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A note on the equation −∆u + e
u − 1 = 0

Laurent Véron

Laboratoire de Mathématiques et Physique Théorique,

Université François Rabelais, Tours, FRANCE

Abstract If Ω is a bounded domain in RN , we study conditions on a Radon measure µ

on ∂Ω for solving the equation −∆u + eu − 1 = 0 in Ω with u = µ on ∂Ω. The conditions

are expressed in terms of nonlinear capacities.
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1 Introduction

Basic results

Consider the equation
−∆u+ eu − 1 = 0 (1.1)

in Ω, a bounded domain in R
N with smooth boundary ∂Ω = Σ. Let ρ(x) =

dist (x,Σ). We denote by P
Ω[µ] the Poisson potential of a boundary mesure µ,

and by G
Ω[φ] the Green potential of φ ∈ M(Ω). The study is initiated by M. Grillot

and L. Véron1

Boundary measures

−∆u+ eu − 1 = 0 in Ω
u = µ on Σ,

(1.2)

with µ ∈ M+(Σ). If the measure µ is such that (1.24 ) admits a solution, always
unique, is it called admissible. The set of admissible positive boundary measures
is denoted by M

exp
+ (Σ). Assume µ = µS+µR with µS ⊥ dHN−1, µR << dHN−1 then

1Grillot M. et Véron L.,Boundary trace of solutions of the Prescribed Gaussian curvature equa-

tion, Proc. Roy. Soc. Edinburgh 130 A, 1-34 (2000)
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Theorem 1 Assume
exp(PΩ[µS ]) ∈ L1(Ω; ρdx) (1.3)

then µ is admissible.

Proof. A weaker form is proved by Grillot and Véron. Moreover, the proof presented
below is simpler. For k > 0, set µR,k = inf{k, µR} and denote by uk the solution of

−∆uk + euk − 1 = 0 in Ω
uk = µS + µR,k on Σ.

(1.4)

Such a solution exists because

exp(PΩ[µS + µR,k]) ≤ ek exp(PΩ[µS ])

by the maximum principle, and (1.3 ) implies that exp(PΩ[µS+µR,k])−1 ∈ L1(Ω; ρdx).

The sequence uk is nondecreasing. Since, for any ζ ∈ C1,1
c (Ω̄),

∫

Ω
(−uk∆ζ + (euk − 1)ζ)dx =

∫

Σ

∂ζ

∂ν
d(µS + µR,k),

if we take in particular ζ = ζ0 as being the solution of

−∆ζ0 = 1 in Ω
ζ0 = 0 on Σ,

(1.5)

we get
∫

Ω
(uk + (euk − 1)ζ0)dx = −

∫

Σ

∂ζ0
∂ν

d(µS + µR,k) ≤ c ‖µ‖
M
. (1.6)

Thus u = limk→∞ uk is integrable,

∫

Ω
(u+ (eu − 1)ζ0)dx ≤ c ‖µ‖

M
,

and the convergence of uk and euk to u and eu hold respectively in L1(Ω) and
L1(Ω; ρdx). It follows that u satisfies (1.24 ). �

The proof of the next result, inspired of Brezis, Marcus and Ponce 2, is easy

Theorem 2 The following properties hold:

(i) If µ ∈ M
exp
+ (Σ) and 0 ≤ µ̃ ≤ µ, then µ̃ ∈ M

exp
+ (Σ).

2Brezis H., Marcus M. and Ponce A., Nonlinear elliptic equations with measures revisited,
preprint (2004).
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(ii) Let {µn} ⊂ M
exp
+ (Σ) be an increasing sequence which converges to µ in the weak

sense of measures. Then µ ∈ M
exp
+ (Σ).

(iii) M
exp
+ (Σ) + L1

+(Σ) = M
exp
+ (Σ).

