. In this
paper, we shall also discuss the role of shear in the forma-
tion of shells which separate expanding from collapsing
regions, we shall compare our results with Newtonian
cases and give a concrete example of initial data which
develops shell crossing and exhibits separating shells in a
Λ-dust model.

The models considered in this paper obey the following
properties: (a) spherically symmetric dust (the rest mass
of infinitesimal pressureless shells is conserved under shell
crossing) with a cosmological constant in Generalised
LTB (GLTB) system ; (b) Lagrangian treatment of the
radial coordinates (assume there are metric extensions
through shell crossings); (c) asymptotic spatial cosmolog-
ical behaviour (Friedmann-Lemaître-Robertson-Walker,
hereafter FLRW, at spatial infinity); (d) initial Hubble-
type flow (outgoing initial velocities); (e) regular initial
density distribution (no finite mass for infinitely thin
shell, and no singularity or zero density at the centre).

The paper is organized as follows: in a first part (II) we
recall the conditions for the existence of matter trapped
shells and study the role of shear on the existence of those
shells in Λ-LTB models. Section (III) is devoted to the
study of the effect of shell crossing in Λ-LTB models. In
particular, we perform a dynamical analysis and separate
this study into a local and global effects. We give con-
crete examples in section (IV) before presenting the final
conclusions.

II. TRAPPED MATTER SHELLS IN Λ-CDM

A. Conditions for the existence of trapped matter

shells

In this section, we briefly recall some results of our
previous paper [5] which did not consider shell-crossings.

The GLTB system proposed in Refs. [5, 16], has the fol-
lowing simple form for the case of a Λ-dust model where
P ′ = 0 and P = Pdust = 0 (here we set G = 1 = c, Λ > 0,
α is the lapse function, r (T,R) the areal radius and E

the energy of spatial hypersurfaces1)

ds2 = −α(t, R)2dt2 +
(∂Rr)

2

1 + E(t, R)
dR2 + r2dΩ2. (1)

The Bianchi identities projected along and orthogonal to
the timelike flow n = ∂t yield (P is the pressure, ρ the
density, the prime ′ denotes ∂R, a dot ˙ stands for ∂t and
Θ is the expansion along the flow)

ρ̇ =− (ρ+ P ) 3Θ, (2)

− P ′

ρ+ P
=
α′

α
= 0 ⇒ αdt = dt∗ ⇒ α = 1, (3)

and the Einstein Field Equations (M is the Misner-Sharp

mass [17], defined as M =
´ R

0 4πρr2r′dR)

Ėr′ =− 2ṙ
1 + E

ρ+ P
P ′ = ∓2

1 + E

ρ+ P
P ′α

√

2
M

r
+

1

3
Λr2 + E

(4)

⇒ Ė =0, E = E(R), unless there is shell crossing, (5)

Ṁ =− ṙ4πPr2 = ∓4πPr2α

√

2
M

r
+

1

3
Λr2 + E = 0

(6)

⇒ M =M(R), unless there is shell crossing, (7)

ṙ2 =2
M

r
+

1

3
Λr2 + E. (8)

2Time derivation of Eq. (8) gives a Raychaudhuri equa-
tion related to the gTOV function of Ref. [5]:

gTOV =
M

r2
− Λ

3
r = −r̈. (9)

The dynamical analysis detailed in Ref. [5] yields the
motion of separated non-crossing shells in their respective
effective potential

E = V (r) ≡− 2M

r
− Λ

3
r2, (10)

where the unstable saddle point, for which gTOV = 0,
gives a local separating shell (see [5], figures 1 and 2, and
repeated in Fig. 1), in the case when the shell’s energy
reaches its critical value. This separating (or "cracking",
by analogy with Herrera et al. [18]) shell is characterised
by

rlim =
3

√

3M

Λ
, (11)

Elim =− (3M)
2

3 Λ
1

3 = −Λr2lim, (12)

1 Actually, 3R = −2 (Er)′

r2
so E is related to the 3-curvature.

2 In case of shell crossing, Ė can be nonzero as r′ = 0 and M gets
changed by the loss or gain of the mass from infinitesimal shell
crossings, so E = E(t, R) and M = M(t, R), in that case.
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r
3
√
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2M
r
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Λ
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Figure 1. Effective potential kinematic analysis (left) and phase space analysis (right) from [5]. The kinematic analysis for
a given shell of constant M and E depict the fate of the shell, depending on E relative to Elim. It either remains bound
(E< < Elim) or escapes and cosmologically expands (E> > Elim). There exists a critical behavior where the shell will forever

expand, but within a finite, bound radius (E = Elim, r ≤ rlim). The maximum occurs at rlim = 3
√

3M/Λ. The corresponding

phase space behaviour follows, the scales are set by the value of rlim = 3
√

3M/Λ while the actual kinematic of the shell is given
by E.

while the energy follows

E =ṙ2 + V (r). (13)

Definition 1. Local trapped matter shells in Λ-LTB are
defined in GLTB coordinates as the locus R⋆ such that

Θ

3
+ a ≡ ṙ

r
= 0 and Ln

(
Θ

3
+ a

)

≡
(
ṙ

r

)
�

= 0. (14)

This definition follows from Eqs. (3.11) and (3.16) of [5]
applied to dust with Λ.

In Λ-LTB, conditions (14) are reached by shells
at time-infinity which are characterised by Eqs. (8)
and (12) so that (see footnote 2) E (t = ∞, R⋆) =
Elim (t = ∞, R⋆) (defining R⋆) i.e.3

(
Θ

3
+ a

)2

=2
M (R⋆)

r3 (T,R⋆)
+

1

3
Λ− (3M (R⋆))

2

3 Λ
1

3

r2 (T,R⋆)
. (15)

So, since here the Misner-Sharp mass M and energy E of
each shell is conserved in time (without shell crossing),
and E is thus set by initial M(R) and ṙi(R) profiles, one
can characterise local trapped matter, or limit, shell by
the intersections E = Elim (see [5], for details). Global
shells emerge from the neighbourhood behaviour around

3 Erratum: Eq. (3.14) of [5] has a sign typo. It should read

gTOV = −r

[

Ln

(

Θ

3
+ a

)

+

(

Θ

3
+ a

)2
]

.

those intersections which local study we give in Secs. III A
and III C.

Before studying the occurrence of shell-crossing we will
now examine more carefully the role of shear in these
settings.

B. The role of shear in the existence of trapped

matter shells

In Ref. [5], we derived the relation between expansion
and shear (see Eq. III.10) and found that, in the presently
studied model, the shear could be put in the form

a = ∓ 1

6
√

E + 2M
r + Λ

3 r
2
×

×
[(

E′

r′
− 2E

r

)

+
2

r

(
M ′

r′
− 3M

r

)]

. (16)

In the latter equation the terms within the brackets mea-
sure the departures from the profiles E = Ē(t) r2 and
M = M̄(t) r3 that one would expect from a homoge-
neous, uniformly curved models . Indeed, in FLRW mod-
els E = kr2 and M ∝ ρ(t)r3. Moreover, we should stress
that Eq. (16) yields the shear in terms of non-local (in-
tegral) quantities (E and M). We can now evaluate the
expansion and shear at the limit shell defined by setting
Eqs. (8) and (9) to zero at time infinity in Ref. [5], which,
with the conservation of E and M , is simply defined by
Eqs. (8) and (12). Combining those equations yields

E′ =− 2M ′

rlim
. (17)
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First on the limit shell we can write, setting E = Elim,

a = ∓

{

2M ′

r′

(
1
r − 1

rlim

)

+ 2Λ
r2
lim

r

(
1− rlim

r

)}

6

√

Λ
3

(

2
r3
lim

r + r2 − 3r2lim

) . (18)

With the definition of mass issued from Ref. [5]’s Eq. II.27
in GLTB coordinates so

M ′ =4πρr2r′, (19)

we then express the shear of the limit shell as

alim = ∓
√
√
√
√

Λ

3
(

r
rlim

)3

1− 4πρ(r)
Λ

(
r

rlim

)3

√

2 + r
rlim

, (20)

which in the limit of time infinity simplifies into

alim∞ = ∓Λ− 4πρ(rlim)

3
√
Λ

. (21)

This quantity does not vanish in general. Since at that
locus we have Θ = 3

(
ṙ
r − a

)
, the expansion then reads

Θlim = ±
√
√
√
√

3Λ
(

r
rlim

)3






√

2− 3
r

rlim
+

(
r

rlim

)3

+
1− 4πρ(r)

Λ

(
r

rlim

)3

√

2 + r
rlim




 , (22)

which in the limit of time infinity simplifies into

Θlim∞ = ±Λ− 4πρ(rlim)√
Λ

. (23)

We shall now use a particular form of initial data in order
to study in more detail the role of shear in the appearance
of the diving shell. In the examples below we shall assume
M > 0, ρ > 0,Λ > 0 and E < 0 around the origin.

