
HAL Id: hal-00573648
https://hal.science/hal-00573648

Submitted on 5 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling for Weighted Flow Time and Energy with
Rejection Penalty

Sze-Hang Chan, Tak-Wah Lam, Lap-Kei Lee

To cite this version:
Sze-Hang Chan, Tak-Wah Lam, Lap-Kei Lee. Scheduling for Weighted Flow Time and Energy with
Rejection Penalty. Symposium on Theoretical Aspects of Computer Science (STACS2011), Mar 2011,
Dortmund, Germany. pp.392-403. �hal-00573648�

https://hal.science/hal-00573648
https://hal.archives-ouvertes.fr

Scheduling for Weighted Flow Time and Energy

with Rejection Penalty∗

Sze-Hang Chan1, Tak-Wah Lam2, and Lap-Kei Lee3

1,2 Department of Computer Science, University of Hong Kong, Hong Kong.

{shchan, twlam}@cs.hku.hk

3 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany.

lklee@mpi-inf.mpg.de

Abstract

This paper revisits the online problem of flow-time scheduling on a single processor when jobs

can be rejected at some penalty [4]. The user cost of a job is defined as the weighted flow time

of the job plus the penalty if it is rejected before completion. For jobs with arbitrary weights

and arbitrary penalties, Bansal et al. [4] gave an online algorithm that is O((logW + logC)2)-

competitive for minimizing the total user cost when using a slightly faster processor, where W and

C are the max-min ratios of job weights and job penalties, respectively. In this paper we improve

this result with a new algorithm that can achieve a constant competitive ratio independent of

W and C when using a slightly faster processor. Note that the above results assume a processor

running at a fixed speed. This paper shows more interesting results on extending the above

study to the dynamic speed scaling model, where the processor can vary the speed dynamically

and the rate of energy consumption is a cubic or any increasing function of speed. A scheduling

algorithm has to control job admission and determine the order and speed of job execution. This

paper studies the tradeoff between the above-mentioned user cost and energy, and it shows two

O(1)-competitive algorithms and a lower bound result on minimizing the user cost plus energy.

These algorithms can also be regarded as a generalization of the recent work on minimizing flow

time plus energy when all jobs must be completed (see the survey paper [1]).

1998 ACM Subject Classification F.2.2[Analysis of Algorithms and Problem Complexity] Non-

numerical Algorithms and Problems—Sequencing and scheduling

Keywords and phrases Online scheduling, weighted flow time, rejection penalty, speed scaling

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.392

1 Introduction

It is not uncommon that a server rejects some jobs (in particular, low-priority jobs) during

peak load, yet it is non-trivial how to strike a balance between the cost due to longer response

time and the cost of rejecting some jobs. Bansal et al. [4] initiated the study of flow-time

scheduling on a single processor when jobs can be rejected at some penalty. Specifically, jobs

are released online with arbitrary sizes, weights and penalties. Consider a schedule which

may reject some jobs before completion, each job defines a user cost equal to its weighted

flow time plus the penalty if it is rejected, where the flow time is the time elapsed since a

job is released until it is completed or rejected. In this penalty model, the scheduler aims at

minimizing the total user cost of all jobs.

∗ This research was mainly done when the first two authors were visiting MPI, whose hospitality was
greatly appreciated.

© S.H. Chan, T.W. Lam and L.K. Lee;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 392–403

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.392
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S.H. Chan, T.W. Lam and L.K. Lee 393

Assuming jobs have uniform penalty and unit weight, Bansal et al. [4] gave an online

algorithm that is 2-competitive for minimizing the total user cost. For jobs with arbitrary

penalties and arbitrary weights, they give a resource augmentation result which achieves a

competitive ratio of O((logW + logC)2) when using a slightly faster processor (precisely,

(1 + ǫ)-speed processor for any ǫ > 0), where W is the max-min ratio of job weights and C is

the max-min ratio of job penalties. They also show a lower bound of Ω(max(n
1
4 , C

1
2)) without

using a faster processor, where n is the number of jobs in the job sequence. Note that for the

special case when each job has infinite penalty, no jobs would be rejected and the problem

reduces to the classic problem of minimizing weighted flow time only. In this case, Becchetti

et al. [8] showed a better resource augmentation result, achieving O(1)-competitiveness for

weighted flow time when using (1 + ǫ)-speed processor.

In this paper, we extend the results on rejection penalty [4] in two different directions.

First of all, we improve the upper bound result on arbitrary penalties and arbitrary weights.

Our online algorithm is constant competitive when using a (1 + ǫ)-speed processor, where the

constant does not depend on W and C. In other words, for the special case when jobs must

be all completed (with infinite penalty), our new algorithm has a comparable performance

(but with a larger constant) as Becchetti et al’s algorithm [8].

All the above results assume the processor running at a fixed speed. The main results

in this paper are on extending the above study of rejection penalty to the dynamic speed

scaling model [15] and taking energy into consideration. Specifically, it is assumed that

the processor can vary its speed dynamically between 0 and some maximum speed T , and

the power P increases with the speed s according to a certain function, say, P (s) = s3. In

this setting, a scheduling algorithm has to control job admission and determine the order

and speed of job execution, and we are interested to measure the user cost as well as the

total energy usage. Note that minimizing user cost and minimizing energy are orthogonal

objectives. In this paper, we consider the problem of minimizing a linear combination of

the user cost and energy, or simply the user cost plus energy. This problem can also be

considered as a generalization of the existing work on minimizing weighted flow time plus

energy where job rejection is not allowed [2, 9, 6, 13, 7, 3] (see related work below).

Speed scaling results. For jobs with uniform penalty and unit weight, we give a 6-

competitive algorithm for minimizing the user cost plus energy. This algorithm ensures that

the penalty of rejected jobs is always at most the flow time plus energy incurred thus far.

Intuitively, it maintains a good balance between the flow time plus energy and the penalty.

Next, we consider jobs with arbitrary penalties. We show a lower bound result illustrating

the problem of minimizing the user cost plus energy being fundamentally more difficult than

that of flow time plus energy. Specifically, we assume that P (s) = sα for some α > 1 and jobs

have unit weight, and we show that any online algorithm has a competitive ratio of Ω(α1/2−ǫ)

where ǫ is arbitrarily small, even if the maximum speed T is unbounded. This lower bound

implies that the competitive ratio must grow with the steepness of the power function (α),

while the problem of minimizing flow time plus energy admits a 2-competitive algorithm for

any arbitrary power function [7, 3]. We turn to resource augmentation and consider giving

the online algorithm a more energy-efficient processor which, using the power P (s), can run

at speed (1 + ǫ)s for some ǫ > 0. We call such a processor a (1 + ǫ)-speedup processor, based

on which we devise an online algorithm for the arbitrary-penalty and arbitrary-weight setting.

