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On the equation —Au + e — 1 =0 with
measures as boundary data
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Université Francois Rabelais, Tours, FRANCE

Abstract If Q is a bounded domain in RY, we study conditions on a Radon measure s
on 0N for solving the equation —Au +e* —1 =0 in Q with v = p on Q. The conditions
are expressed in terms of Orlicz capacities.
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1 Introduction

Let © be a bounded domain in RY with smooth boundary and ; a Radon measure
on 0f). In this paper we consider first the problem of finding a function u solution
of

—Au+e"—-1=0 (1.1)

in Q satisfying u = p on 9. Let p(x) = dist (x,09), then this problem admits a
weak formulation: find a function u € L*(Q) such that e* € L;(Q) satisfying
0
/ (—uA(+ (" = 1)) dx = — —Cd,u V(¢ e Wol’oo(Q) NW2>(Q), (1.2)
Q a0 OV

where v is the unit normal outward vector. This type of problem has been initiated
by Grillot and Véron [15] in 2-dim in the framework of the boundary trace theory.
Much works on boundary trace problems for equation of the type

—Au+u?=0 (1.3)

with ¢ > 1), have been developed by Le Gall [18], Marcus and Véron [19], [20],
Dynkin and Kuznetsov [9], [10], respectively by purely probabilistic methods, by
purely analytic methods or by a combination of the preceding aspects. One of the



main features of the problem with power nonlinearities is the existence of a critical
exponent ¢, = % which is linked to the existence of boundary removable sets.
Existence of boundary removable points have been discovered by Gmira and Véron

[14]. Let us recall briefly the main results for (1.3):

(i) If 1 < ¢ < g, then for any p € M4 (0N) there exists a unique function u €
LY ()N LE(S2) which satisfies (1.3) in  and takes the value p on 99 in the following
weak sense

/ (—uA¢ +uiC) de = — %d,u V¢ e WOI’OO(Q) NW2>(Q). (1.4)
Q o v

(ii) If ¢ > g, the above problem can be solved if and only if p vanishes on boundary
Borel subsets with zero C'2 q,—Bessel capacity. Furthermore a boundary compact set

q
is removable if and only if it has zero C2 o, -capacity.
q b

In this article we adapt some of the ideas used for (1.3) to problem

—Au+e*—1=0 in Q

u=p on 0f. (1.5)

Following the terminology of [5] we say that a measure p € M(0N) is good if (1.5)
admits a weak solution. Let P(z,y) (resp. G*(z,)) be the Poisson kernel (resp.
the Green kernel) in Q and P®[u] the Poisson potential of a boundary mesure p
(resp. G%*[@] the Green potential of a bounded measure ¢ defined in ©2). A boundary
measure p which satisfies

exp(B]) € L' (; pde). (L6)

is called admissible. Since for u > 0, P%[y] is a supersolution for (1.1), an ad-
missible measure is good (see [24]). Our first result which extends a previous one
obtained in [15] is the following.

Theorem A. Suppose p € M(ON) admits Lebesgue decomposition 1 = ps + pr
where g and pr are mutually singular and pgr is absolutely continuous with respect
to the (N-1)-dim Hausdor{f measure dH™N 1. If

exp(P?[us]) € L (; pdw), (1.7)
then p s good.

In order to go further in the study of good measures, it is necessary to introduce
an Orlicz capacity modelized on the Legendre transform of r — p(r) := " — 1.



These capacities have been studied by Aissaoui and Benkirane [2] and they inherit
most of the properties of the Bessel capacities. The capacity Cnrinz associated to
the problem is constructed later and it has strong connexion with Hardy-Littlewood
maximal function. In this framework we obtain the following types of results:

Theorem B. Let p € M, (0Q) be a good measure, then p vanishes on boundary
Borel subsets E with zero Cyrint-capacity.

We also give below a result of removability of boundary singularities.

Theorem C. Let K C 092 be a compact subset with zero Cyrir-capacity. Suppose
u € C(Q\K)NC?(R) is a positive solution of (1.1) in  which vanishes on K, then
u 18 identically zero.

In the last part of this paper we apply this approach to the problem
—Au+e" —1=yp, (1.8)

where p is a bounded measure, as well as removability questions for internal sin-
gularities of solutions of (1.1). In that case the capacity associated to the problem
is

Cprwe (K) = inf{||M[An]|;: : n € C3(Q) : 0 <n < 1,m7=1in a neighborhood of K'}
(1.9)

where M|.] denotes Hardy-Littlewood’s maximal function.