So, consider analytic initial data for Λ-LTB as in [19,
20]4:

M(R) = R3
∞∑

i=0

miR
i, m0 > 0 (24)

E(R) = R2
∞∑

i=0

EiR
i, E0 < 0

4 This data ensures that the solution approaches FLRW at the
origin which is therefore regular.

then, from the expressions above, we derive

alim(R) = ±Λ1/2

(

1

3
− 2

32/3

(

m
1

3

0 +
2m1

m
2/3
0

R+ (
3m2

m
2/3
0

− m2
1

m
5/3
0

)R2 +O(R3)

))

rlim(R) = (
3

Λ
)

1

3

(

m
1

3

0 R+
m1

3m
2/3
0

R2 +O(R3)

)

Elim(R) = −3
2

3Λ
1

3

(

m
2

3

0 R
2 +

2m1

3m
1/3
0

R3 +O(R4)

)

(25)

also, for the re-scaling r(t0, R) = R, we get an expression
for the initial shear distribution as (see also [21]):

a(t0, R) = ±E1 + 2m1

6A
R

± 1

6

(
2E2 + 4m2

A
− (E1 + 2m1)

2

2A3

)

R2 +O(R3)

with A(R) =
√

E0 + Λ/3 + 2m0.
It is interesting to see that for a fixed shell R near

the centre, bigger M (i.e. bigger m3) means smaller
initial shear but bigger |Elim| and rlim for that shell.
On the other hand, since bigger initial shear implies
smaller |Elim| (i.e. smaller departures from Elim = 0)
and smaller rlim, one can argue that, at least around the
origin (and for the above initial data), shear contributes
to the appearance of "cracking" limit shells. This is in
agreement with the results of Herrera et al. [18]. We
summarize this result as:

Result 1. Consider a neighbourhood U of the origin
where the Λ-LTB initial data can be written as (24).
Then, bigger values of the initial shear |a(t0, R)| in U , im-
ply smaller |Elim| and favour the occurrence of trapped
matter shells in U .

For data which is asymptotically Friedmann at infinity
we take functions which, at infinity, can be expanded in
the form5:

M(R) =

+∞∑

i=1

miR
3

i , E(R) =

+∞∑

i=1

EiR
2

i

with m1 6= 0 and E1 6= 0.By taking asymptotic expan-

5 Note that we only assume this data form at infinity and not
around the origin. Otherwise, we would have a non-regular ori-
gin.
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R

Elim

R⋆i

︷ ︸︸ ︷ ︷ ︸︸ ︷

E = E<(R < R⋆i) E = E>(R > R⋆i)

E E = Elim(R⋆i)︸ ︷︷ ︸

Bound shells

Unbound shells

Figure 2. Overcoming local configuration of E intersecting
Elim. Phase space and effective potential trajectories from
dynamical analysis of [5] give the local qualitative behaviour,
emphasised on the radial axis. Inner shells on bound tra-
jectories and outer shells on unbound paths forecast no shell
crossing locally. Considering Elim as corresponding to the
Newtonian zero radial velocity axis in [24, 25], this configura-
tion is analogous to, e.g., figure 1 of [26].

sions we find :

rlim(R) =

(
3

Λ

) 1

3

(

m
1

3

1 R+
m2

3m
2

3

1

(
1

R

) 1

2

+O(
1

R
)

)

Elim(R) = −3
2

3Λ
1

3

(

m
2

3

1 R
2 +

2

3

m2

m
1

3

1

R
1

2 +
2

3

m3

m
1

3

1

+O(
1

R
1

4

)

)

(26)

while the initial shear is:

a(t0, R) = ∓ E2

2
√
3
√
3E1 + Λ+ 6m1

1

R
+O(

1

R
4

3

)

So, again, bigger values of the initial shear |a(t0, R)| near
infinity, imply smaller |Elim| and favour the occurrence
of trapped matter shells.

We shall return to this issue in section IV where we
study other examples in more detail.

III. SHELL-CROSSING AND TRAPPED

MATTER SHELLS

A. Sufficient conditions for shell-crossing

In terms of the comoving coordinates of metric (1),
shell-crossing is defined as a surface for which ∂Rr = 0

and the density diverges6. In geometrical terms, at shell-
crossing there is a discontinuity both in the extrinsic cur-
vature Kij and in the spacetime metric. For the space-
times considered here, those discontinuities are finite and
the magnitude of the jump in Kij can be read from the
expressions derived in [15, 23].

Hellaby and Lake [6] (see also [7]) have derived neces-
sary and sufficient conditions for the occurrence of shell-
crossing in LTB, in terms of the free initial data. Other
works have used other type of conditions which are suffi-
cient to avoid shell crossing and therefore imply ∂Rr 6= 0.
For example, in the case of LTB, Landau and Lifshitz
[27] simply assume ∂Rr > 0 and, in [28], Hellaby and
Lake impose the condition for a simultaneous big bang
in their local analysis around the initial singularity.

Here, we shall take a different point of view and write
sufficient conditions for the occurrence of shell-crossing
in terms of the local behaviour of M and E in the neigh-
bourhood of some intersection, when it exists, of the en-
ergy E with the critical energy Elim. In order to do
that we first observe that two local configurations are
possible in the neighbourhood of the intersection: either
E′ > E′

lim or E′ < E′
lim.

In the case E′ > E′
lim, shells just inside the inter-

section radius will have a lower E than their respective
Elim and will therefore be trapped in closed trajecto-
ries, following the dynamical analysis presented in Fig.
1. In that case, shells just outside the intersection will
display higher E than their respective Elim and will ac-
cordingly be free to escape to infinity on unbound trajec-
tories. That shell distribution will lead to the separation
of neighbouring shells, those inside the intersection being
bound to a finite region while those outside will escape
to infinity. This case doesn’t entail neighbouring shell
crossings and is presented on Fig. 2.

On the contrary, in the case E′ < E′
lim, shells just

inside the intersection will have a higher E than their
respective Elim and will accordingly be free to escape
to infinity on unbound trajectories whereas shells just
outside the intersection will display a lower E than their
respective Elim and will therefore be trapped in closed
trajectories. Because of the configuration of that shell
distribution, shell crossings of neighbouring shells occur:
those inside the intersection escaping to infinity will have
to cross those outside which are bound to a finite region.
This case is presented on Fig. 3. We summarize this
result as:

Result 2. Let ∆ = E − Elim and consider a Λ-LTB
spacetime where there is R⋆ such that ∆|R⋆

= 0. Then,
a sufficient condition for the existence of shell crossing is
∆′|R⋆

< 0.