For any power function P (s), our new algorithm is O(1)-competitive for minimizing the user

cost plus energy when using a (1 + ǫ)-speedup processor. This algorithm, unlike the first one,

rejects jobs only at their arrival time and therefore never wastes energy on rejected jobs.

Amortization and potential functions have become standard tool for analyzing algorithms

STACS’11

394 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

for minimizing flow time plus energy (e.g., [9, 13, 7, 3]). When jobs can be rejected, the

online algorithm A and the optimal offline algorithm OPT may have completed two different

sets of jobs. This complicates the analysis. For the case of uniform penalty and unit weight,

the potential analysis only allows us to bound the flow time plus energy incurred by some

special active jobs in A in terms of the cost of OPT. For cost incurred by other active jobs,

our technique is an accounting argument to upper bound this cost of A by the total penalty

of OPT. For arbitrary penalty and arbitrary weight jobs, taking the advantage of the use of

speedup processor, we can directly incorporate the job penalty into the potential analysis

and the maximum speed constraint T into the potential function.

Related work on dynamic speed scaling. To reduce energy usage, major chip manu-

facturers like Intel and IBM are now producing processors that can support dynamic speed

scaling, which allows operating systems to manage the power by scaling the processor speed

dynamically. How to exploit speed scaling effectively has become an interesting problem for

the algorithmic community. Yao et al. [15] were the first to consider online job scheduling

that takes speed scaling and energy usage into consideration. They considered a model

where a processor can vary its speed s, and the energy is consumed at the rate sα for some

constant α > 1 (in CMOS based processors, α is believed to be 3 [5]). Running jobs slower

saves energy, yet it takes longer time. The challenge arises from the conflicting objectives

of optimizing energy usage and some quality of service such as flow time. To understand

their tradeoff, Albers and Fujiwara [2] initiated the study of minimizing a linear combination

of the total flow and energy. The intuition is that, from an economic viewpoint, users are

willing to pay a certain (say, ρ) units of energy to reduce one unit of flow time. By changing

the units of time and energy, one can further assume ρ = 1 and thus wants to minimize flow

plus energy. Following Albers and Fujiwara’s work, there is a chain of work on speed scaling

algorithms [2, 9, 6, 13, 7, 3], gradually improving the competitive ratios as well as dropping

the assumptions on the speed-to-power functions. Now the best known algorithms can work

for any arbitrary power function. For jobs with unit weight, a 2-competitive algorithm has

been obtained [3]. For arbitrary weight, a competitive ratio of O(1 + 1
ǫ) can be achieved

using a (1 + ǫ)-speedup processor [7, 11].

Power functions and notations. Throughout the paper, we assume P (0) = 0, and P

is defined, strictly increasing, strictly convex, continuous and differentiable at all speeds in

[0, T]; if T = ∞, the speed range is [0,∞) and for any speed x, there exists x′ such that

P (x)/x < P (s)/s for all s > x′ (otherwise the optimal speed scaling policy is to always run

at the infinite speed and an optimal schedule is not well-defined). We use Q to denote P−1.

Note that Q is strictly increasing and concave. E.g., if P (s) = sα, then Q(x) = x1/α. For

each job j, we use p(j), w(j) and v(j) to denote its work, weight and penalty.

Organization of the paper. The following discussion focuses on the results on the

dynamic speed scaling model only. Our improved result on minimizing the user cost alone on

a fixed-speed processor would be shown as a special case in Section 3. Section 2 considers jobs

with uniform penalty and unit weight and presents a 6-competitive algorithm for minimizing

the user cost plus energy. Section 3 gives the results on jobs with arbitrary penalties and

arbitrary weights. Finally, a lower bound result is given in Section 4.

2 Uniform Penalty and Unit Weight

This section considers jobs with the same penalty c > 0 and unit weight. We give an online

algorithm UPUW for minimizing flow plus penalty plus energy. The job rejection policy of

UPUW is similar to that in [4], but the involvement of speed scaling and energy complicates

S.H. Chan, T.W. Lam and L.K. Lee 395

the analysis and demands a potential function. Our main result is the following theorem.

◮ Theorem 1. Consider jobs with uniform penalty and unit weight. Algorithm UPUW is

6-competitive for minimizing flow plus penalty plus energy.

Algorithm UPUW. At time t, let na(t) and sa(t) be respectively the number of active

jobs (i.e., jobs that have been released but not yet finished) and the speed of UPUW. Recall

that Q is the inverse of the power function P . We set sa(t) = min(Q(na(t) + 1), T). UPUW

always runs the job with the smallest remaining work (SRPT) at speed sa(t) (ties are broken

by job ids). Let φ be a counter that counts the flow plus energy incurred until time t, i.e.,

φ(t) =
∫ t

0
(na(x)+P (sa(x))) dx. Whenever φ crosses a multiple of c, UPUW rejects the active

job with the largest remaining work (if na(t) > 0).

To prove Theorem 1, we compare UPUW with the optimal offline schedule OPT. Consider

any job sequence. Let Ga be the total flow plus energy of UPUW and Ra be the total penalty

of UPUW, and similarly define Go and Ro for OPT. Let te be the time when all jobs are

completed or rejected by both UPUW and OPT. By definition of UPUW, Ga = φ(te) and

Ra ≤ Ga. Thus, we have

◮ Fact 2. The flow plus penalty plus energy of UPUW is Ga +Ra ≤ 2φ(te).

To upper bound φ(te), we define another counter ψ such that at any time t, ψ(t) ≥ φ(t).

Then it suffices to upper bound ψ(te) by the cost of OPT. We define ψ as follows: Initially,

ψ(0) = 0. Whenever OPT rejects a job at t, ψ increases by c. At other times, if ψ = φ, ψ

increases at the same rate as φ, else (i.e., ψ > φ), ψ stays the same.

Analysis framework. We will upper bound ψ(te) in terms of Go and Ro. Note that

ψ(t) is non-decreasing and increases in two cases: (Case 1) ψ increases by c whenever OPT

rejects a job, and (Case 2) ψ increases at the same rate as φ whenever ψ(t) = φ(t). The

increase due to Case 1 is bounded by Ro. To bound the increase due to Case 2, at any time t,

we define a special subset of active jobs, denoted B(t), as follows. Let k(t) = ⌊ψ(t)
c ⌋ − ⌊φ(t)

c ⌋.