Theorem D. Let u € SIREL(Q) be a bounded good measure, then p vanishes on
boundary Borel subsets E with zero Carmr-capacity.

A characterization of positive measures which have the property of vanishing on
Borel subsets E with zero Cyri-capacity is also provided. We also give below a
result of removability of boundary singularities for sigma moderate solutions (see
Definition 4.4).

Theorem E. Let K C Q be a compact subset with zero Carmr-capacity. Suppose
u € C(Q\ K)NC%(Q) is a positive sigma moderate solution of (1.1) in Q\ K which
vanishes on 0S), then u is identically zero.

This note is derived from the preliminary report [25], written in 2004 and left
escheated since this period. The author is gratefull to the referee for his careful
verification of the manuscript which enabled several improvements.



2 Good measures

Proof of Theorem A. For simplicity, we shall denote by pg both the regular part of
w1 and its density with respect to the Hausdorff measure on 0€2. Thus for k > 0, we
denote by g the measure on 0 with density pp i = inf{k, ur} and denote by wuy,

the solution of
—Aup +e“% —1=0 in €

Up = ps + 1Rk on Of). (21)

Such a solution exists because

exp(IP’Q (s + pril) < e” eXP(PQ [1s))

by the maximum principle, and (1.7) implies that exp(P®[us+ur i) —1 € LY(; pdz).
The sequence uy, is nondecreasing. Since, for any { € o ’1((2),

" R
| mac+ e =00 == [ Zeatus -+ un)

if we take in particular for test function ¢ the solution (jy of

—AC(] =1 in Q
=0 on Of), (2:2)
we get
0
[+ @ = nads =~ [ s+ pra) <l (23)
Q aQ ov

Thus u = limg_. o ug is integrable,

/Q (u+ (" — 1)¢o)de < cllullyy

and the convergence of u; and e“ to u and e“ hold respectively in L'(Q) and
LY (Q; pdz) and u satisfies (1.2). O

The proof of the next result is directly inspired by [5] where nonlinear Poisson
equations are treated.

Proposition 2.1 The following properties hold:

(i) If pn € M (0R) is a good measure, then any fi € M (02) smaller than p is good.
(ii) Let {un} be an increasing sequence of good measures which converges to p in
the weak sense of measures. Then p is good.

(iit) If p € M4 (9Q) is a good measure and f € L. (0), then f + u is a good

measure.



Proof. We denote by 9€; the set of z € Q such that p(x) =t > 0. Since Q is C? there
exists tyg > 0 such that for any 0 < ¢t < tp, the set Q\ € is diffeomorphic to (0, o] x 092
by the mapping = +— (¢,0(x)) where t = dist (z,09) and o(x) = projsa(x). Then
T = 0(z) — tVy(y) wWhere v, is the outward normal unit vector to 92 at a. If 7 is
defined on 02 we define a normal extension of n at x € 9€); by assigning it the value
of n at o(z)). When there is no ambiguity, we denote this extension by the same
notation.

(i) Let u = u, be the solution of (1.5) and w = inf{u,P*[i]}. Since P*[i] is a
supersolution for (1.1), w is a supersolution too. Furthermore w is nonnegative and
e’ —1 € LY(Q; pdx). By Doob’s theorem w admits a boundary trace pu* € 9, (09Q)
and p* < i < u. Let w* be the solution of

—Aw*+e*—-—1=0 in Q
w* = [i on 0f2.

then u > w > w* and [21],

lim w* (t,.)ndSy :/ ndip  Vn e C(09Q).
t=0 Joq, a9

This implies that the boundary trace of w* is i and thus pu* = . Set Q= {zx € Q:

p(x) >t} and let v; we the solution of

—Avg+e¥ —1=0 in
Vg =W on 0€).

Then v; < w in Q. Furthermore 0 <t <t = vy <v; in Q;. Then @ = limy_,qv;
exists, the convergence holds in L'(Q) and et — €% in L'(; pdz) (here we use the
fact that e € L1(€); pdz). Because

lim w(t,.)ndSy :/ ndip  Vn e C(09),
=0 Joq, e}

and vy = w on 0€Yy, is follows that @ admits fi for boundary trace and thus @ = u.