6 There can exist cases where ∂Rr = 0 and the density does not
diverge. At those regular extrema, the extrinsic curvature is
discontinuous while the metric is continuous and finite [6, 22].
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E

Elim

︷ ︸︸ ︷︷ ︸︸ ︷
E = E>(R < R⋆j) E = E<(R > R⋆j)

R⋆j

E = Elim(R⋆j)
︸ ︷︷ ︸

R

Unbound shells

Bound shells

Figure 3. Undercoming local configuration of E intersecting
Elim. Phase space and effective potential trajectories from
dynamical analysis of [5] give the local qualitative behaviour,
emphasised on the radial axis. Outer shells on bound tra-
jectories and inner shells on unbound paths will lead to local
shell crossing. Considering Elim as corresponding to the New-
tonian zero radial velocity axis in [24, 25], this configuration
is similar to, e.g., figure 2b of [24].

We point out that, for Λ = 0, our condition leads
to E′ < 0, which is the condition implicitly consid-
ered in [6, 7]7. In that case, we simply obtain E′

lim =

−8πρr2r′
(

Λ
3M

) 1

3 = 0. In this sense, our sufficient con-

dition generalises, for Λ 6= 0, the result of Ref. [6, 7]8.
We also note that their condition on bang times tb(R) is
t′b(R) ≤ 0, while we can also allow for t′b(R) > 0 as long
as tb(R) is less than the initial time t0 considered here.

There is an interesting analogy between our shell-
crossing condition and a similar condition in Newtonian
theory. In fact, the Newtonian approach used in [24, 25]
considers kinematic configurations in velocity-radius two
dimensional phase space which lead to one (and three)
dimensional Zel’Dovich pancakes (see Refs. [25, 29, 30]
for the classical cosmological spherical context). Their
behaviour is similar to the local evolutions of the dynam-
ical configurations in Figs. 2 and 3. While in [24, 25] the
authors take the radial axis to separate collapsing and

7 For LTB with Λ = 0, we recall that the necessary and sufficient
conditions for no-shell crossing in [6] are:

T ′
B ≤ 0, E′ ≥ 0,M ′ ≥ 0

where TB is the bang time, while the necessary and sufficient
conditons for no-shell crossing in [7] are:

T ′
B ≤ 0, E′ > 0,M ′ ≥ 0.

Therefore, if one of these conditions fails then there will be shell
crossing.

8 Although our interest is in the neighbourhood of radius where
∆ = 0, our analysis can be extended to other locations.

expanding kinematics, here we take Elim locally as a de-
formed radial axis.

B. Hypotheses and dynamical analysis

Since part of our analysis is based on the E − Elim

diagram, it is useful to clarify the constraints introduced
by the set of hypotheses we propose.

1. Regular density distribution

A regular density distribution is motivated by standard
cosmological models [11, 29, e.g.]. In the weak energy
condition, the density remains positive so the mass profile
is initially always monotonously increasing, thus Elim,
from Eq. 12, is initially always monotonously decreasing,

∂M

∂R
≥ 0 ⇒∂Elim

∂R
≤ 0. (27)

The regularity implies finiteness of the mass and nonzero
values for the density at the centre. This constraints
their logarithmic slope in the following manner: suppose
a value −ǫ for the slope of the density in the centre (ρ ∝
r−ǫ), then the mass shall behave accordingly as r3−ǫ.
Finiteness of the mass implies then ǫ ≤ 3 and no vacuum
in the centre implies ǫ ≥ 0, from the density.

2. Initial Hubble-type flow

This simplifies the initial velocity profile into one that
only admits outgoing radial velocities (positive ṙ), in the
fashion of expanding initial conditions in a Hubble flow,
although less restrictive. As a consequence of this and
the previous condition, the profiles in the centre always
respect, in initial conditions, the hierarchy E < Elim,
which is crucial for the emergence of a bound core. In
this case

Elim = − (3M)
2

3 Λ
1

3 ∼
R → 0

R2− 2

3
ǫ → 0 as ǫ ≤ 3,

E = ṙ2 − 2M

R
− Λ

3
R2 ∼

R → 0
−R2−ǫ → 0,

since ṙ ∼
R → 0

R → 0 so the ṙ2 and Λ
3R

2 both tend to

zero as R2 and are thus dominated by the − 2M
R term for

ǫ > 0. Thus around the centre,

E

Elim
∼

R → 0
=

2

3
2

3R

(
M

Λ

) 1

3

∼
R → 0

2

3
2

3Λ
1

3

R− ǫ

3 > 1

⇒ E < Elim, for ǫ > 0, Elim < 0.
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In the peculiar case of a constant central density (ǫ = 0),
we have M ∼

R → 0

4π
3 ρ0R

3, ṙ ∼
R → 0

∂Rṙ0R = HcR so

E =
(
H2

c − 8π
3 ρ0 − Λ

3

)
R2 =

(
H2

c − 8π
3 (ρ0 + ρΛ)

)
R2. In

that case, the Hubble-type flow needs to remain moderate
in the centre to respect the constraint

∂Rṙ0 < 4π

(

ρ
2

3

0 (2ρΛ)
1

3 +
2

3
(ρ0 + ρΛ)

)

.

In the rest of the paper, we assume the conditions for
E < Elim in the centre are met.

3. Asymptotic spatial cosmological behaviour

If we restrict our explorations to asymptotically cos-
mological (FLRW) solutions, this implies that at radial
infinity the mass and velocity initial profiles, constraining
the energy and Elim profiles for all time, shall obey

M −→
R → ∞

4π

3
ρbR

3 with
3M

4πR3
−→

R → ∞
ρb = ρb(t)

⇒ Elim −→
R → ∞

− (4πρb)
2

3 Λ
1

3R2,

ṙi(R) −→
R → ∞

HiR ⇒ E −→
R → ∞

−K R2. (28)

We note that the value of the curvature K of the
asymptotic FLRW solution compared with the equiva-

lent (4πρb)
2

3 Λ
1

3 FLRW critical curvature will determine,
together with the central constraint E < Elim, the oc-
curence of, at least, one intersection of E and Elim of the
E′ > E′

lim kind, not inducive of shell crossing (see Sec.
III A).

Definition 2. Supposing there exists n ∈ N shells veri-
fying equation (15), we order them by initial radius and
denote them R⋆i, i ∈ [1, n],
• R⋆out ≡ R⋆n the outermost intersections E = Elim of
the initial profiles
• R⋆in ≡ R⋆1 the innermost initial intersections E =
Elim of the initial profiles.

4. Local mass conservation and Lagrangian frame

Since in our system, the cosmological constant is inert
by definition and dust purely interacts gravitationally,
we assume, as in [15], that the rest mass of each crossing
infinitesimal shell is conserved. The shell crossing event
can thus be viewed as an infinitesimal exchange of the
relative positions and integrated masses while each shell
conserves its own velocity.

As shell masses M and energies E are conserved be-
tween shell crossing events, Eq. (8) will govern the mo-
tion of individual shells. Keeping initial R = r(0, R)

δM crossing
For r× < rlim

δR⋆i

R⋆i

δ[E − Elim](R)

E+δ

Elim+δ

Elim

E

R

− 2δM
r×(R) −2δM

rlim

R⋆i+δ

Figure 4. Effect of an ingoing, infinitesimal test shell-crossing
on the energy and critical energy profiles, around the local
initial configuration for the overcoming of Elim by E. The
initial intersection shell becomes bound on such perturbations
and the local intersection shell shifts outwards in radius.

as Lagrangian labels, we can follow the dynamics of the
shells using a the simple prescription obtained above
without the need to reorder the radial labels as would
require a metric extension. Instead, we keep the initial
labels all throughout and follow each shell’s evolution
using Eq. (8) and the shell crossing prescription of Sec.
III B 4, as e.g. in Ref [24, 29].