Proof. I- Let u = uµ be the solution of (1.24 ) and w = inf{u,PΩ[µ̃]}. Since PΩ[µ̃] is a
supersolution for (1.1 ), w is a supersolution too. Furthermore w is nonnegative and
ew − 1 ∈ L1(Ω; ρdx). By Doob’s theorem w admits a boundary trace µ∗ ∈ M+(Σ)
and µ∗ ≤ µ̃ ≤ µ. Let w∗ be the solution of

−∆w∗ + eu − 1 = 0 in Ω
w∗ = µ̃ on Σ.

then u ≥ w ≥ w∗ and 3,

lim
t

∫

Σt

w∗(t, .)ηdSt =

∫

Σ
ηdµ̃ ∀η ∈ C(Σ),

(here we denote by Σt the set of x ∈ Ω such that ρ(x) = t > 0). This implies that
the boundary trace of w∗ is µ̃ and thus µ∗ = µ̃. Set Ωt = {x ∈ Ω : ρ(x) > t} and let
vt we the solution of

−∆vt + evt − 1 = 0 in Ωt

vt = w on Σt.

Then vt ≤ w in Ωt. Furthermore

0 < t′ < t =⇒ vt′ ≤ vt in Ωt.

Then ũ = limt→0 vt exists, the convergence holds in L
1(Ω) and evt → eũ in L1(Ω; ρdx)

(here we use the fact that ew ∈ L1(Ω; ρdx). Because

lim
t→0

∫

Σt

w̃(t, .)ηdSt =

∫

Σ
ηdµ̃ ∀η ∈ C(Σ),

and vt = w̃ on Σt, is follows that ũ admits µ̃ for boundary trace and thus ũ = uµ̃.

II- Let un = uµn be the solutions of (1.24 ) with boundary value µn. The sequence
{un} is increasing. Since

∫

Ω
(un + (eun − 1)ζ0)dx = −

∫

Σ

∂ζ0
∂ν

dµn ≤ −

∫

Σ

∂ζ0
∂ν

dµ, (1.7)

we conclude as in the proof of Theorem 1, that un increases and converges to a
solution u = uµ of (1.24 ) with boundary value µ.

3Marcus M. and Véron L., The boundary trace and generalized B.V.P. for semilinear elliptic

equations with coercive absorption, Comm. Pure Appl. Math. 56, 689-731 (2003).
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III- In the proof of I we have actually used the following result : Let w be a non-
negative supersolution of (1.1 ) such that ew ∈ L1(Ω; ρdx) and let µ ∈ M+(Σ) be
the boundary trace of w. Then µ is admissible. Let f ∈ L1

+(Σ) and µ be an ad-
missible measure. We denote by u = uµ the solution of (1.24 ). For k > 0, set
fk = min{k, f}. The function wk = uµ+P

Ω[fk] is a nonnegative supersolution, and,
since PΩ[fk] ≤ k, ewk ∈ L1(Ω; ρdx). Furthermore the boundary trace of wk is µ+fk.
Therefore µ+ fk is admissible. We conclude by II that µ+ f is admissible �

Remark. The assertions I and II in Theorem 1 are still valid if we replace r 7→ er−1
by any continuous nondecreasing function f vanishing at 0.

The Orlicz space framework

Let Mexp(Σ) be the set of nonnegative boundary measures µ such that

exp(PΩ[µ]) ∈ L1(Ω; ρdx). (1.8)

The set Mexp(Σ) is not a linear space, but it is a convex subset of M+(Σ). Put

p(t) = sgn(s)(es − 1), P (t) = e|t| − 1− |t|,

and
p̄(s) = sgn(s) ln(|s|+ 1), P ∗(t) = (|t|+ 1) ln(|t|+ 1)− |t|.

Then P and P ∗ are complementary functions in the sense that Young inequality
holds

xy ≤ P (x) + P ∗(y) ∀(x, y) ∈ R× R,

with equality if and only if x = p̄(y) or y = p(x). It is classical to define

MP (Ω; ρdx) = {φ ∈ L1
loc(Ω) : P (φ) ∈ L1(Ω; ρdx)}, (1.9)

MP ∗(Ω; ρdx) = {φ ∈ L1
loc(Ω) : P

∗(φ) ∈ L1(Ω; ρdx)}. (1.10)

The Orlicz spaces LP (Ω; ρdx) and LP ∗(Ω; ρdx) are the vector spaces spanned re-
spectively by MP (Ω; ρdx) and MP ∗(Ω; ρdx). They are endowed with the Luxenburg
norms

‖φ‖LPρ
= inf

{

k > 0 :

∫

Ω
P

(

f

k

)