(ii) Let u, = uy, be the solutions of (1.5) with boundary value j,,. The sequence

{un} is increasing. Since

0 0
0, < %o,

= )

— 2.4
aq Ov oa Ov @4

/Q(—unACO + (e —1)¢p)dx = —

we conclude as in the proof of Theorem 1, that wu, increases and converges to a
solution v = u, of (1.5) with boundary value p.

(iii) In the proof of (i) we have actually used the following result : Let w be a
nonnegative supersolution of (1.1) such that ¥ € L'(Q; pdz) and let p € M, (09Q)



be the boundary trace of w. Then u is good. Let f € L#(@Q) and p be an good
measure. We denote by v = u,, the solution of (1.5). For k > 0, set f;, = min{k, f}.
The function wy, = u, +P?[f;] is a nonnegative supersolution, and, since P2[f;] < k,
et € LY(Q; pdx). Furthermore the boundary trace of wy, is pu+ fi. Therefore u+ fj
is good. We conclude by II that u + f is good O

Remark. The assertions (i) and (ii) in Theorem 1 are still valid if we replace r —
e” — 1 by any continuous nondecreasing function g vanishing at 0.
3 The Orlicz space framework

3.1 Orlicz capacities

The set MP(0N) of nonnegative measures p on 9N such that
exp(P2[u]) € L (: pda) (3.1)

is not a linear space, but it is a convex subset of 9t (0€2). The role of this set comes
from the fact that any measure in 9P (9Q) is good. Put

p(t) = sgu(s)(e” = 1), P(t) =T =1 ¢,

and
B(s) = sgn(s) n(|s| + 1), P*(t) = (It] + 1) In(lt] + 1) — |#|.

Then P and P* are complementary functions in the sense of Legendre. Furthermore
Young inequality holds

zy < P(z) + P*(y)  V(z,y) e RxR,
with equality if and only if x = p(y) or y = p(z). It is classical to define
Mp(; pdar) = {¢ € Lipe(Q) : P(¢) € L'(Q; pda)}, (32)

Mp+(9; pdr) = {¢ € Ljpe(Q) : P*(¢) € L}(; pdix)}. (3.3)

The Orlicz spaces Lp(Q2; pdz) and Lp«(§2; pdx) are the vector spaces spanned re-
spectively by Mp(Q; pdx) and Mp«(Q2; pdx). They are endowed with the Luxemburg

norms
||¢HLPp :inf{k:>0: /QP<%> pdx < 1}. (3.4)

H(bHLP; = inf{k >0: /QP* (%) pdz < 1} . (3.5)

6

and



Furthermore the Holder-Young inequality asserts [16]

‘/QQSWd:v

Since P* satisfies the Ag-condition, Mp«(Q2; pdx) = Lp+(2; pdx) and Lp(Q2; pdz) is
the dual space of Lp-(£2; pdz), (see [12], [2]). Furthermore, since
o In(1 + |al)
2
the space Lp«(; pdx) is associated with the class LIn L(Q; pdx) and to the Hardy-
Littlewood maximal function (see [12]). We recall its definition: we consider a cube

Qo containing ), with sides parallel to the axes. If f € L'(Q) we denote by f its
extension by 0 in Qo \ 2 and put

<ollrp, 1l V(é4) € Lp(€k pdzx) x Lp+ (4 pdz). (3.6)

< P*(a) < |a/In(1 + |a]) Va € R,

Moy [f](z) = sup {ﬁ /Q 1wy - @ € Qm}

where Q. denotes the set of all cubes containing x and contained in Qg, with sides
parallel to the axes. Thus

s, = [ Manlfie)os = 171y, (3.7

Definition 3.1 The space of all measures on 9Q such that P[] € Lp(Q; pda) is
denoted by B®P(9) and endowed with the norm

_ Q
T (3.5)
The set MTP(9RQ) is a subset of BP(9Q).
The following result follows from the definition of the Luxemburg norm.

Proposition 3.2 If € BT (0Q) there exists ag > 0 such that ap € MTP(0KY) for
all 0 < a < ag. Conversely, if p € MTP(9Q), then ap € B*P(9Q) for all a > 0.