C. Local effects of shell crossing on trapped matter

shells

In this section, we will detail how a test crossing shell
affects locally the values of E and Elim around trapped
matter shells.

Since each shell conserves its infinitesimal mass, the
local effect of an elementary crossing of a system’s shell
by a test, neighbouring, shell will just exchange their
non-local mass in the exchange of their positions9. As a
consequence, their values of E and Elim will also change.
The change of E, in Eq. (4), is allowed by the shell cross-
ing event.

A shell crossed at some r× by an infinitesimal mass δM
(δM > 0 for inward crossing, < 0 for outward crossing)
will see its values shifted as follow (the reciprocal is true

9 In this process the other shells of the system, not involved, will
remain unaffected and conserve their masses.
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R

δM crossing

2δM
r×(R)

For r× < rlim

Elim+δ

Elim

δR⋆jδ[E − Elim](R)

E

2δM
rlim

E+δ

R⋆j+δ

R⋆j

Figure 5. Effect of an outgoing, infinitesimal shell-crossing on
the energy and critical energy profiles, around the local initial
configuration for the undercoming of Elim by E. The initial
intersection shell becomes unbound on such perturbations and
the local intersection shell shifts outwards in radius.

for the crossing shell with−δM)

E+δ =E − 2δM

r×
, (29)

Elim+δ ≃Elim +
2

3

δM

M
Elim. (30)

Thus, for an inward (resp. outward) crossing, both E
and Elim will decrease (resp. increase). Their relative
separation, crucial around intersections, will follow

δ∆ ≃2δM

(
1

rlim
− 1

r×

)

, (31)

which generalises the conditions from [6, 7] (see Result
2). The sign of this shift is determined by the initial
position r(t0, R) = R = ri of shells with respect to their
rlim.

Bound shells can never cross their respective rlim and
shells with E = Elim reach their rlim at infinity in time.
Thus crossing events involving one bound shell, satisfy
(

1
rlim

− 1
r×

)

< 0. However, once escaping shells go be-

yond their respective rlim, they experience the opposite
relative effect on their δ∆. Thus, it is possible to have
a crossing of two escaping shells beyond their respective
rlim that produce shifts in the opposite direction. How-
ever, once beyond their rlim, even drastic changes cannot
put shells on closed orbits linked with the centre as they
would correspond to points on the outer side of the effec-
tive potential (Fig. 1a). Since intersections E = Elim

take place in the neighbourhood of bound shells (those
with E under their Elim) we can restrict ourselves to
consider local shell crossing in r× < rlim.

To first order, for inward-going crossing shells, we have
δ∆ < 0, as illustrated on Figs. 4 and 7, while outward-
going shells have δ∆ > 0, see Figs. 6 and 5. As a

E

Elim

Elim+δ

δ[E − Elim](R)

δM crossing

2δM
r×(R) 2δM

rlim

δR⋆i

For r× < rlim
R

E+δ

R⋆i+δ

R⋆i

Figure 6. Effect of an outgoing, infinitesimal shell-crossing on
the energy and critical energy profiles, around the local initial
configuration for the overcoming of Elim by E. The initial
intersection shell becomes unbound on such perturbations and
the local intersection shell shifts inwards in radius.

consequence, the limit shell defined by the intersection
shifts forward (resp. backward) for the two cases of local
configurations. The resulting cases are overcoming in-
ward crossings and undercoming outward crossings (resp.
overcoming outward crossings and undercoming inward
crossings) and are illustrated on Figs. 4 and 5 (resp. 6
and 7).

To simplify the qualitative study of the system, we will
first consider a prescription where both M and E are con-
served, in Secs. III D 1 and III D 2. We will then drop this
assumption and include the evolution of trapped matter
shells’ neighbourhoods, building from infinitesimal shell
crossing as described below in Sec. III D 3 to ascertain
the qualitative evolution of the system, in Sec. III D 4.

D. Global effect of shell crossing on limit trapped

matter shells

1. Simplest model with shell crossing

In order to study the simplest set of initial conditions
where shell crossing occurs, given the constraints of sec.
III B from Result 2, we shall consider a model with a
single undercoming configuration. The topological con-
straints coming from the two dimensional E vs. R dia-
grams10, together with the choice of an open background

10 For example in the centre (E < Elim). See Fig. 8.
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Elim

E

−2δM
rlim

Elim+δ

δR⋆j
δ[E − Elim](R)

∀R, r× < rlim

R

inward δM crossing

E+δ

− 2δM
r×(R)

R⋆j

R⋆j+δ

Figure 7. Effect of an ingoing, infinitesimal test shell-crossing
on the energy and critical energy profiles, around the local
initial configuration for the undercoming of Elim by E. The
initial intersection shell becomes bound on such perturbations
and the intersection shell shifts inwards in radius.

at infinity11 leads to initial conditions for E and Elim

with three intersections (see Fig. 8), the middle one ver-
ifying Result 2. We thus have a model with R⋆1 = R⋆in,
R⋆2 and R⋆3 = R⋆out defined in its initial conditions.
We can now consider the inner system, also called the
system, to be circumscribed by R⋆out. Unbound shells
inside this system are in position to escape it and hence
define a remarkable shell outside the system:

Remark 1. The inner or non-bound shells of initial
conditions in E and Elim induce a few remarkable fea-
tures defined as follows:
• We will consider all shells inside R⋆out as the initial
inner system.
• We will denote by Emax the maximum value of
non-bound E in the set of shells inside R⋆out or out-
side of it but with horizontal tangent, i.e. Emax =
max {E : ((E′ = 0) ∨ (0 < R ≤ R⋆out)) ∧ (E ≥ Elim)}
• Rmax is the largest value for which E = Emax, i.e.
Rmax = max {R : E (R) = Emax}
• Rfree is the furthest shell outside R⋆out with in-
creasing E = Emax, when it exists, i.e. Rfree =
max {R : (R ≥ R⋆out) ∧ (E = Emax) ∧ (E′(R) > 0)}
• We will note Efree the value of E, when it exists, as
Efree = E (t = t0, Rfree).

With the above definitions, we will now examine the
effects of shell crossing on trapped matter shells.

11 This means E −→

R → ∞

− kFLRW .R2 with kFLRW < 0 and

Elim −→

R → ∞

− (4πρb)
2

3 Λ
1

3 .R2

Elim
E

innermost R⋆ = R⋆in

outermost R⋆ = R⋆out

R < R⋆out never crossed
by outer shells

R

E → −kFLRW .R2

Rfree

by inner shells
never crossed

R > Rfree

Efree

Elim → − (4πρb)
2
3 Λ

1
3R2

R⋆2

Emax

Figure 8. Open background with arbitrary central mass distri-
bution and a single local undercoming intersection. It always
gives protected inner shells as well as unmodified cosmological
expansion, when keeping integrability despite shell-crossing.
Shell crossing entails no fundamental modification.

2. Limit trapped matter shells in the integrable dynamical
system

In a model where both M and E are conserved through
shell crossings, we can extend the analysis of [5], as each
shell’s dynamics remains integrable and is governed by
the Lagrangian Eq. (8)12. In this case, the qualitative
dynamical behaviour of the system is entirely determined
from the shape of its initial conditions in a E and Elim

vs. R diagram.
As we will see in Sec. III D 4, when including the full

effects of shell crossing on E and Elim, the key properties
of trapped matter shells will be obtained in the limit
t → ∞. Since in this section, M and E are assumed to
be conserved with time, all the properties deduced here
will remain unchanged in that limit. We will therefore
express our results in the limit t → ∞, using definitions
which evolve from Rem. 1 and are detailed in Appendix
A.