ρdx ≤ 1

}

. (1.11)

and

‖φ‖LP∗
ρ

= inf

{

k > 0 :

∫

Ω
P ∗

(

f

k

)

ρdx ≤ 1

}

. (1.12)
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Furthermore the Hölder-Young inequality holds 4

∣

∣

∣

∣

∫

Ω
φψ ρ dx

∣

∣

∣

∣

≤ ‖φ‖LPρ
‖ψ‖LP∗

ρ

∀(φ,ψ) ∈ LP (Ω; ρdx)× LP ∗(Ω; ρdx). (1.13)

Since P ∗ satisfies the ∆2-condition,MP ∗(Ω; ρdx) = LP ∗(Ω; ρdx). Furthermore, since

|a| ln(1 + |a|)

2
≤ P ∗(a) ≤ |a| ln(1 + |a|) ∀a ∈ R,

the space LP ∗(Ω; ρdx) is associated with the class L lnL(Ω; ρdx) and to the Hardy-
Littlewood maximal function. We recall its definition: we consider a cube Q0 con-
taining Ω̄, with sides parallel to the axes. If f ∈ L1(Ω) we denote by f̃ its extension
by 0 in Q0 \Ω and put

MQ0
[f ](x) = sup

{

1

|Q|

∫

Q

|f | (y)dy : Q ∈ Qx

}

where Qx denotes the set of all cubes containing x and contained in Q0, with sides
parallel to the axes. Thus

‖f‖L lnLρ
=

∫

Q0

MQ0
[f ](x)ρdx.

and

f ∈ L lnL(Ω; ρdx) ⇐⇒

∫

Ω
|f | ln(1 + |f |)ρdx

Furthermore, LP (Ω; ρdx) is the dual space of LP ∗(Ω; ρdx), 5, if ℓ is a continuous
linear functional on L lnL(Ω; ρdx), there exist a measurable function gℓ and some
θ > 0 such that















ℓ(f) =

∫

Ω
gℓfdx ∀f ∈ L lnL(Ω; ρdx),

∫

Ω
eθ|gℓ|ρdx <∞.

This can be seen as a consequence of Young’s inequality.

Definition 1.1 The space of all distributions on Σ such that

P
Ω[µ] ∈ LP (Ω; ρdx)

4M.A. Krasnosel’skii and Y. B. Rutickii Convex functions and Orlicz spaces P. Noordhoff Ltd,
Groningen (1961).

5M. Fuchs and G. Seregin A regularity theory for variational integrals with L lnL-growth Calc.

Var. 6 (1998), 171-187.
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is denoted by Bexp(Σ), with norm

‖µ‖Bexp =
∥

∥P
Ω[µ]

∥

∥

LPρ
. (1.14)

The subset of distributions such that

exp(PΩ[µ]) ∈ L1(Ω; ρdx)

is denoted by M exp(Σ).

The analytic charaterization of Bexp(Σ) can be done in introducing the space of
normal derivatives of Green potentials of L lnL functions:

NL lnL(Σ) =
{

η : ρ−1∆(ρ∗PΩ[η]) ∈ L lnL(Ω; ρdx)
}

. (1.15)

where ρ∗ is a smooth positive function with value ρ in a neighborhood of Σ. Then
∣

∣

∣

∣

∫

Σ
ηdµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
P
Ω[µ]∆(ρ∗PΩ[η]) dx

∣

∣

∣

∣

≤
∥

∥P
Ω[µ]

∥

∥

LPρ

∥

∥ρ−1∆(ρ∗PΩ[η])
∥

∥

LP∗
ρ

. (1.16)

Notice that the actual regularity of the η function is not clear, although

ρ−1∆(ρ∗PΩ[η]) ∈ L lnL(Ω; ρdx) =⇒ ∆(ρ∗PΩ[η]) ∈ L lnL(Ω).

If we take, as a norm on NL lnL(Σ)

‖η‖NL lnL =
∥

∥ρ−1∆(ρ∗PΩ[η])
∥

∥

LP∗
ρ

, (1.17)

and define the CNL lnL-capacity of a compact subset K of Σ by

CNL lnL(K) = inf{‖η‖NL lnL : η ∈ C2(Σ), 0 ≤ η ≤ 1, η = 1 in a neighborhood of K},
(1.18)

the following result follows from (1.16 ):

Proposition 1 If µ ∈ Bexp
+ (Σ), it does not charge Borel subsets with CNL lnL-

capacity zero.