The analytic charaterization of B*P(9) can be done by introducing the space
of normal derivatives of Green potentials of LIn L functions:

NERLEQQ) = {n: p ' A(p*P9[n]) € LIn L(Q; pda)} . (3.9)
where p* is a the first eigenfunction of —A in Hé’2(Q) with maximum 1 (and A is

the corrresponding eigenvalue). Then ¢ !p < p* < ¢p for some ¢ = ¢(Q2) > 0, by
Hopf lemma, and

[ v =| [ PaG ) ae] < [P, I AP, G10)

7



We take for norm on N*1n£(90)

Il e = ([0~ A D], » (3.11)
12
and define the C'yzmz-capacity of a compact subset K of 02 by

Cnrwnr(K) =inf{||n]| yemz : 1 € C*(0Q),0 <n < 1,7 > 1 in a neighborhood of K}.

(3.12)
Considering the bilinear form H on Lpx(9€2) x Lp,(09)
M) 1= = [ BUAGP) da (313)
then
H(n, 1) = Pz, y)du(y) A(p PO () do
ol "

/ /A “PLUn]) () P (2, y) d du(y).
[e]9)
It is classical to define

Chroms () = sup{u(K) : j1 € M (99), p(K°) = 0, [Pl ,, <1} (3.15)

The following result due to Fuglede [13] (and to Aissaoui-Benkirane in the Orlicz
space framework [2]) is a consequence of the Kneser-Fan min-max theorem.

Proposition 3.3 For any compact set K C 02, there holds
C;[LlnL(K) — CNLlnL(K). (316)
As a direct consequence of (3.10), we have the following

Proposition 3.4 If u € B{P(99Q), it does not charge Borel subsets with Crini-
capacity zero.

3.2 Good measures and removable sets

Proof of Theorem B. If K is compact and Cnrmz(K) = 0, there exist a sequence
{n.} C C?(09) such that 0 <, <1, n, =1 in a neighborhood of K and

i |y = o™ A(p* P2 2] HLP* =0. (3.17)

Take p*P2[n,]) as a test function, then

* T8
| Cus Bl + @ = D) do = — [ A,
@ o0 14

8



* () * T2
Since _ 9P 1)) = np and p > 0, there holds —/ Md,u > u(K).
(91/ o0 aV
Furthermore
[ w6 Bnds] < s, o7 A B, (3.18)
2
Then

u(B) < [ (€ = DpPll)de + [ull, o7 AP ),

By the same argument as in [5], lim, oo p*P%[n,] = 0, a.e. in Q, and there exists
a nonnegative L;—function ® such that 0 < p*P%n,] < ®. By (3.17), (3.18) and
Lebesgue’s theorem, p(K) = 0. O

Definition 3.5 A subset E C OS2 is said removable for equation (1.1), if any positive
solution u € C%(Q) of (1.1) in Q, which is continuous in Q\E and vanishes on OQ\E,
1s identically zero.

Proof of Theorem C. Let u € C(Q\ K) be a solution of (1.1) which is zero on 90\ K.
As a consequence of Keller-Osserman estimate (see e.g. [23]), there holds

u(@) < 2In (ﬁ) +D, (3.19)

but since u vanishes on 9Q\ K, we can extend it by 0 in Q° in order it becomes a sub-
solution and obtain, always by Keller-Osserman method, that p(x) can be replaced
by pr(x) := dist (z, K) in (3.19). Furthermore, for any open subset containing K,
there exists a constant cg such that u(z) < cgp(z) for all z € Q\ G.

Let {n,} C C%(09) such that 0 < n, < 1, n, = 1 in a relative neighborhood
YV = GNoN of K, where G is open. Put §,, = 1 —7,. The function ¢, = p*P[6,,]
satisfies AC, = =\, + 2Vp*.VP?[0,]. Therefore |A(,| remains bounded in G'N
where there also holds (,(z) < c¢p?(z). Using (3.19) and an easy approximation
argument, we can take (, as a test function and obtain

/Q (—uA¢, + (e — 1)¢,) dz = 0.
We derive
- /Q uAGy dz = — /Q Cy P AG, uCnda
> -2 /9(6” —1—u)Gudr — /Q QG A P ) G,



where
Q)= (r|+27HIn@2r| +1) = |r| < Clr|ln(jr| +1) VreR. (3.20)

Therefore
/Q(eu —1—u)(pdx < QC/Q |A(p*IP’Q[nn])| In(1+p—2 ‘A(p*PQ[nnm)dx, (3.21)
since ¢t ‘A(p*]P’Q [m])| < p72 ‘A(p*]P’Q [7n])]. Furthermore

In(1+p~2 |A(p*Pna])])) = —Inp +In(p + p~" | A ("B [a])])
< —lnp+In(1+p AP [n.))])