From Fig. 8, we can see that all the bound shells
will remain under rlim⋆out = rlim (R⋆out), while all un-
bound shell of the inner system will escape it13. Thus,
considering that bound shells will eventually turnaround
and orbit back and forth between the centre and their
turnaround radius, we find that all shells inside r (t, R) =
rlim⋆out will be crossed from both sides (interior and exte-
rior)14. Only the shell R⋆out will remain uncrossed from
outside shells. This leads to the following definition:

12 The final fate of each shell will always remain on horizontal lines
and their gravitational nature, whether bound or unbound will
also remain the same throughout their history.

13 This is indicated on Fig. 8 by horizontal arrows.
14 This includes the R⋆in and R⋆2 shells, locally considered trapped

matter shells.
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Definition 3. The outer limit trapped matter shell
Rt⋆out∞ verifies Def. 1 in the limit t → ∞, in addi-
tion to being the outermost such shell which locally is not
shell-crossing inducive15 i.e.

Rt⋆out∞ = {R : max {R⋆∞} ∧ (E′ (t → ∞) > E′
lim (t → ∞))}

Note, from Def. 2, that R⋆out: verifies Def. 3; defines
Rt⋆out, if E′ > E′

lim; and verifies Rt⋆out = Rt⋆out∞ in the
limit t → ∞.

Remark 2. In Λ-LTB with asymptotic cosmological
evolution (FLRW at radial infinity) and initial Hubble-
like flow (outwards going) for which shell crossing
occurs, the outer limit trapped matter shell is a surface
S with the following properties:
• The matter exterior to S follows trapped geodesics,
remaining in that exterior.
• The matter inside S can expand and collapse protected
from the crossing of outside shells.
• S is the shell with largest R for which the energy
E intersects the critical energy Elim, from bound to
unbound shells.

The condition for existence of Rt⋆out∞, follows from
the properties of Rt⋆out, so we obtain the following result:

Result 3. Sufficient conditions for the existence of an
outer limit trapped matter shell are:
• The FLRW curvature of the background kFLRW <

(4πρb)
2

3 Λ
1

3 , or
• Rt⋆out exists, or
• The local configuration around R⋆out is such that
E′

⋆out > E′
lim⋆out.

Proof. kFLRW < (4πρb)
2

3 Λ
1

3 ⇒ E (R → ∞) >
Elim (R → ∞) so the last intersection E (R) = Elim (R)
is such that E′ > E′

lim from a corollary to Bolzano-
Weierstrass theorem and the Definition 3 is verified.

We show, in Fig. 8, a diagram with data such that the
inner limit trapped matter shell Rt⋆out is at R⋆out. The
exterior of the system will include all the unbound shells
escaping to infinity. However, the dynamics from Eq. (8)
allows us to study under what conditions unbound sys-
tem’s shells will never cross shells located in the exterior
of the system16. Take two different shells R1 < R2, even-
tually crossing each other at a given radius17 r×, and
with the outer shell more open than the inner shell (i.e.

15 Recall that R⋆∞is defined by solutions in initial R of Eq. 15
taken at t → ∞.

16 Their escape velocity at infinity should never exceed that of ex-
terior shells.

17 This radius is allowed to tend to radial infinity.

E1 < E2 for M1 < M2):

E1 =v21 −
Λ

3
r2× − 2M1

r×
, with E1 <E2,

(32)

E2 =v22 −
Λ

3
r2× − 2M2

r×
and M1 <M2,

(33)

⇒ ∆v2 =∆E +
2∆M

r×
> 0 and (34)

∆v2 ∼
r× → ∞

∆E > 0 ⇒ ∀t, v22 >v21 .

(35)

Thence shells with E1 < E2 and M1 < M2 will al-
ways remain in the same radial order and the shell with
E = Emax will then escape all other system’s shells.
It then appears that, when Rfree exists, all shells with
E > Efree will never be crossed by any shell inside Rfree.
The counterpart to Def. 3 can thus be formulated by
defining first Emax. In turn, the condition for the exis-
tence of Emax is that E ≥ Elim, in the limit t → ∞.
Thus, Rem. 1 can be adapted here as18

Definition 4. Suppose Emax∞ exists and is defined, in
the initial conditions, as

Emax∞ = max
{

E|(t→∞) : ((E
′ = 0)

∨ (0 < R ≤ R⋆out∞)) ∧ (E ≥ Elim)(t→∞)

}

. (36)

Then, inner limit trapped matter shells are defined as the
locus Rfree∞ such that

Rfree∞ = max {R : (R ≥ R⋆out∞) ∧ (E = Emax∞)t→∞

∧ (E′(t → ∞, R) > 0)} . (37)

Remark 3. In Λ-LTB with asymptotic cosmological
evolution (FLRW at radial infinity) and initial Hubble-
like flow (outwards going) for which shell crossing occurs
(and Emax∞ is defined), the inner limit trapped matter
shell is a surface S with the following properties:
• The matter interior to S follows trapped geodesics which
remain in that interior.
• The matter exterior to S expands, protected from the
crossing of inside shells.
• S is the shell outside the system (defined with R⋆out∞)
with energy equal to that of the highest E of non-bound
shells, and starting inside of the system, or outside it but
with horizontal tangent.

The conditions for existence of Rfree∞ combine the
existence of Emax∞ with constraints on the background:

18 The following can be formulated also in terms of gauge invariant
Lie derivatives, expansion and shear, as seen in appendix B.
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Result 4. Sufficient conditions for the existence of an
inner limit trapped matter shell are (a) the existence of
Emax∞ and (b) the existence of Efree∞:
(a) • There exist initially a non-bound, system shell,
or a non-bound shell with horizontal tangent: ∃R :
(0 < R ≤ R⋆out ∨E′ = 0) ∧E (R) ≥ Elim(R), or

• R⋆out∞ exists, or
• There exist at least one R⋆i

(b) • Emax∞ < E (R → ∞), or
• ∃R : R ≥ R⋆out∞ ∧ E (t → ∞, R) = Emax∞ ∧

E′(R) > 0

Proof. (a) 1/ If we have R such that
(0 < R ≤ R⋆out ∨E′ = 0) ∧ E (R) > Elim(R), then,
either it is a maximum so Emax exists and, by time
evolution of its neighbourhood, Emax∞ exists, or, by
continuity, in the case when it is not a shell with
E′ = 0 (local maximum), there is a shell with larger
E which satisfies Rem. 1 for Emax and thus one in its
neighbourhood satisfying Def. 5 for Emax∞.
2/ If R⋆out∞ exists, it is not bound at time infinity and
is inside the system, therefore, even if it is the only
unbound system shell, it can at least define Emax∞.
3/ If there is only one R∗, then it is R⋆out by Def. 2.
We are then in the case 2/ above as this guarantees the
existence of R⋆out∞.

(b) Since: (i) Emax∞ is, by definition, the largest value
of E reached at time infinity by inner or outer local max-
ima shells,
(ii) uncrossed outer shells have their E conserved,
(iii) asymptotic cosmological conditions render E
monotonous near infinity,
(iv) evolution of the inner shell Rmax∞ follows Eqs. 35,
(v) the energy profile is continuous,
therefore, E⋆out∞ ≤ Emax∞ and by continu-
ity, since Emax∞ < E (R → ∞), exterior shells
will obey E ∈ [E⋆out∞, E (t → ∞, R → ∞)[ k
[Emax∞, E (t → ∞, R → ∞)[, thus there exist at least
one shell at time infinity with E = Emax∞.
Moreover, for the outermost exterior shell Rxmax∞ =
max {R : R ≥ R∗out∞, E (R) = Emax∞} with E =
Emax∞, since Emax∞ < E (R → ∞), by continuity, all
shells outside of it will verify E > Emax∞. Therefore
E′(Rxmax∞) > 0 and Rxmax∞ = Rfree∞ is fulfilling Def.
4.