Because P ∗ satisfies the ∆2-condition, LP (Ω; ρdx) is the dual space of LP ∗(Ω; ρdx).
Now we admit previsionaly the following result of Feyel-de la Pradelle type 6

Theorem 3 Let µ ∈ M+(Σ), which does not charge Borel sets with CNL lnL-capacity
zero. Then there exists an increasing sequence {µn} ⊂ Bexp(Σ) which converges

6D. Feyel and A. de la Pradelle Topologies fines et compactification associées à certains espaces

de Dirichlet Ann. Inst. Fourier 27 (1977), 121-146.
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weakly to µ.

The proof could be a parallel copy of the original proof. It may have been proved
for general capacities in duality (we shall see later on). A variant of this result is
the Dal Maso form 7

Theorem 4 Let µ ∈ M+(Σ), which does not charge Borel sets with CNL lnL-capacity
zero. Then there exists ν ∈ NL lnL

+ (Σ) and a nonnegative Borel function h such that

µ = hdν.

The role of Orlicz capacities: admissible measures and removable

sets

As we have already seen it, a measure in Bexp
+ (Σ) is admissible, and does not charge

Borel subsets of CNL lnL-capacity zero. The following result is a slight extension of
a result of Grillot-Véron, with a proof which inherits some observations of Brezis-
Marcus-Ponce.

Theorem 5 Let µ be an admissible measure. Then µ does not charge Borel subsets
of CNL lnL-capacity zero.

Proof. Let K be a compact subset with CNL lnL-capacity zero. There exist a se-
quence {ηn} ⊂ C2(Σ) such that 0 ≤ ηn ≤ 1, ηn = 1 in a neighborhood of K and

lim
n→∞

‖ηn‖NL lnL =
∥

∥ρ−1∆(ρ∗PΩ[ηn])
∥

∥

LP∗
ρ

= 0. (1.19)

Take ρ∗PΩ[ηn]) as a test function, then
∫

Ω

(

−u∆(ρ∗PΩ[ηn]) + (eu − 1)ρ∗PΩ[ηn]))
)

dx = −

∫

Σ

∂(ρ∗PΩ[ηn]))

∂ν
dµ

Since
∂(ρ∗PΩ[ηn]))

∂ν
= ηn and µ > 0, there holds −

∫

Σ

∂(ρ∗PΩ[ηn]))

∂ν
dµ ≥ µ(K).

Furthermore
∣

∣

∣

∣

∫

Ω
u∆(ρ∗PΩ[ηn])dx

∣

∣

∣

∣

≤ ‖u‖LPρ

∥

∥ρ−1∆(ρ∗PΩ[ηn])
∥

∥

LP∗
ρ

. (1.20)

Then

µ(E) ≤

∫

Ω
(eu − 1)ρ∗PΩ[ηn])dx+ ‖u‖LPρ

∥

∥ρ−1∆(ρ∗PΩ[ηn])
∥

∥

LP∗
ρ

.

7G. Dal Maso On the integral representation of certains local functionals Recerche Math. 32

(1983), 85-113.
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By the same argument as in Brezis-Marcus-Ponce, limn → ∞ρ∗PΩ[ηn] = 0, a.e. in
Ω, and there exists a nonnegative L1

ρ-function Φ such that 0 ≤ ρ∗PΩ[ηn] ≤ Φ. By
(1.19 ), (1.20 ) and Lebesgue’s theorem, µ(E) = 0. �

Definition 1.2 A subset E ⊂ Σ is said removable, if and only if any positive so-
lution u of (1.1 ) in Ω, which is continuous in Ω̄ \ E and vanishes on Σ \ E, is
identically zero.

Theorem 6 A compact subset K ⊂ Σ is removable if and only if CNL lnL(K) = 0.

Proof. Let u ∈ C(Ω̄ \ K) be a solution of (1.1 ) which is zero on Σ \ K. Let
{ηn} ⊂ C2(Σ) such that 0 ≤ ηn ≤ 1, ηn = 1 in a neighborhood V of K and (1.19
) holds. Put θn = 1 − ηn. Put ρK(x) = dist (x,K). Then, as a consequence of
Keller-Osserman estimate and the fact that u vanishes on Kc, there holds

u(x) ≤ C
ρ(x) ln(2/ρK(x))

ρK(x)
+D.