But (we can assume p < 1)

1A P ) (1 + 57 | AP da
< —/Q\A(p*IP’”[nn])Unpder/Q!A(p*PQ[nn])\ln(ler1 |A(p* P [na])])da,
and

1860 | tnp s
Q

|A(p* PO ,)) | Inp~tda +/ | AP PO ,)) [ 0 p~ e
(AP ma])|>1}

| AP n,])| In p~da + /Q |A(p* P2 [na)) | In(1 + p~ " |A(p* P2 ]| )t

/{A(p"PQ [mn])|<1}

<

/{A(p*PQ[nn})lﬁl}
By assumption Cyrmr(K) = 0, then we take {n,} such that ||7,|| yzmz — 0 and

lim {A(p*PQ[nn]){ =0 a. e in

n—o0

at least up to some subsequence. Thus

fim [ AP (1 + 57 |AG B ) i = 0. (3.22)

n—o0

Using (3.21), we derive u = 0.

Conversely, assume that Cyrmz(K) > 0. By Proposition 3.3 there exists a non neg-
ative non-zero measure p € M4 (9N) such that p(K¢) = 0 in the space B (09Q).
This means that 6p € M (0Q) for some 6 > 0. Thus problem (1.5) admits a

10



solution. O

Several open problems can be posed

1- If a measure p is good, does there exist an increasing sequence of measures { i, }
which converges to u such that 6,u, is admissible for some 6,, >0 ?

2- If a measure p, singular with respect to HV ! is good does, it exist an increasing
sequence of admissible measures {y,} converging to u ?

CLlnL

3- If a measure p does not charge Borel sets with -capacity zero, doest it exist

@ > 0 such that Ou is admissible ?

4- If a singular measure p is good, is (1 — ¢)u admissible for any § € (0,1) 7

3.3 DMore general nonlinearities

In the section we consider the problem

—Au+ P(u) =0 in Q
u=p

on 90 (3.23)

where P is a convex increasing function vanishing at 0 and such that lim,_, ., P(r)/r =
oo: In Theorem A-P, (1.7) should be replaced by

P(P?us]) € L' (2; pda). (3.24)

In Proposition 2.1-P, (i), (ii) and (iii) still hold. For simplicity we assume that P is
a N-function in the sense of Orlicz spaces i.e.

where p is increasing, vanishes at 0 and tends to infinity at infinity. Let P* be the
conjugate N-function, Lp(£2; pdzx) and Lp«(2; pdz) the corresponding Orlicz spaces
endowed with the Luxemburg norms. Then Proposition 3.4-P is valid, provided the
space

BP(09) := {p € M(09Q) : P[] € Lp(Q; pda)}

endowed with its natural norm replaces B®*P(0€)) with the norm (4.10). We set
NP (09) = {n: p ' A(p*PO[)) € Lp+(; pda)}
with corresponding norm

Inllye = o~ AP,
P

11



and the corresponding capacity Cr+. The proof of Proposition 3.4-P, consequence
of Young inequality between Orlicz space is valid without modification. However, it
appears that the full characterization of removable sets cannot be adapted without
further properties of the function P* like the As-condition. Some results in this
directions have been obtained in [17] where a necessary and sufficient condition for
removability of boundary set is given, under a very restrictive growth condition on
P which reduces the nonlinearity to power-like with limited exponent.

4 Internal measures

Several above techniques can be extended to the following types of problem in which
p € MG (Q):
—Autet—1=pu in Q

u=20 on Of). (4.1)

For this specific problem many interesting results can be found in [3] where the
analysis of 1 is made by comparison with the Hausdorff measure in dimension N — 2,
HN=2. Tt is proved in particular that if a measure p satisfies p < 47HN =2, then
problem (4.1) admits a solution, while if 1 charges some Borel set A with Hausdorff
dimension less than N — 2, no solution exists. The results we provide are different
and in the Orlicz capacities framework.