Let B(t) be the set of the na(t) − k(t) active jobs in UPUW with the smallest remaining

work (B(t) = ∅ if na(t) < k(t)), and let ña(t) denote the size of B(t). Whenever ψ(t) = φ(t),

k(t) = 0. If ña(t) = 0, it implies na(t) ≤ 0, and φ(t) as well as ψ(t) do not increase. Thus,

the increase of ψ due to Case 2 is bounded by the flow plus energy incurred by UPUW during

times when ña(t) ≥ 1, which is upper bounded in Lemma 3. To prove Lemma 3, we follow

the analysis in [7, 3] but adapt the potential function to focus only on jobs in B(t) instead

of all active jobs in UPUW. Like [7, 3], the potential analysis requires an upper bound on

ña(t) − no(t) at any time t, where no(t) is the number of active jobs in OPT (Lemma 5).

Yet with job rejections, we need new technique to obtain such upper bound, which will be

proven via a mapping of jobs in B(t) to jobs in a schedule related to OPT (Lemma 6).

We first state Lemma 3 and show how this lemma leads to Theorem 1. For any time

interval I, let Ga[I] and Go[I] be the flow plus energy incurred during I by UPUW and

OPT, respectively.

◮ Lemma 3. For any time interval I = (t1, t2) such that ña(t1) = ña(t2) = 0 and ña(t) > 0

for any t ∈ I, Ga[I] ≤ 3 ·Go[I] + 2
∫
t∈I
k(t) dt.

Proof of Theorem 1. Let I1, I2, ..., Im be all the intervals in [0, te] such that for each Ii =

(t1, t2), ña(t1) = ña(t2) = 0 and ña(t) > 0 for any t ∈ Ii. Let S = I1 ∪ I2 ∪ · · · ∪ Im.

Recall that the increase due to Case 2 (in the analysis framework above) can only happen

when ña ≥ 1, i.e. only during S. Then, by Lemma 3, the increase of ψ due to Case 2

is at most
∫
t∈S

na(t) + P (sa(t)) dt =
∑m
i=1 Ga[Ii] ≤

∑m
i=1

(
3 ·Go[Ii] + 2

∫
t∈Ii

k(t) dt
)

≤

3 ·Go + 2
∫
t∈S

k(t) dt.

STACS’11

396 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

We now upper bound
∫
t∈S

k(t) dt. Whenever OPT rejects a job, ψ increases by c, and then

ψ stays the same until φ reaches ψ. Since φ(t) increases at the rate of na(t)+P (sa(t)), we have

Ro =
∫
t:ψ(t)>φ(t)

na(t) +P (sa(t)) dt. Note that k(t) = ⌊ψ(t)
c ⌋ − ⌊φ(t)

c ⌋ > 0 implies ψ(t) > φ(t).

Thus, Ro ≥
∫
t:k(t)>0

na(t) +P (sa(t)) dt. At any time t ∈ S, ña(t) > 0 and hence k(t) < na(t).

Then
∫
t∈S

k(t) dt =
∫
t:t∈S∧k(t)>0

k(t) dt <
∫
t:t∈S∧k(t)>0

na(t) dt ≤
∫
t:k(t)>0

na(t) dt < Ro.

Therefore, the increase of ψ due to Case 2 is at most 3Go + 2Ro. Adding up the increase

of ψ due to Case 1, i.e., Ro, gives ψ(te) ≤ 3Go + 3Ro. By Fact 2 and φ(te) ≤ ψ(te),

Ga +Ra ≤ 6(Go +Ro) and hence UPUW is 6-competitive. ◭

The rest of the section is devoted to proving Lemma 3. Before giving the potential

analysis, we state a property of set B(t) and show that at any time t, the size of B(t) is

no more than the number of active jobs in OPT by P (T) − 1 (Lemma 5). Without loss of

generality, we assume P (T) ≥ 1,1 and OPT rejects a job only at its arrival time.

◮ Property 4. At any time t, the set B(t) only changes upon various events as follows.

(i) If a job j arrives and OPT rejects j, then na − k remains the same, so either B does

not change or j replaces another job j′ with remaining work at least p(j) in B.

(ii) If a job j arrives and OPT admits j, na − k increases by 1, so either B remains empty,

or j is added to B, or another job j′ with remaining work at most p(j) is added to B.

(iii) If UPUW completes a job j, na − k decreases by 1, so either B remains empty or j

leaves B.

(iv) If UPUW rejects a job, then φ reaches a multiple of c, and na − k either remains the

same or decreases by 1. Thus, either B does not change or a job in B leaves B.

◮ Lemma 5. At any time t, ña(t) − no(t) + 1 ≤ P (T).

We now show Lemma 5. If ña(t) = 0, ña(t) = 0 ≤ P (T) − 1 (as P (T) ≥ 1). If sa(t) < T ,

then sa(t) = Q(na(t) + 1) < T and hence na(t) + 1 ≤ P (T), so ña(t) ≤ na(t) ≤ P (T) − 1.

It remains to consider that ña(t) ≥ 1 and sa(t) = T . Let t′ be the last time before t such

that ña(t′) = 0 or sa(t′) < T . By above, we can show that ña(t′) ≤ P (T) − 1. For any time

x ∈ (t′, t], ña(x) ≥ 1 and sa(x) = T . Let No(x) be the set of jobs arriving during (t′, x] that

are admitted by OPT. Suppose OPT has completed h jobs in No(t) in (t′, t]. Let S be the

schedule obtained by running SRPT at speed T during (t′, t] on jobs B(t′) ∪No(t). Since

SRPT maximizes the number of jobs completed by any time [14], S completes at least h

jobs during (t′, t]. As no(t) ≥ |No(t)| − h, the number of active jobs in S at t is at most

ña(t′) + |No(t)| − h ≤ P (T) − 1 + no(t).

We relate the schedule of UPUW with S. At any time x ∈ [t′, t], letB(x) = {j1, j2, · · · , jña(x)},

ordered in non-decreasing remaining work in UPUW; we always use job ids for tie-breaking.

We can show Lemma 6 below by induction on time [t′, t] over various events stated in

Property 4. Details will be given in the full paper. This lemma implies that at time t, the size

of B(t) is less than the number of active jobs in S, i.e., ña(t) ≤ P (T) − 1 + no(t), implying

Lemma 5.

◮ Lemma 6. At any time x ∈ (t′, t], there is a one-to-one mapping ρ : B(x) → B(t′) ∪No(x)

such that the remaining work of each ji ∈ B(x) in UPUW is at most that of ρ(ji) in S, and

ρ(j1), ρ(j2), · · · , ρ(jña(x)) are in non-decreasing order of remaining work in S.