Thus the function ζn = ρ∗PΩ[θn] is an admissible test function for u, and

∫

Ω
(−u∆ζn + (eu − 1)ζn) dx = 0.

Clearly P
Ω[θn] = 1− P

Ω[ηn] and

∆ζn = ∆ρ∗ −∆(ρ∗PΩ[ηn])

Inasmuch we can modify ρ∗ in order to have −∆ρ∗ ≥ 0, in which case ρ∗ = ρ near
Σ is replaced by ρ∗ ≈ ρ, we derive

−

∫

Ω
u∆ζn dx = −

∫

Ω
ζ−1
n ∆ζn uζndx

≥ −2−1

∫

Ω
(eu − 1− u)ζn dx−

∫

Ω
Q(ζ−1

n ∆(ρ∗PΩ[ηn])) ζndx,

where

Q(r) = (|r|+ 2−1) ln(2 |r|+ 1)− |r| ≤ C |r| ln(|r|+ 1) ∀r ∈ R.

Therefore
∫

Ω
(eu − 1− u)ζn dx ≤ 2C

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx, (1.21)
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since ζ−1
n

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ≤ ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣. Furthermore

ln(1 + ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)) = − ln ρ+ ln(ρ+ ρ−1
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)

≤ − ln ρ+ ln(1 + ρ−1
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)

But (we can assume ρ ≤ 1)

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx

≤ −

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρdx+

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−1
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx,

and
∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρ−1dx

=

∫

{|∆(ρ∗PΩ[ηn])|≤1}

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρ−1dx+

∫

{|∆(ρ∗PΩ[ηn])|>1}

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρ−1dx

≤

∫

{|∆(ρ∗PΩ[ηn])|≤1}

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρ−1dx+

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−1
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx

But
lim
n→∞

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ = 0 a. e. in Ω,

at least up to some subsequence. Thus

lim
n→∞

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx = 0 (1.22)

Using (1.30 ), we derive u = 0.

Conversely, assume that CNL lnL(K) > 0. Since the dual definition of CNL lnL(K)
appears to be8

CNL lnL(K) = sup{µ(K) : µ ∈ M+(Σ), µ(K
c) = 0,

∥

∥P
Ω[µ]

∥

∥

LPρ
≤ 1},

there exists a nonzero measure µ ∈ M+(Σ) such that µ(Kc) = 0 in the space
Bexp

+ (Σ). This means that θµ ∈ M exp
+ (Σ) for some θ > 0. Thus problem (1.24 )

admits a solution. �

8S. E. Kuznetsov Removable singularities for Lu = Ψ(u) and Orlicz capacities J. Funct. Anal.

170 (2000), 428-449.
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By Theorems 1 and 3 we have a partial caracterization of measures for which
problems (1.24 ) admits a solution and K is not removable.

Theorem 7 If a measure µ is admissible there exists an increasing sequence of {µn}
satisfying

∫

Ω
exp(θnP

Ω[µn])ρdx <∞ (1.23)

for some θn > 0 which converges to µ.

Several questions can be adressed

1- If a singular measure µ is admissible does it exist an increasing sequence of
{µn} converging to µ such that (1.23 ) holds with θn = 1 ?

2- If a measure µ does not charge Borel sets with CL lnL-capacity zero, doest it
exist θ > 0 such that θµ ∈M exp(Σ) ?

3- If a singular measure µ is admissible, then (1 − δ)µ ∈ M exp(Σ) for any δ > 0
?