We define the classes Mp(€2) and Mp+(Q2) similarly to Mp(Q; pdx) and Mp«(£2; pdx)
except that the measure pdx is replaced by the Lebesgue measure dxz. The Orlicz
spaces Lp(€Q) and Lp+(f) are defined from Mp(Q) and Mp«(Q2) and endowed with
the respective Luxemburg norms || || and || || p.. We put

ALLQ) = {n e W' (Q) : Ap € Lp-(Q)}, (4.2)

with natural norm
[l azmz == Il + A7) L, - (4.3)

The norm in Mp«(€) can be characterized using the Hardy-Littlewood maximal
function f — Mg, [f] since

T /Q Moy [f)(@)de =~ |Ifl,.. (4.4)

Since P* satisfies the Ag-condition, C§°(Q) is dense in AYME(Q). Inequality (3.10)
becomes

‘/Qndu‘ = ‘/QUAGQ[M] dx

<G|, Anll,,., .  (4.5)

_ '/QGQ[M]Andx

12



forn e c? 1((2) We define the Czr -capacity of a compact subset K of 02 by

Carme(K) =inf{[|Anll, . :n€ C%(©),0 <n < 1,7 =1 in a neighborhood of K},
(4.6)

By the min-max theorem there holds

Carwr(K) = sup{p(K) : p € M’ (Q), p(K°) =0,

GO, <1} (@7

Remark. The characterization of the C'srmz-capacity is not simple, however, by a
result of [7, Thl], there holds

HDQUHLLOO <ClAnl L Vn e CH(Q) (4.8)

where L1*°(Q) denotes the weak L!-space, that is the space of all measurable func-
tions f defined in 2 satisfying

meas ({x € Q: |f(x)] >t}) < vt >0 (4.9)

S+ 10

and || f]| ;1. is the smallest constant such that (4.9) holds.

Definition 4.1 The space of all bounded measures in Q such that G%[u] € Lp(Q)
is denoted by B®P (), with norm

1ll pese = (|G (1|, - (4.10)

The subset of nonnegative measures p in Q such that exp(G®[u]) € LY() is denoted
by ML (Q).

Proposition 3.4 and Theorem B admit the following counterparts

exp

Proposition 4.2 If p € B"(Q), it does not charge Borel subsets with Cparmr-
capacity zero.

Theorem 4.3 Let p € M (Q) be a good measure, then p vanishes on Borel subsets
E with zero Carir-capacity.

Proof. The proof of Proposition 4.2 is straightforward from the definition. For
Theorem 4.3 we consider a solution u of (4.1) and K C Q a compact set. Then there
exists a sequence {n,} C C3(2) satisfying 0 < n, <1, 5, = 1 in a neighborhood V
of K such that lim,_,« [[Any|| p+ = 0. Then

/ (—ulnd + (e — 1)) do = / mdu > u(K).
Q Q

13



Since u is positive and —uAn3 < —uAmn, we derive by Holder-Young inequality (3.6)

3lully, Al + /Q (¢ — 1) mude > p(K). (4.11)

Notice that u € Lp(Q;dx) since e* € L}(Q). If Carwz(K) = 0, the sequence {n,}
can be taken such that [|An,||,, . + |7l — 0. Therefore u(K) = 0. O

Following Dynkin [10] (although in a slightly different context) it is natural to
introduce the notions of moderate and sigma-moderate solutions.

Definition 4.4 et K C Q be compact. A positive solution u of (1.1) in Q\ K is
called moderate if e* € LY(Q\ K). It is sigma-moderate if there exists an increasing
sequence {un} of moderate solutions in Q\ K which converges to u in Q\ K.

Theorem 4.5 Let K C Q be compact. A sigma-moderate solution of (1.1) in Q\ K
is a solution in Q if and only if Carwmr(K) = 0.

Proof. We first assume that u is a moderate solution. Let {n,} C C3(Q) such that
0<mn, <1, nm, =1 in a neighborhood V of K and HAnnHLP* + ||7n]l ;2 — 0 when
n — oo. If ¢ € CZ(Q), we set ¢, = (1 —1,,)¢. Then

/ (—ulG, + (e" —1)¢,) dx = 0.
Q
Therefore
/ (—u(l —np)ACH+ (e“ — 1)¢n) dz = —/ (CAny 4+ 2V(. V) udx. (4.12)
Q Q

Since e¥—1 € LY(Q\ K) and |K| =0, e*—1 € LY(Q). But 0 < u < e* — 1, therefore
u € LY(Q). By Lebesgue’s theorem

lim (—u(l —np)AC+ (¥ — 1)) dz = / (—uAl + (e — 1)) du.