1 If P (T) < 1, we use the algorithm in [4] for job selection, which is 2-competitive for flow plus penalty,
and always run at speed T . When the algorithm is running a job, the power is less than 1 and the
number of active jobs is at least 1, so the total energy usage is at most the total flow time and hence
this algorithm is 4-competitive.

S.H. Chan, T.W. Lam and L.K. Lee 397

We now give the potential analysis for proving Lemma 3. Recall that we are considering

an interval I = (t1, t2). Let Ga(t) and Go(t) be the flow plus energy incurred from time t1
up to time t by UPUW and OPT, respectively, for any t ∈ I. It suffices to define a potential

function Φ(t) for any time t ∈ I such that the following conditions hold: (i) Boundary

condition: At time t1 and t2, Φ = 0. (ii) Discrete-event condition: During I, when a job

arrives, or a job is completed by UPUW or OPT, or a job is rejected by UPUW, ∆Φ(t) ≤ 0.

(iii) Running condition: At any other time t ∈ I, dGa(t)
dt + dΦ(t)

dt ≤ 3 · dGo(t)
dt + 2k(t). Then,

Lemma 3 follows by integrating these conditions over I.

Potential function Φ(t). Consider any time t. Let ña(q, t) and no(q, t) be the number

of active jobs in B(t) and OPT, respectively, with remaining work at least q. Note that

ña(t) = ña(0, t) and no(t) = no(0, t). We will drop the parameter t from the notations when

t refers to the current time clearly. Let (·)+ = max(·, 0). We adapt the potential function

given in [7, 3] as follows:

Φ(t) = 3

∫
∞

0

(ña(q,t)−no(q,t))+∑

i=1

P ′(Q(i)) dq .

The boundary condition holds because at t1 and t2, ña = 0, so ña(q) = 0 for all q and

Φ = 0. We now check the discrete-event condition. Note that ña(x) ≥ 1 for any x ∈ (t1, t2).

When a job j arrives and is rejected by OPT, by Property 4(i), there are two cases: (Case

1) B does not change, then Φ does not change. (Case 2) j replaces another job j′ with

remaining work q′ ≥ p(j) in B. Then na(q) decreases by 1 for q ∈ [p(j), q′] and Φ does not

increase. When a job j arrives and is admitted by OPT, by Property 4(ii), a job j′ (which

may be j) with remaining work q′ ≤ p(j) is added to B. Then ña(q) increases by 1 for

q ∈ [0, q′] ⊆ [0, p(j)] and no(q) increases by 1 for q ∈ [0, p(j)]. Thus, ña(q) − no(q) does not

increase for all q and Φ does not increase. When a job is completed by UPUW or OPT,

ña(q) or no(q) changes only at the single point q = 0, which does not affect the integration

and hence Φ remains the same. Finally, when a job is rejected by UPUW, either B does

not change or a job in B leaves B. For the former case, Φ does not change. For the latter

case, let q′ be the remaining work of the job that leaves B. Then ña(q) decreases by 1 for

q ∈ [0, q′], and hence Φ does not increase.

It remains to check the running condition. Consider any time t ∈ (t1, t2) without job

arrival, completion and rejection. Let sa and so be the current speeds of UPUW and OPT,

respectively. To bound the rate of change of Φ, Lemma 7 below shows how Φ changes in an

infinitesimal amount of time (from t to t+ dt). Its proof is based on similar arguments as

in [7, 3] and will be given in the full paper.

◮ Lemma 7. Consider any time t without job arrival or completion and ña ≥ 1. If

ña < no, then dΦ
dt ≤ 0; if ña ≥ no, then either (i) dΦ

dt ≤ 3 · P ′(Q(ña − no))(−sa + so), or

(ii) dΦ
dt ≤ 3 · P ′(Q(ña − no + 1))(−sa + so) and no ≥ 1, or (iii) dΦ

dt = 0 and ña = no.

◮ Lemma 8. At any time in (t1, t2) without job arrival, completion and rejection, dGa

dt + dΦ
dt ≤

3 · dGo

dt + 2k.

Proof. Note that during (t1, t2), ña ≥ 1 and ña = na − k. Also, sa = min(Q(na + 1), T) and

hence dGa

dt = na + P (sa) ≤ 2na + 1 ≤ 2na + ña = 3ña + 2k. Similarly, dGo

dt = no + P (so).

If ña < no, by Lemma 7, dΦ
dt ≤ 0 and thus dGa

dt + dΦ
dt ≤ 3ña + 2k < 3no + 2k ≤ 3dGo

dt + 2k.

Otherwise, if ña ≥ no, we consider the three cases in Lemma 7, where we need the upper

bound on ña − no (Lemma 5).

Case (i): dΦ
dt ≤ 3P ′(Q(ña −no))(−sa + so). By a lemma given in [7] (stated as Lemma 9

below), dΦ
dt ≤ 3(−sa+Q(ña−no))P ′(Q(ña−no))+3P (so)−3(ña−no). If sa = T , by Lemma 5,

STACS’11

398 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

sa = T ≥ Q(ña −no + 1) ≥ Q(ña −no); otherwise, sa = Q(na + 1) ≥ Q(ña + 1) ≥ Q(ña −no).

Thus, dΦ
dt ≤ 3(no +P (so))−3ña and hence dGa

dt + dΦ
dt ≤ 3ña +2k+ dΦ

dt ≤ 3(no +P (so))+2k =

3 dGo

dt + 2k.

Case (ii): dΦ
dt ≤ 3P ′(Q(na − no + 1))(−sa + so) and no ≥ 1. By Lemma 9, dΦ

dt ≤

3(−sa +Q(ña −no + 1))P ′(Q(ña −no + 1)) + 3P (so) − 3(ña −no + 1). If sa = T , by Lemma 5,

sa = T ≥ Q(ña − no + 1); otherwise, sa = Q(na + 1) ≥ Q(ña + 1) ≥ Q(ña − no + 1). Thus,
dΦ
dt ≤ 3(no +P (so))−3ña −3, and hence dGa

dt + dΦ
dt ≤ 3ña +2k+ dΦ

dt ≤ 3(no +P (so))+2k−3 ≤

3 dGo

dt + 2k.

Case (iii): dΦ
dt = 0 and ña = no. Then dGa

dt + dΦ
dt ≤ 3ña +2k = 3no +2k ≤ 3 dGo

dt +2k. ◭

Below is the lemma given in [7], which is used in the proof of Lemma 8.