We show a diagram in Fig. 8 where we indicate
the outer limit trapped matter shell for which Rfree =
Rfree∞, in the model where both E and M are conserved
between shell crossings. We thus have found, for that
model, that extending the analysis of [5] in the context
of shell crossing leads to the emergence of two remark-
able shells: an inner limit trapped matter shell and an
outer limit trapped matter shell. From their definitions 3
and 4, we can deduce other properties depending on the
background cosmological model, namely:

From Result 3, any background with E > Elim will
admit an outer limit trapped matter shell. This includes
some closed models and all flat and open models.

From Result 4, and under the assumptions of this sec-
tion, any closed background in our models cannot foster
an inner limit trapped matter shell as the finite value of
Emax∞ is always larger than its energy at radial infin-
ity. Conversely, open models always have an inner limit
trapped matter shell (see the example of section IV) and
only flat models with moderate enough energy fluctua-
tions (i.e. for which Emax < 0 = E (R → ∞)) can allow
the existence of an inner limit trapped matter shell. In
summary:

Summary 1. Consider a Λ-LTB spacetime with asymp-
totic cosmological evolution (FLRW at radial infinity)
and initial Hubble-like flow (outwards going) for which
shell crossing occurs. Then:

1. The global limit trapped matter shell found in the
no-shell crossing Λ-LTB examples of [5] is split, if
shell crossing occurs, into at most, two global shells,
namely an inner limit trapped matter shell and an
outer limit trapped matter shell.

2. For open or flat expanding spacetimes,

(a) there exists always an outer limit trapped mat-
ter shell at Rt⋆out∞.

(b) The inner limit trapped matter shell exists in
flat backgrounds for sufficiently small initial
velocities inside the system limited by R⋆out∞.

3. For closed spacetimes, outer limit trapped matter

shells are present if kFLRW < (4πρb)
2

3 Λ
1

3 and inner
limit trapped matter shells cannot be defined if shell
crossing occurs, with our definitions.

4. In the Λ-CDM examples of global limit trapped mat-
ter shell found in [5], inner and outer limit trapped
matter shells reduce to one single surface.

Proof. 1: Direct from Definitions 3 and 4 and Result 2
which leads to shell crossings at some R⋆ .
2(a): From Result 3.
2(b): Direct from Result 4, as open and flat expanding
spacetimes admit E (R → ∞) ≥ 0. Some flat spacetimes
can exhibit Efree∞ > 0 while their E −→

R → ∞
0. For

those cases, Definition 4 is never verified.
3: Using Result 3, for closed spacetimes, E −→

R → ∞
−

∞ ≪ Efree∞, so from Result 4 , Definition 4 is never
verified.
4: Applying Definitions 3 and 4 to configurations where
there is only one intersection R⋆ = R⋆1 = R⋆out verifying
E′ > E′

lim, no shell crossing occurs. Thus all E values
are constant over time so R⋆out = Rt⋆out∞, and given the
open background, Efree = E⋆out, so Rfree∞ = R⋆out =
Rt⋆out∞.

In this section, we have assumed that E and M were con-
served through shell crossings. In the next section, we
drop this assumption and investigate whether our previ-
ous results remain true.
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3. Global effect of shell crossing

Since the sign of ∆ = E−Elim determines the binding
property of the system, it is useful to give the final values
of E and Elim for each shell, labeled i, in terms of the
initial Ri and Mi, reaching areal radius r after crossing
shells, with

M(r(R, t), t) = Mi +

ˆ

dMin −
ˆ

dMout = Mi +∆Mi

where the index in refers to inward crossing, out to out-
ward crossing, j to the shells crossing shell i.

Using definition (12) and integrating Eq. (29) over all
crossing shells, we get

Elim(r) =Elim(Ri)−
[(

1 +
∆Mi

Mi

) 2

3

− 1

]

3Mi

rlim(Ri)
,

(38)

E(r) =E(Ri)− 8π

[
ˆ

drj,in −
ˆ

drj,out

]
ρ (rj) r

2
j

r×i (rj)
,

(39)

where r×i is a crossing radius. Because of their qualita-
tively simple shell crossing histories, we can look at the
changes for three peculiar shells, singled out on Fig. 8:
the innermost limit shell, the outermost limit shell and
the maximum E shell initially lying in the interior of the
outermost limit shell.

The innermost limit shell will only be crossed by more
bound shells exterior to it, so ∆M1 > 0 and

E(r(R⋆1)) =E(R⋆1)− 8π

ˆ

drj,in
ρ (rj) r

2
j

r×1 (rj)
. (40)

Since

1

3

(
∆M1

M1

)2

+

(
2

3

∆M1

M1

)3

> 0 (41)

⇔
[(

1 +
∆M1

M1

) 2

3

− 1

]

<
2

3

∆M1

M1
(42)

and

− 1

r×1(rj)
<− 1

max [r×1(rj)]
< − 1

rlim(R⋆1)
, (43)

as the innermost limit shell becomes a bound shell, we
get that

∆ [E − Elim]1 <2∆M1

[
1

rlim(R⋆1)
− 1

max [r×1(rj)]

]

< 0.

(44)

Thus, the innermost limit shell will globally shift out-
wards, following the qualitative analysis of Fig. 4.

innermost R⋆ = R⋆in

R, r.ai/a∞

Elim → − (4πρb)
2
3 Λ

1
3R2

Emax

by outer shells

R⋆2

E → −kFLRW .R2

Elim

E∞

E

Elim∞

outermost R⋆∞ = R⋆out∞
R < R⋆out∞ never crossed

outermost R⋆ = R⋆out

Figure 9. Illustration, on an open background with arbitrary
central mass distribution, of the effect of shell crossing on the
inner global limit shell previously defined as the outermost
local limit shell. The time variation of the locus of the outer-
most local limit shell leads to defining it as the time infinity
outermost limit shell: this is shown on the extrapolated time
infinity energy profiles and linked to the initial energy profile
by a connecting curve. The global inner limit shell is then
just shifted inwards, compared with the integrable analysis.

In turn, the outermost limit shell will be only crossed
by all the unbound shells interior to it, so

E(r(R⋆out)) =E(R⋆out) + 8π

ˆ

drj,out
ρ (rj) r

2
j

r×out (rj)

≡E(R⋆out) + 2
∆Mout

〈r×out〉 (R⋆out)
, (45)

where ∆Mout is the positive mass loss of the outermost
limit shell and 〈r×〉 is a reduced crossing radius. Note
that, by construction, Mout > M(R⋆out, t → ∞) =
Mout −∆Mout > 0.

Now, supposing the density distribution remains finite
we can decompose the crossing of the outermost limit
shell by all escaping inner shells into a series of infinites-
imal shell crossings. Thus following Eq. (31) we get

d [E − Elim] = −8πdrj,outρ (rj,out) r
2
j,out

×
(

1

rlim(M⋆out(t×j))
− 1

r×out(rj,out)

)

. (46)

As all shells cross outwards19 and

1

〈r×out〉 (R⋆out)
>

1

rlim(〈r×out〉)
≥ 1

rlim(R⋆out)
, (47)

19 Note that R⋆out starts as a marginally bound shell well inside
its limit radius.
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Elim
E

Elim → − (4πρb)
2
3 Λ

1
3R2

innermost R⋆ = R⋆in

R

E → −kFLRW .R2

never crossed
by inner shells

Efree∞
Rfree∞

R⋆2

R⋆out∞

R > Rfree∞

outermost R⋆ = R⋆out

Emax∞

Emax

Figure 10. Illustration, on an open background with arbi-
trary central mass distribution, of the effect of shell crossing
on the outer global limit shell previously defined as the outer
shell with same energy function as the inner shells’ maximum.
The time variations of the inner shells’ maximum energy func-
tion from shell crossings lead to defining it as the outer shell
with same energy as the time infinity inner shells’ maximum
energy function E: this is shown with the highest of extrapo-
lated time infinity Es of inner shells peaks. The global outer
limit shell is then just shifted inwards, compared with the
integrable analysis.

then, in this case, we have

∆ [E − Elim]out =

2∆Mout

[
1

〈r×out〉 (R⋆out)
− 1

rlim(R⋆out)

]

> 0. (48)

Thus, the outermost limit shell will shift relatively in-
wards, following the qualitative analysis of Fig. 6.