Furthermore

' | (€an+ 2969,y uda] < (1€l 1Al + 209 5 9, ) el -

By standard regularity ||[Vn,||;. < [|An,|/;. for any r € (1, $25). Since

/Q Vil In(1 + [V |z < C /Q (IVl” + V) d,

14



the right-hand side of (4.12) tends to zero as n — oo which implies that u is a
solution in whole €. If u is a sigma-moderate solution in 2\ K, it is the limit of an
increasing sequence {uy } of positive moderate solutions in 2\ K. These solutions are
solutions in whole €2, so is u. Finally, if Cazmz(K) > 0, by the dual definition (4.7)
there exists a positive bounded measure p with support in K such that pu(K) > 0
and HGQ[M]HLP < 1. For this measure problem (4.1) admits a solution and this
solution is not a solution of (1.1) in whole €. O

When the solution is not sigma-moderate we have a weaker result.

Theorem 4.6 Let K C Q) be compact such that

inf {/ |An| + |Vn|?)dz :n € C*(Q),0 <n < 1,np=1 in a neighborhood of K} =0.
Q

(4.13)
If u is a positive solution of (1.1) in Q\ K, it can be extended as a solution in €.

Proof. If ¢p € C2°(2) is nonnegative, there holds
/(e“ — 1)pda = /uAl/de = /u(zplAw)wdx
Q Q Q

< %/ﬂ(e“ — 1 —w)pde + c/QQ(i/JllAl/J\)wdx,

where () is defined in (3.20). Consider ¢ € C°(2), 0 < ¢ < 1, ¢ = 1in a
neighborhood G of K and a sequence of functions {n,} C C(€Q) such that 0 <
N < 1, m, = 1 in some neighborhood of K We set ¢ = ¢3 = ¢3(1 —n,)? and derive

QY HAY|) < (3¢, HAY,| + 60,2 Vebn|?) In(1 + 3, | Arhy| + 610, 2V, [?)
< 61y, | At In(1 + 30, | Athn |) 4 1240, 2 Vb |* In(1 + 64, 2V, |?)

It follows from the Keller-Osserman estimate for this type of nonlinearity (see e.g.
[23]) that w is bounded on each compact subset of Q \ K; it is in particular the
case of on H := supp(¢) \ G. Using the fact that ¢ is constant on G, which implies
|AYy,| < |An,| + ¢1, we derive

62| Aty In(1 + 3457 [ A ) < 6621 AG,| (In(th, + 3| Ad,]) — Inehy)
< 6]AY, | In(1 + [Ahy]) + ca| Athy| + 3.
Similarly
1290, [Vap[* In(1 + 690y, %[ Veh|?) < 12000 [Vapi | (In(3h7; + 6]Vapn|?) — 2Inhy,)
< 12|V, P(In(1 + [Va]) + ca| Vo |* + s,
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where the ¢; do not depend on n. Since there always hold (as 0 <7, <1 and  is
bounded)
c/n,%dx < /\VﬁnIde < /\Annldaﬂ,
Q Q Q
we derive

/ (% —1 —u)dz < limsup,_,. / (" =1 —u)ppdr
. Q

< 9lim sup /QQ(wnf’»yAwg\)wgdm < |H|(cs + c5).

Therefore u is moderate and the conclusion follows from Theorem 4.5. O

Remark. It is an open question wether all positive solutions of (1.1) in 2\ K are
sigma-moderate.

4.1 More on good measures

The main characterization of good measures is the following

Theorem 4.7 Assume i is a positive good measure, then there exists an increasing
sequence {un} C BYP () which converges weakly to p.

The proof will necessitate several intermediate results which are classical in the
framework of Lebesgue measure or Bessel capacities, but appear to be new for Orlicz
capacities.

Lemma 4.8 Let K C Q, then Carwmi(K) = 0 if and only if there exists n €
ALY such that 1> 0 and K C {y € Q: n(y) = oo}.