◮ Lemma 9. [7] Let P be a strictly increasing, strictly convex, continuous and differentiable

function. Let i, sa, so ≥ 0 be any real. Then, P ′(Q(i))(−sa + so) ≤ (−sa +Q(i))P ′(Q(i)) +

P (so) − i.

3 Arbitrary Penalty and Arbitrary Weight

This section considers jobs of arbitrary penalty and arbitrary weight in the following two

models. In the fixed-speed model, the processor always runs at speed 1 and energy is not a

concern. The objective is to minimize the user cost, i.e., total weighted flow plus penalty. In

the speed scaling model, the processor can scale its speed with an arbitrary power function

P (s) and maximum speed T . Then the objective is to minimize the user cost plus energy.

In the speed scaling model, we give an O((1+ 1
ǫ)2)-competitive algorithm for weighted flow

plus penalty plus energy, using (1 + ǫ)2-speedup processor for any ǫ > 0. In the fixed-speed

model, we give a (1 + ǫ)2-speed O((1 + 1
ǫ)

2)-competitive algorithm for weighted flow plus

penalty. This improves the (1 + ǫ)-speed O(1
ǫ (logW + logC)2)-competitive result in [4].

Fractional weighted flow. To obtain these results, we will first focus on the objective

of total fractional weighted flow, and then convert the result for (integral) weighted flow. At

any time t, the fractional weight of an active job j, denoted by w(j, t), is its weight times

its remaining fraction, i.e., w(j, t) = w(j) · q(j,t)
p(j) , where q(j, t) is the remaining size of j at t.

Then the fractional weighted flow of job j is
∫

∞

r(j)
w(j, t) dt, and hence the total fractional

weighted flow is
∫

∞

0
wa(t) dt, where wa(t) is the total fractional weight of active jobs at time t.

HDF and future cost. Under a fixed speed function, HDF (highest density first)

minimizes fractional weighted flow [8]. Our algorithm will always rejects a job at its arrival

time and processes the admitted jobs using HDF. Furthermore, at any time, the processor

always scales its speed according to the total fractional weight w of the active jobs, and

we denote this speed by s(w) (for fixed-speed processor, s(w) is a constant). Consider any

time t. Let wa(q, t) be the total fractional weight of active jobs with inverse density at least q.

Then we can define a future cost Φ̂a(t) to capture the total fractional weighted flow to serve

the current active jobs if no jobs arrive in the future [12]:

Φ̂a(t) =

∫
∞

q=0

∫ wa(q,t)

x=0

x

s(x)
dxdq .

Algorithm HDF-AC. We focus on the objective of fractional weighted flow and define

the algorithm HDF-AC that works for both the speed scaling and fixed-speed models. Let

ǫ > 0 be a constant. Consider any time t.

Job execution: Let wa(t) and sa(t) be the total fractional weight of active jobs and the

speed of HDF-AC. In the fixed-speed model, we use (1 + ǫ)-speed processor, so sa(t) = 1 + ǫ ;

S.H. Chan, T.W. Lam and L.K. Lee 399

in the speed scaling model, we use (1 + ǫ)-speedup processor and set sa(t) = (1 + ǫ) ·

min(Q(wa(t)), T). Then, HDF-AC runs the admitted jobs using HDF at speed sa(t).

Admission control: Let wa(q, t) be the total fractional weight of active jobs with inverse

density at least q. Let f(x) = x
min(Q(x),T) in the speed scaling model, and f(x) = x in the

fixed-speed model. Then the future cost at time t is

Φ̂a(t) =
1

1 + ǫ
·

∫
∞

q=0

∫ wa(q,t)

x=0

f(x) dxdq .

When a job j arrives, let ∆Φ̂a(t) be the increase in Φ̂a(t) if j is admitted. More precisely, let

d(j) = p(j)/w(j) be the inverse density of j. Then ∆Φ̂a(t) = 1
1+ǫ ·

∫ d(j)

q=0

∫ wa(q,t)+w(j)

x=wa(q,t)
f(x) dxdq.

HDF-AC discards j if v(j) ≤ ∆Φ̂a(t); otherwise, j is admitted.

Our main result is the following theorem.

◮ Theorem 10. Consider any ǫ > 0. (i) In the speed scaling model, HDF-AC is (8 + 12
ǫ)-

competitive for fractional weighted flow plus penalty plus energy, when using (1 + ǫ)-speedup

processor. (ii) In the fixed-speed model, HDF-AC is (3+ 6
ǫ)-competitive for fractional weighted

flow plus penalty, when using (1 + ǫ)-speed processor.

Though the objectives for Theorem 10 (i) and (ii) are different, we present an analysis

framework that works for both objectives. Let OPT be the optimal offline schedule for the

corresponding objective. Without loss of generality, we can assume that OPT rejects a job

at its arrival. Let wo(t) and so(t) be the total fractional weight of active jobs and the speed

of OPT. In the speed scaling model, the objective is fractional weighted flow plus penalty

plus energy. We further assume that OPT runs the BCP algorithm [7], i.e., at any time t,

OPT runs the admitted jobs using HDF at speed so(t) = min(Q(wo(t)), T). Since BCP is

2-competitive for fractional weighted flow plus energy [7], such assumption on OPT only

increases the competitive ratio by a factor of 2. In the fixed-speed model, the objective is

fractional weighted flow plus penalty. We further assume that OPT runs HDF at speed

so(t) = 1, since HDF minimizes fractional weighted flow [8].

Since OPT runs HDF, we can define its future cost similarly. At any time t, let wo(q, t)

be the total fractional weight of active jobs with inverse density at least q. Recall that

f(x) = x
min(Q(x),T) in the speed scaling model, and f(x) = x in the fixed-speed model. Then

the future cost of OPT at time t is

Φ̂o(t) =

∫
∞

q=0

∫ wo(q,t)

x=0

f(x) dxdq .

Overview of analysis. Our analysis exploits amortization and potential functions. We

split the objective into two parts; R denotes the penalty and G denotes the fractional weighted

flow (plus energy). Let Ga(t) and Go(t) denote the objective G incurred up to time t by

HDF-AC and OPT, respectively. Define Ra(t) and Ro(t) similarly for the penalty R. To show

that HDF-AC is (c1 +c2)-competitive for the objective G+R against OPT, it suffices to define

a potential function Φ(t) such that the following conditions hold: (i) Boundary condition:

Φ = 0 before any job is released and after all jobs are completed. (ii) Completion condition:

When a job is completed by HDF-AC or OPT, ∆Φ(t) ≤ 0. (iii) Arrival condition: When a

job arrives, ∆Ra(t)+∆Φ(t) ≤ c1 ·(∆Φ̂o(t)+∆Ro(t)), where ∆Φ̂o(t) is the change in the future

cost of OPT at time t. (iv) Running condition: At any other time, dGa(t)
dt + dΦ(t)

dt ≤ c2 · dGo(t)
dt .