Finally, the maximum E shell initially inside R⋆out, or
with horizontal tangent (its initial radius is Rmax), will
be only crossed inwards by all the shells starting with
radii above it and having an E below E(Rmax, t → ∞),
at the moment of crossing. This shell will then follow

∆ [E − Elim]max < 2∆Mmax

×
[

1

rlim(Rmax)
− 1

max [r×max(rj)]

]

< 0, (49)

similarly as for the innermost limit shell.
We summarize the main result of this section as:

Result 5. Consider a Λ-LTB spacetime where shell
crossing exists. Then the metric and extrinsic curvature
are discontinuous and the discontinuity in E is given by
(29). Furthermore, at R⋆out, ∆ [E − Elim]out > 0 and,
at Rmax, ∆ [E − Elim]max < 0.

4. Qualitative analysis of limit trapped matter shells

In this section, we argue that the results contained in
Summary 1 remain true for the case where M and E are
not conserved through shell crossing.
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Figure 11. NFW with background Elim and an example of
E profile given by Eq. (50-54), setting R0 = 3000, arbitrarily
setting x1 = 1

4
, x2 = 1

2
, x3 = 3

4
, ǫ1 = 10−2, g = 2 and ǫ = e−1

so that the figure is proportioned.

We discussed the behaviour of the outermost limit shell
R⋆out and of the outward escaping highest energy in-
ner shell Rmax in Sec. III D 3. As those determine the
two separating shells Rt⋆out∞ and Rfree∞ studied above,
their modifications by shell crossing will indicate that the
effective limit shells are just displaced but obey the same
general properties. We illustrate this on the open back-
ground example (Fig. 8), for which we separated the
study of each limit shell.

In Fig.9, we represent the construction of the outer
trapper matter shell, using the qualitative evolution of
R⋆out and its neighbouring shells from Eq. 48.

In Fig.10, using the qualitative evolution of Emax and
its neighbouring shells from Eq. 49, we represent the
construction of the inner trapper matter shell for open
initial conditions. The subsequent modifications proceed
from those qualitative changes and do not modify the
formulations of the results from their counterparts in the
model where both E and M are conserved between shell
crossings.

In the case where E and M are not conserved, the
effect of shell crossing on R⋆out given by Eq. (48) implies
only that Rt⋆out∞ < Rt⋆out without qualitative changes
and the Definition 3 is verified. In turn, the effect of
shell crossing on Rfree depends on the effect on Efree

from Eq. (49) and by the monotonous increase of E near
infinity and only implies that Rfree∞ < Rfree.

Therefore, the findings of Sec. III D 2, extending the
analysis of [5] in the context of shell crossing, are only
quantitatively modified as full shell crossing effects only
displace inwards both the inner and outer limit trapped
matter shells: the initial outermost intersection of E and
Elim gets unbound and the system at infinity gets con-
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Figure 12. NFW with background Elim and an example of E
profile given by Eq. (50-54) in log (−E)-log (−R) scale.

sequently reduced in Lagrangian initial radius. In turn,
the maximum energy of the inner regions gets lowered,
so the inner limit trapped matter surface is also drawn
inwards. This displacement modifies only marginally the
conclusions obtained in Sec. III D 2, namely: (i) the split-
ting of the local trapped matter shell is maintained when
those shells exist. (ii) Open, flat and closed models with

existing Rt⋆out (with kFLRW < (4πρb)
2

3 Λ
1

3 ) all retain an

Rt⋆out∞ and (iii) the modification of the maximum en-
ergy of the inner regions allows just more asymptotic
cosmological flat models to keep their inner limit trapped
matter shell, if the shift from Emax tends to Emax∞ < 0.

Therefore, from the sufficient conditions for inner and
outer limit trapped matter shells (Res. 4 and 3), the
results contained in Summary 1 remain true in the case
where M and E are not conserved through shell crossing.

IV. EXAMPLES: NFW PROFILES WITH ONE

UNDERCOMING INTERSECTION

In [5], we studied examples of trapped matter shells
using cosmological models with a Navarro, Frenk and
White (NFW) density profile [31] and a simple parabolic
E profile. Here we adapt those profiles in order to present
one intersection with Elim of the undercoming type as in
the local configuration of Fig. 3, and thus ensure, at the
local level, the appearance of shell crossing.

To do so, we use a fourth order polynomial in the
canonical Lagrange form, to provide for the behaviour
in the intersecting region, that we cut off with an expo-
nential so that an open FLRW term dominates at infinity.
We chose the profile to be 0 at the origin and at a char-
acteristic radius R0 set near the last possible intersection
point with the NFW Elim given by Eq. (4.21) of [5],

R0 ≤ R−1,Elim(R−1) = −1,

so as to secure the crossings in the physical region. The
remaining three points of interpolation are chosen to be
set alternately below and above the Elim curve inside the
region set by 0 and R0. The form is set by

E(R) =

{

m1
x

x1

x− x2

x1 − x2

x− x3

x1 − x3

x− 1

x1 − 1
+m2

x

x2

x− x1

x2 − x1

x− x3

x2 − x3

x− 1

x2 − 1
+m3

x

x3

x− x1

x3 − x1

x− x2

x3 − x2

x− 1

x3 − 1
+ ǫ1x

}

e−x

− k∞R2 ǫ0x
2

(x2 − 1) ǫ0 + 1
, (50)

where x = R/R0, we have denoted the three intermediate
points as x1, x2 and x3, the values of the polynomial at
those points by m1, m2 and m3, ǫ1 is a small constant
making sure we have the freedom to fit E(R0) = E(0) =
0 where the polynomial itself is built to vanish, ǫ0 is a

small constant making sure the polynomial dominates in
the interesting range but allowing the curvature at radial
infinity to be set by a Friedmann-type k∞. The form (50)
automatically vanishes at 0. We chose the polynomial
values such that at those points, E is alternately below,
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above and again below Elim, the last one making sure it remains above -1:

E(R0) =0 = ǫ1e
−1 − k∞R2

0ǫ0, ⇒ ǫ0 =
ǫ1

k∞R2
0e

, (51)

E(R1) =gElim(R1) = (m1 + ǫ1x1) e
−x1 − k∞R2

0

ǫ0x
4
1

(x2
1 − 1) ǫ0 + 1

= (m1 + ǫ1x1) e
−x1 − ǫ1x

4
1

e− (1− x2
1)

ǫ1
k∞R2

0

⇒ m1 =gElim(R1)e
x1

+ ǫ1x1

(

x3
1e

x1

e− (1− x2
1)

ǫ1
k∞R2

0

− 1

)

, (52)

E(R2) =
Elim(R2)

g
= (m2 + ǫ1x2) e

−x2 − k∞R2
0

ǫ0x
4
2

(x2
2 − 1) ǫ0 + 1

= (m2 + ǫ1x2) e
−x2 +

ǫ1x
4
2

e− (1− x2
2)

ǫ1
k∞R2

0

⇒ m2 =
Elim(R2)

g
ex2

+ ǫ1x2

(

x3
2e

x2

e− (1− x2
2)

ǫ1
k∞R2

0

− 1

)

, (53)

E(R3) =Elim(R3)− (Elim(R3) + 1) (1− ǫ)

= (Elim(R3) + 1) ǫ− 1 = (m3 + ǫ1x3) e
−x3 − k∞R2

0

ǫ0x
4
3

(x2
3 − 1) ǫ0 + 1

= (m3 + ǫ1x3) e
−x3 +

ǫ1x
4
3

e− (1− x2
3)

ǫ1
k∞R2

0

⇒ m3 = [(Elim(R3) + 1) ǫ− 1] ex3

+ ǫ1x3

(

x3
3e

x3

e− (1− x2
3)

ǫ1
k∞R2

0

− 1

)

.