Further extensions

A part of the above construction coud be extended to problems with more general
nonlinearity such as

Boundary measures

−∆u+ P (u) = 0 in Ω
u = µ on Σ,

(1.24)

where P is a convex increasing function vanishing at 0 and such that limr→∞ P (r)/r =
∞: In Theorem 1-P , (1.3 ) should be replaced by

P (PΩ[µn]) ∈ L1(Ω; ρ dx). (1.25)

In Theorem 2-P , (i) and (ii) still hold. For simplicity we assume that P is a N -
function in the sense of Orlicz spaces

P (r) =

∫ r

0
p(s)ds

where p is increasing and vanishes at 0. Let P ∗ be the conjugate N -function,
LP (Ω; ρ dx) and LP ∗(Ω; ρ dx) the corresponding Orlicz spaces endowed with the

10



Luxenburg norms. Then Proposition 1-P is valid, provided the space BP (Σ) and
MP (Σ) are accordingly defined with the following notations:

NP ∗

(Σ) = {η : ρ−1∆(ρ∗PΩ[η]) ∈ LP ∗(Ω; ρ dx)}

with corresponding norm

‖η‖NP∗ =
∥

∥ρ−1∆(ρ∗PΩ[η])
∥

∥

LP∗
ρ

and the corresponding capacity CNP∗ . It is still likely that Theorem 3-P , 4-P
hold. The proof of Theorem 5-P should be valid without any major modification.
However, it appears that the characterization of removable sets cannot be adapted
without further properties of the function P ∗ like the ∆2-condition. Such a condi-
tion holds usually when P has a power-like growth (> 1) and a logarithmic type
growth.

Internal measures

Most of the above techniques can be extended to problem of the types

−∆u+ eu − 1 = µ in Ω
u = 0 on Σ,

(1.26)

and
−∆u+ P (u) = µ in Ω

u = 0 on Σ.
(1.27)

where µ ∈ M
b
+(Ω). If we denote by M

exp
+ (Ω) the set of admissible measures for (1.26

), then the internal couter part of Theorems 2 and 5 are already known (BMP).
Inequality (1.16 ) becomes

∣

∣

∣

∣

∫

Ω
ηdµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
η∆G

Ω[µ] dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
G

Ω[µ]∆η dx

∣

∣

∣

∣

≤
∥

∥G
Ω[µ]

∥

∥

LP
‖∆η‖LP∗

. (1.28)

for η ∈ C1,1
c (Ω̄). Define the C∆L lnL-capacity of a compact subset K of Σ by

C∆L lnL(K) = inf{‖∆η‖LP∗
: η ∈ C2

c (Ω), 0 ≤ η ≤ 1, η = 1 in a neighborhood of K},
(1.29)

Thus Proposition 1 is valid under the form
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Proposition 1 bis If µ ∈ Bexp
+ (Ω), it does not charge Borel subsets with C∆L lnL-

capacity zero.

Theorem 6 becomes

Theorem 6 bis A compact subset K ⊂ Ω is removable if and only if C∆L lnL(K) = 0.

Proof. Let u ∈ C(Ω\K) be a solution of (1.1 ) which is zero on Σ. Let {ηn} ⊂ C2(Ω)
such that 0 ≤ ηn ≤ 1, ηn = 1 in a neighborhood V of K and (1.19 ) holds. Put
ρK(x) = dist (x,K). Then, as a consequence of Keller-Osserman estimate, there
holds

u(x) ≤ C ln(2/ρK(x)) +D.

Put θn = 1 − ηn. Then the function ζn = φ1θn (φ1 being the first eigenfunction of
−∆) is an admissible test function for u, and

∫

Ω
(−u∆ζn + (eu − 1)ζn) dx = 0.

We derive

−

∫

Ω
u∆ζn dx = −

∫

Ω
ζ−1
n ∆ζn u dx

≥ −2−1

∫

Ω
(eu − 1− u) dx−

∫

Ω
Q(∆(ζn) dx.

Therefore
∫

Ω
(eu − 1− u)ζn dx ≤ 2C

∫

Ω
|∆ζn| ln(1 + |∆ζn|)dx, (1.30)

The conclusion is as in BMP. �

Reduced measures

What are the reduced measures both for the boundary and internal problems (1.24
) (resp. 1.27 )? A projection onto the closure of the sets M exp(Σ) (resp. M exp(Ω))
of positive measures in Σ (resp. Ω) satisfying

∫

Ω
exp (PΩ[µ])ρdx <∞

(resp.
∫

Ω
exp (GΩ[µ])dx <∞.)
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The definition of the projection is not clear, although an important fact is that it
ensures uniqueness. This conjectures could be extended to problems involving op-
erator u 7→ −∆u+ P (u).
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