To see the correctness, note that Ra(t) and Ro(t) changes discretely only at job arrivals,

and Ga(t) and Go(t) changes continuously at other times. Let te be the time when all jobs are

completed by both HDF-AC and OPT. Since the future cost Φ̂o(t) captures the fractional

STACS’11

400 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

weighted flow incurred by OPT to serve the active jobs at t, we have
∫ te

0
∆Φ̂o(t) dt ≤ Go(te).

Therefore, the correctness follows from integrating these conditions over time, which gives
Ga(te) +Ra(te) ≤ c1 · (

∫ te
0

∆Φ̂o(t) dt+Ro(te)) + c2 ·Go(te) ≤ (c1 + c2) · (Go(te) +Ro(te)) .

Potential function. We now define a general form of Φ(t) that works for both objectives.

Consider any time t. Recall that f(x) = x
min(Q(x),T) in the speed scaling model, and f(x) = x

in the fixed-speed model. The potential function Φ is defined as

Φ(t) =
2

ǫ
·

∫
∞

q=0

∫ (wa(q,t)−wo(q,t))+

x=0

f(x) dxdq .

The boundary and completion conditions hold obviously. We now check the arrival

condition. We drop the parameter t from all notations when it is clear that t refers to the

current time.

◮ Lemma 11. When a job j arrives, ∆Ra + ∆Φ ≤ (2 + 4
ǫ) · (∆Φ̂o + ∆Ro).

Proof. Let d(j) = p(j)/w(j) be the inverse density of job j. If HDF-AC admits this job,

then wa(q) increases by w(j) for q ∈ [0, d(j)]. Similarly, if OPT admits this job, then wo(q)

increases by w(j) for q ∈ [0, d(j)]. Now, we consider the following two cases.

Case 1: OPT admits j. In this case, ∆Ro = 0. If HDF-AC also admits j, then

wa(q) − wo(q) remains the same for all q, so ∆Φ = 0. Since ∆Φ̂o ≥ 0, ∆Ra + ∆Φ = 0 ≤

(2 + 4
ǫ) · (∆Φ̂o + ∆Ro).

Otherwise, HDF-AC rejects j. We analyze using techniques in [12]. Note that ∆Φ̂o =∫ d(j)

q=0

∫ wo(q)+w(j)

x=wo(q)
f(x) dxdq. The change of Φ due to OPT is

−
2

ǫ
·

∫ d(j)

q=0

∫ (wa(q)−wo(q))+

x=(wa(q)−wo(q)−w(j))+

f(x) dxdq .

Note that ∆Ra = v(j) ≤ 1
1+ǫ

∫ d(j)

q=0

∫ wa(q)+w(j)

x=wa(q)
f(x) dxdq ≤ 2

ǫ

∫ d(j)

q=0

∫ wa(q)+w(j)

x=wa(q)
f(x) dxdq, and

the change of Φ due to HDF-AC is zero. Thus,

∆Ra + ∆Φ ≤
2

ǫ
·

∫ d(j)

q=0

(∫ wa(q)+w(j)

x=wa(q)

f(x) dx−

∫ (wa(q)−wo(q))+

x=(wa(q)−wo(q)−w(j))+

f(x) dx

)
dq .

It was shown in [12] that if the function f satisfies that f(0) ≥ 0 and f is increasing

and subadditive, i.e., for any a, b ≥ 0, f(a + b) ≤ f(a) + f(b), then
∫ wa(q)+w(j)

x=wa(q)
f(x) dx −

∫ (wa(q)−wo(q))+

x=(wa(q)−wo(q)−w(j))+
f(x) dx ≤ 2

∫ wo(q)+w(j)

x=wo(q)
f(x) dx. In the fixed-speed model, f(x) = x

obviously satisfies these conditions. In the speed scaling model, f(x) = x
min(Q(x),T) . It was

also shown in [12] that x
Q(x) is increasing and subadditive. Clearly, f(x) is also increasing.

Consider any a, b ≥ 0. If a + b ≤ P (T), it follows directly that f(a + b) ≤ f(a) + f(b);

otherwise, f(a + b) = a+b
T ≤ a

min(Q(a),T) + b
min(Q(b),T) = f(a) + f(b). Therefore, in both

cases, we can apply the inequality to get that ∆Ra + ∆Φ ≤ 4
ǫ ·
∫ d(j)

q=0

∫ wo(q)+w(j)

x=wo(q)
f(x) dxdq =

4
ǫ · ∆Φ̂o ≤ (2 + 4

ǫ) · (∆Φ̂o + ∆Ro).

Case 2: OPT rejects j. In this case, ∆Ro = v(j), ∆Φ̂o = 0, and the change of Φ due

to OPT is zero. Similarly, if HDF-AC admits j, then ∆Ra = 0 and the change of Φ due to

HDF-AC is

2

ǫ
·

∫ d(j)

q=0

∫ wa(q)+w(j)

x=wa(q)

f(x) dxdq ,

which is exactly 2(1 + 1
ǫ) times the increase of Φ̂a and is therefore at most 2(1 + 1

ǫ)v(j).

Otherwise, if HDF-AC also rejects j, ∆Ra = v(j) and the change of Φ due to HDF-AC is

zero. In both cases, ∆Ra + ∆Φ ≤ (2 + 2
ǫ) · v(j) ≤ (2 + 4

ǫ) · (∆Φ̂o + ∆Ro). ◭

S.H. Chan, T.W. Lam and L.K. Lee 401

It remains to show the running condition. Consider any time t without job arrival or

completion. Let sa and so be the current speeds of HDF-AC and OPT, respectively. To

bound the rate of change of Φ, Lemma 12 below shows how Φ changes in an infinitesimal

amount of time (from t to t+ dt). Its proof is based on similar arguments as in [7, 12] and

will be given in the full paper.

◮ Lemma 12. Consider any time without job arrival or completion. (i) If wa < wo, then
dΦ
dt ≤ 0. (ii) If wa > wo, then dΦ

dt ≤ 2
ǫ · f(wa − wo) · (−sa + so). (iii) If wa = wo, then

dΦ
dt ≤ 2

ǫ · f(wo) · so.

We are ready to show the running condition for the speed scaling model (Lemma 13) and

for the fixed-speed model (Lemma 14).