(54)

We illustrate this in Figs. (11) and (12) after choosing
the values of the density profile identical to those in [5].
The cut off leaves the region under R0 almost unaffected
by the Friedmann term, so the value of k∞ is not very
relevant there but we set it to -1.

We summarize the result of this section as:

Result 6. For NFW density and initial data given by
(50-54), the Λ-LTB spacetime has three shells R⋆ such
that E|R⋆

= Elim|R⋆
. Furthermore, for this data, there

is shell crossing and R⋆out − R⋆out∞ < 0 and Rfree −
Rfree∞ < 0.

V. CONCLUSIONS

We have studied the effects of shell crossing on the
existence of trapped matter shells in Λ-LTB spacetimes.
In particular, we have considered initial conditions such
that: (i) our models approach a FLRW solution at radial
infinity and have an initial outgoing Hubble-type flow
(ii) the shell crossing of dust remains pressureless and
the mass of infinitely thin shells remains finite.

We have shown that the local trapped matter shells
discussed in Ref. [5] split in two shells: one outer limit
trapped matter shell and one inner limit trapped matter
shell.

We have established sufficient conditions for the exis-
tence of such shells in Λ-LTB spacetimes, in terms of ini-
tial data for which shell crossing occurs. Furthermore, we
have derived a number of properties for those shells using
a qualitative approach inspired in newtonian-like frame-
works of cosmological kinematical models, as in [24, 25].

We have also studied the role of shear in these set-
tings and concluded, as in [18], that shear favours the
emergence of trapped matter shells.

Finally, we have given concrete examples where shell
crossing occurs and the inner and outer limit trapped
matter shells emerge, using NFW data.

As potential applications of our models we note that (i)
Due to mass conservation and integrability in the absence
of shell crossing at the boundary, the background asymp-
totic conditions remain FLRW over all time. Therefore,
this gives an interesting setting to study the extendabil-
ity of Birkhoff’s theorem to cosmological expanding back-
grounds; (ii) Extensions of this work to unsmooth distri-
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butions of mass should be possible and might give sup-
port to current structure formation analyses using the
spherical top hat collapse model, in the case of ΛCDM.
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Appendix A: Time infinity definitions

Definition 5. The inner or non-bound shells of initial
conditions in E and Elim, in the limit t → ∞, induce a
few remarkable features defined as follows:
• R⋆∞ ≡ R⋆i (t → ∞) is the intersections number
i between E (t → ∞) = Elim (t → ∞) taken at time
infinity but singled out by its radius in the initial profile
of E; in particular we note R⋆out∞ ≡ R⋆n (t → ∞) for
the outermost intersection and Rt⋆out∞ ≡ R⋆out∞ when
we add the condition (E′ (t → ∞) > E′

lim (t → ∞))
• We will note Emax∞ the maximum value taken at
time infinity, but singled out in the initial profile, of
non-bound E in the set of shells inside R⋆out∞ or
outside but with initial horizontal tangent, i.e. Emax∞ =
{E,max (E (t → ∞)) ∧ ((E′ = 0) ∨ (0 < R ≤ R⋆out∞))
∧ (E ≥ Elim)}
• Rmax∞ is the largest value for which E = Emax∞, i.e.
Rmax∞ = max {R, E (R) = Emax∞}
• Rfree∞, if it exists, is the furthest shell outside R⋆out∞

with an increasing E at E = Emax∞, i.e. Rfree∞ =
max {R, (R ≥ R∗⋆out∞) ∧ (E = Emax∞) ∧ (E′(R) > 0)}
• We will note Efree∞ the value of E, if it exists, such
as Efree∞ = E (T = 0, Rfree∞).

Appendix B: Gauge invariant definitions for inner

limit trapped matter shells

We can rewrite E in terms of gauge invariant quantities
with Eqs. (9, 8, 14, 12 and 11)

Ln

(
Θ

3
+ a

)

≡
(
ṙ

r

)
�

=
1

r2

(rlim
r

Elim − E
)

⇔ E(R) =
rlim
R

Elim −R2Ln

(
Θ

3
+ a

)

= r2
(
Elimrlim

r3
− Ln

(
Θ

3
+ a

))

,

so the condition of existence for Emax, that E ≥ Elim,
translates into initial condition with the inequality

Ln

(
Θ

3
+ a

)

=

(
rlim
R − 1

)
Elim

R2
+

1

R2
(Elim − E)

≤
(
rlim
R − 1

)
Elim

R2
< 0,

or at time infinity into

Ln

(
Θ

3
+ a

)∣
∣
∣
∣
(t→∞)

≤
(
rlim
r − 1

)
Elim

r2

∣
∣
∣
∣
∣
(t→∞)

< 0.

We get then Rmax and Emax from

Rmax = max

{

R,
E

R2
= −min

{

Ln

(
Θ

3
+ a

)

−Elimrlim
R3

}

∧((E′ = 0) ∨ (0 < R ≤ R∗out))∧
(

Ln

(
Θ

3
+ a

)

≤
(
rlim
R − 1

)
Elim

R2
< 0

)}

⇒ Emax = −R2
maxmin

{

Ln

(
Θ

3
+ a

)

− Elimrlim
R3

}

= max

{

R2

(
Elimrlim

R3
− Ln

(
Θ

3
+ a

))

,

((E′ = 0) ∨ (0 < R ≤ R∗out))

∧
(

Ln

(
Θ

3
+ a

)

≤
(
rlim
R − 1

)
Elim

R2
< 0

)}

.

Taken at t → ∞, this translates into

Rmax∞ = max

{

R, E = max

{

−r2
(

Ln

(
Θ

3
+ a

)

−Elimrlim
R3

)∣
∣
∣
∣
(t→∞)

}

∧ ((E′ = 0) ∨ (0 < R ≤ R∗out∞))

∧
(

Ln

(
Θ

3
+ a

)

≤
(
rlim
r − 1

)
Elim

r2
< 0

)∣
∣
∣
∣
∣
(t→∞)
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⇒ Emax∞ = max

{

r2
(
Elimrlim

r3
− Ln

(
Θ

3
+ a

))∣
∣
∣
∣
(t→∞)

,

((E′ = 0) ∨ (0 < R ≤ R∗out∞))

∧
(

Ln

(
Θ

3
+ a

)

≤
(
rlim
r − 1

)
Elim

r2
< 0

)∣
∣
∣
∣
∣
(t→∞)






.

Thus, Def. 4 can be rewritten as

Definition 6. Suppose that Emax∞ defined as

Emax∞ = max

{

r2
(
Elimrlim

r3
− Ln

(
Θ

3
+ a

))∣
∣
∣
∣
(t→∞)

,

((E′ = 0) ∨ (0 < R ≤ R∗out∞))

∧
(

Ln

(
Θ

3
+ a

)

≤
(
rlim
r − 1

)
Elim

r2
< 0

)∣
∣
∣
∣
∣
(t→∞)






,

(B1)

exists. Then, inner limit trapped matter shells are de-
fined, in the models considered with GLTB coordinates,
as the locus Rfree∞ such that

Rfree∞ = max

{

R, (R ≥ R∗out∞)

∧
(

Θ

3
+ a =

√

Emax∞

r2
+ 2

M

r3
+

1

3
Λ

)

t→∞

∧ (E′(t → ∞, R) > 0)

}

. (B2)
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