Proof. By the definition of the capacity, for any A > 0 and n € AF"L(Q), n >0,

1
Carme ({y € Q:n(y) =2 A}) < < Inllazwe - (4.14)

This implies
Carwr ({y € Q:n(y) =o00}) =0.
O

Lemma 4.9 Suppose {n;} is a Cauchy sequence in AL™L(Q). Then there exist a
subsequence {n;,} and n € AF®L(Q) such that

lim n;, =
ie—)OO 77][ ,’7’

uniformly outside an open subset of arbitrary small Carnr-capacity.
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Proof. By Lemma 4.8, n; and 7 are finite outside a set I with zero Crm z-capacity.
There exists a subsequence {;,} such that

Hnjz - 77HAL1nL < 272,

Put By = {y € Q : n,(y) —nly) > 27} By (4.14) Cprme (Ep) < 27%, and if
G = UrsmEy, there holds Carmr (Gp,) < 21=m  Therefore

Carmnr (ﬂmzle) = 0.

Since for any y ¢ G,,, U F', there holds

(s, —m)(y)| <27,

the claim follows. O

Lemma 4.10 If n € AY™L(9Q) it has a unique quasi-continuous representative
with respect to the capacity Carinr.

Proof. Uniqueness is clear as in the Bessel capacity case [1, Chap 6]. Let {n;} C
C2(Q) be a sequence which converges to 1 in AY™L(Q). Then there exists a subse-
quence {n;,} such that 7;, converges to 7 uniformly on the complement of an open
set of arbitrarily small C'srmz-capacity. This is the claim. O

Proof of Theorem 4.7. The method is adapted from [11, Th 8], [4, Lemma 4.2]. By
Lemma 4.10 we can define the functional h on AX"L(Q) by

h(n) = / Todw ¥y AMRL(Q),
Q

where 7 stands for the Cazmr-quasi-continuous representative of 7. Notice that we
can write

bn) = = | AG®inde = — [ G2l Ands

The following steps are similar to the previous proofs:

Step 1- The functional h is convex, positively homogeneous and 1.s.c. The convexity
and the homogeneity are clear. If i, — 1 in AXE(9Q), then by Lemma 4.10 we
can extract a subsequence which is converging everywhere except for a set with zero
capacity. The conclusion follows from Fatou’s lemma.

Step 2- Since Lp(2) is the dual space of Lp«(2), for any continuous linear form «
on AFIML(Q) there exists B € Lp(Q) such that

a(n) = —/QﬁAndx vn e AFRL(Q).
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Therefore, in the sense of distributions there holds

a(n) = —(AB,n)  Vne 05 (Q).

Step 3- By the geometric Hahn-Banch theorem, h is the upper convex hull of the
continuous linear functionals on AL™Z(9€Q) it dominates. Fix a function 7y €
C8°(Q) and € > 0, there exists a continuous linear form o on A" £(Q) and constants
a,b such that

a+bt+ a(n) <0 V(n,t) € € :={(n,t) € APRL(Q) x R : h(n) < t},

and
a+ b(h(ny) —€) + a(no) > 0.

The same ideas as in [4, Lemma 4.2] yields successively to a = 0 and b < 0. If we
put o(n) = —b~ta(n) we derive o(n) < h(n) for all n € AF™E(Q). This implies
in particular that o(n) < 0 if n < 0, thus ¢ is a positive linear form on AX"L ().
Therefore there exist a Radon measure v on € and § € Lp(2) such that —AS =v,

0 <v<pand
/nodu§e+/nodV-
Q Q

o
Step 4- Considering an increasing sequence of compact sets K such that K; C K1
and U;K; = Q, we construct for each j € N* a Radon measure v; and 3; € Lp(Q)
such that —AB; =v;, 0 <v; < p and

/dﬂﬁjl—F/ dv;.

J J

At last we can assume that the sequence {v;} is increasing since if —Af; = v; for
7 =1,2, then
—ApP1o =sup{ri, o} <vi+vo=—-AB1 — A

thus 12 € Lp(f2). Iterating this process, we can replace the sequence {v;} by
{vi} = {v1,sup{v1,va},sup{vs,sup{v1,12}}...}. The sequence {v}} is increasing,
converges to p and since f; = GQ[VJ,-] with 3; € Lp(Q2), v} belongs to B“P(Q).
O

As a consequence of this result and the characterization of linear functionals over
L1n L(£2), the following result holds.

Corollary 4.11 Assume p is a bounded positive good measure in €2, then there exist

an increasing sequence of positive measures v; in §2 and positive real numbers 0; such
that v; — p in the weak sense of measures and exp (HjGQ [l/j]) € LY(9).
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