◮ Lemma 13. In the speed scaling model, at any time without job arrival or completion,
dGa

dt + dΦ
dt ≤ (2 + 2

ǫ) · dGo

dt .

Proof. Since sa = (1 + ǫ) min(Q(wa), T) ≤ (1 + ǫ)Q(wa) and HDF-AC is using a (1 +

ǫ)-speedup processor, P (sa) ≤ wa and dGa

dt ≤ 2wa. By the assumption of OPT, so =

min(Q(wo), T) and dGo

dt ≥ wo. We now consider the three cases stated in Lemma 12. Recall

that f(x) = x
min(Q(x),T) .

Case (i): wa < wo. By Lemma 12, dΦ
dt ≤ 0, so dGa

dt + dΦ
dt ≤ 2wa < 2wo ≤ (2 + 2

ǫ) · dGo

dt .

Case (ii): wa > wo. Note that Q is increasing. By Lemma 12, dΦ
dt ≤ 2

ǫ · wa−wo

min(Q(wa−wo),T) (−(1+

ǫ) min(Q(wa), T) + min(Q(wo), T)) ≤ − 2
ǫ · (wa − wo) ǫ·min(Q(wa),T)

min(Q(wa−wo),T) ≤ 2wo − 2wa. Thus,
dGa

dt + dΦ
dt ≤ 2wa + 2wo − 2wa ≤ (2 + 2

ǫ) · dGo

dt .

Case (iii): wa = wo. By Lemma 12, dΦ
dt ≤ 2

ǫ · wo

min(Q(wo),T) · min(Q(wo), T) = 2
ǫ · wo. Thus,

dGa

dt + dΦ
dt ≤ 2wa + 2

ǫ · wo = (2 + 2
ǫ) · wo ≤ (2 + 2

ǫ) · dGo

dt . ◭

◮ Lemma 14. In the fixed-speed model, at any time without job arrival or completion,
dGa

dt + dΦ
dt ≤ (1 + 2

ǫ) · dGo

dt .

Proof. It suffices to show that wa + dΦ
dt ≤ (1 + 2

ǫ) · wo. Recall that sa = 1 + ǫ, so = 1 and

f(x) = x. We now consider the three cases stated in Lemma 12.

Case (i): wa < wo. By Lemma 12, dΦ
dt ≤ 0, so wa + dΦ

dt ≤ wa ≤ wo ≤ (1 + 2
ǫ) · wo.

Case (ii): wa > wo. By Lemma 12, dΦ
dt ≤ 2

ǫ · (wa − wo) · (−(1 + ǫ) + 1) = 2wo − 2wa.

Therefore, wa + dΦ
dt ≤ wa + 2wo − 2wa ≤ wo ≤ (1 + 2

ǫ) · wo.

Case (iii): wa = wo. By Lemma 12, dΦ
dt ≤ 2

ǫ · wo. Thus, wa + dΦ
dt ≤ wa + 2

ǫ · wo =

(1 + 2
ǫ) · wo. ◭

In the speed scaling model, by Lemmas 11 and 13, HDF-AC is (4+ 6
ǫ)-competitive against

OPT. Recall that OPT uses BCP and thus is 2-approximate. Therefore, Theorem 10 (i)

follows. In the fixed-speed model, by Lemmas 11 and 14, HDF-AC is (3 + 6
ǫ)-competitive

against OPT, which is the actual optimal schedule. Thus, Theorem 10 (ii) follows.

Online algorithm for integral weighted flow. We now convert the result of The-

orem 10 for the objective of (integral) weighted flow. Since HDF is (1 + ǫ)-speed (1 + 1
ǫ)-

competitive for weighted flow on a fixed speed processor [8] and the fractional weighted

flow of any schedule (including OPT) is always at most its (integral) weighted flow, we use

the following online algorithm HDF-AC∗: HDF-AC∗ keeps a simulated copy of HDF-AC on

the same job instance. It always follows the admission control of HDF-AC. At any time,

HDF-AC∗ runs at speed (1 + ǫ) faster than the simulated HDF-AC, but selects the job to

run using HDF on its own active jobs.

The following performance guarantee of HDF-AC∗ follows directly from Theorem 10.

STACS’11

402 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

◮ Corollary 15. Consider any ǫ > 0. (i) In the speed scaling model, HDF-AC∗ is (1 +
1
ǫ)(8 + 12

ǫ)-competitive for weighted flow plus penalty plus energy, when using (1 + ǫ)2-speedup

processor. (ii) In the fixed-speed model, HDF-AC∗ is (1 + 1
ǫ)(3 + 6

ǫ)-competitive for weighted

flow plus penalty, when using (1 + ǫ)2-speed processor.

4 Lower Bound for Arbitrary Penalty Jobs

This section gives the lower bound result. Assuming P (s) = sα, we show that the competitive

ratio of any algorithm must grow with α, i.e., the steepness of the power function. This

implies that no O(1)-competitive algorithm exists for arbitrary power function.

◮ Theorem 16. Consider minimizing flow plus energy plus penalty. For power function

P (s) = sα, if T is unbounded, any algorithm is Ω(α1/2−ǫ)-competitive for any 0 < ǫ < 1
2 .

Proof. Let A be any algorithm and OFF be the offline adversary. Let k ≥ 1 be some constant

depending on α (to be defined later). At time 0, the adversary releases two streams of jobs,

namely Stream 1 and Stream 2. Stream 1 contains k2 jobs of size 1 and penalty k2, each

released at time i, where 0 ≤ i ≤ k2 − 1. Stream 2 contains k job of size k and penalty k5,

each released at time jk, where 0 ≤ j ≤ k − 1. The penalty of Stream 2 jobs is large enough

such that A is not competitive if any one of them is rejected. Therefore, A runs Stream 2

jobs one by one (in SRPT) in their arrival order. Depending on the number of Stream 2 jobs

remaining in A at time k2, the adversary may release Stream 3, which contains k4

δ job of

size δ = 1
k and penalty k5, each released at time k2 + iδ, where 0 ≤ i ≤ k4

δ − 1.

Case 1: At time k2, A has less than k
2 Stream 2 jobs remaining. In this case, the

adversary does not release Stream 3. OFF can always run at speed 1 and completes the

Stream 1 jobs one by one in [0, k2] and then completes the Stream 2 jobs one by one in

[k2, 2k2]. Thus, the total flow of OFF is at most k2 · 1 + k · (k2 + k) = O(k3). Since OFF

always consume power 1α = 1, which is at most the number of active jobs at that time,

the energy usage of OFF is at most its flow. As OFF does not reject any job, the flow plus

energy plus penalty of OFF is O(k3).

Consider the schedule of A. If A rejects at least one Stream 2 jobs, the penalty of

A is at least k5. If A rejects more than k2

4 Stream 1 jobs, the penalty of A is at least
k2

4 · k2 = Ω(k4). If A has at least k2

8 Stream 1 jobs remaining at time k2, the flow of these

jobs is at least
∑k2/8
i=1 i = Ω(k4). In all of the above three cases, the competitive ratio of A is

Ω(k). Otherwise, A does not reject any Stream 2 job, and A rejects at most k2

4 Stream 1

jobs, and there are less than k2

8 Stream 1 jobs remaining at time k2. Thus, during [0, k2], A

has completed at least k2 − k2

4 − k2

8 = 5k2

8 Stream 1 jobs and at least k − k
2 = k

2 Stream 2

jobs. The work done of A during [0, k2] is at least 5k2

8 + k
2 · k = 9k2

8 . By the convexity of

the power function sα, running at a fixed speed minimizes the energy usage and thus the

energy usage of A is at least (9k2

8 /k2)α · k2 = (9
8)αk2. Thus, the competitive ratio of A is

Ω((9
8)α · 1

k).

Case 2: At time k2, A has at least k
2 Stream 2 jobs remaining. In this case, the adversary

releases Stream 3. Similar to Stream 2, without loss of generality, A works on Stream 3 jobs

one by one (in SRPT). OFF can reject all Stream 1 jobs and then always run at speed 1 to

complete the Stream 2 jobs one by one in [0, k2] and then completes the Stream 3 jobs one

by one in [k2, k2 + k4]. Thus, the total penalty of OFF is k2 · k2 = k4 and total flow of OFF

is at most k · k + k4

δ · δ = k2 + k4 = O(k4). Since OFF always consume power 1α = 1, which

is at most the number of active jobs at that time, the energy usage of OFF is at most its

flow. Therefore, the flow plus energy plus penalty of OFF is O(k4).

S.H. Chan, T.W. Lam and L.K. Lee 403

Consider the schedule of A. If A rejects at least one Stream 2 or Stream 3 job, the penalty

of A is at least k5. If at time k2 + k4, A has at least k
4 Stream 2 jobs remaining, the flow

of these jobs is at least k
4 · k4 = Ω(k5). If at time k2 + k4, A has at least k2

8δ Stream 3 jobs

remaining, the flow of these jobs is at least δ ·
∑k2/8δ
i=1 i = Ω(k

4

δ) = Ω(k5). In all of the above

three cases, the competitive ratio of A is Ω(k). Otherwise, A does not reject any Stream 2

and Stream 3 job, and at time k2 + k4, there are less than k
4 Stream 2 jobs and less than

k2

8δ Stream 3 jobs remaining. Thus, A has completed more than k
2 − k

4 = k
4 Stream 2 jobs

and more than k4

δ − k2

8δ Stream 3 jobs during [k2, k2 + k4]. Since A runs Stream 2 jobs and

Stream 3 jobs by SRPT, respectively, the total work done during [k2, k2 + k4] is at least
k
4 · k + (k

4

δ − k2

8δ) · δ = k4 + k2

8 . Since running at a fixed speed minimizes the energy usage,

the energy usage of A is at least k4 · ((k4 + k2

8)/k4)α = Ω(k4 · (1 + 1
8k2)α) and hence A is

Ω((1 + 1
8k2)α)-competitive.

Therefore, A is Ω(min(k, (9
8)α(1

k), (1+ 1
8k2)α))-competitive. We set k = α

1
2

−ǫ for 0 < ǫ < 1
2 .

Since (1+ 1
8y)y is increasing with y, the competitive ratio of A is Ω(min(α

1
2

−ǫ, (9
8)α/α

1
2

−ǫ, (1+
1

8α1−2ǫ)α
1−2ǫ

·α2ǫ

)) = Ω(min(α
1
2

−ǫ, (9
8)α/α

1
2

−ǫ, (1 + 1
8)α

2ǫ

)) = Ω(α
1
2

−ǫ). ◭

References

1 S. Albers. Energy-efficient algorithms. Communications of the ACM, 53(5):86–96, 2010.

2 S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. ACM

Transactions on Algorithms, 3(4):49, 2007.

3 L. Andrew, A. Wierman, and A. Tang. Optimal speed scaling under arbitrary power

functions. ACM SIGMETRICS Performance Evaluation Review, 37(2):39–41, 2009.

4 N. Bansal, A. Blum, S. Chawla, and K. Dhamdhere. Scheduling for flow-time with admis-

sion control. In Proc. ESA, pages 43–54, 2003.

5 D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu,

J. D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook. Power-aware microarchitecture:

Design and modeling challenges for next-generation microprocessors. IEEE Micro, 20(6):26–

44, 2000.

6 N. Bansal, H. L. Chan, T. W. Lam, and L. K. Lee. Scheduling for speed bounded processors.

In Proc. ICALP, pages 409–420, 2008.

7 N. Bansal, H. L. Chan, and K. Pruhs. Speed scaling with an arbitrary power function. In

Proc. SODA, pages 693–701, 2009.

8 L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Online weighted flow

time and deadline scheduling. J. Discrete Algorithms, 4(3):339–352, 2006.

9 N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. SIAM Journal

on Computing, 39(4):1294–1308, 2009.

10 H. L. Chan, J. Edmonds, T. W. Lam, L. K. Lee, A. Marchetti-Spaccamela, and K. Pruhs.

Nonclairvoyant speed scaling for flow and energy. In Proc. STACS, pages 255–264, 2009.

11 S. H. Chan, T. W. Lam, and L. K. Lee. Non-clairvoyant speed scaling for weighted flow

time. In Proc. ESA, pages 23–35, 2010.

12 A. Gupta, R. Krishnaswamy, and K. Pruhs. Scalably scheduling power-heterogeneous

processors. In Proc. ICALP, 312–323, 2010.

13 T. W. Lam, L. K. Lee, I. To, and P. Wong. Speed scaling functions for flow time scheduling

based on active job count. In Proc. ESA, pages 647–659, 2008.

14 L. Schrage. A proof of the optimality of the shortest remaining processing time discipline.

Operations Research, 16(3):687–690, 1968.

15 F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proc.

FOCS, pages 374–382, 1995.

STACS’11

	Introduction
	Uniform Penalty and Unit Weight
	Arbitrary Penalty and Arbitrary Weight
	Lower Bound for Arbitrary Penalty Jobs

