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Abstract

In recent years, the parameterized complexity approach has lead to the introduction of many new

algorithms and frameworks on graphs and digraphs of bounded clique-width and, equivalently,

rank-width. However, despite intensive work on the subject, there still exist well-established hard

problems where neither a parameterized algorithm nor a theoretical obstacle to its existence are

known. Our article is interested mainly in the digraph case, targeting the well-known Minimum

Leaf Out-Branching (cf. also Minimum Leaf Spanning Tree) and Edge Disjoint Paths problems

on digraphs of bounded clique-width with non-standard new approaches.

The first part of the article deals with the Minimum Leaf Out-Branching problem and in-

troduces a novel XP-time algorithm wrt. clique-width. We remark that this problem is known

to be W[2]-hard, and that our algorithm does not resemble any of the previously published at-

tempts solving special cases of it such as the Hamiltonian Path. The second part then looks at

the Edge Disjoint Paths problem (both on graphs and digraphs) from a different perspective –

rather surprisingly showing that this problem has a definition in the MSO1 logic of graphs. The

linear-time FPT algorithm wrt. clique-width then follows as a direct consequence.
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1 Introduction

It is known that the majority of graph problems are NP-complete in general, so alternative

approaches are necessary for tackling these problems. The utilization of parameterized

algorithmics is one such very successful approach, where instead of focusing on the general

class of all graphs we design algorithms on graphs with a bounded structural parameter (or

“width”). This has strong practical motivation, since real-world applications generally work

with specific classes of graphs as input.

“Polynomial runtime” parameterized algorithms are roughly divided into two groups.

The more ideal case constitutes fixed-parameter tractable (FPT) algorithms, where the

runtime is poly(n) · f(k) (n being the input size and k the parameter). Unfortunately, not

all combinations of problems and parameters allow FPT algorithms, and so in some cases it

is necessary to settle for an XP algorithm – i.e. an algorithm with runtime poly(n)f(k). No-

tice that the exponent in XP algorithms increases with the parameter, but still the runtime

remains polynomial for any fixed value of k.
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As for the parameters themselves, the one best known today is the tree-width of

Robertson and Seymour [17] which has allowed for efficient solution of many NP-hard prob-

lems on all graphs having bounded tree-width. The drawback is that the class of graphs

with bounded tree-width is quite restrictive. A lot of research since then has focused on

obtaining a width measure which would be more general and still allow efficient algorithms

for a wide range of NP-hard problems on graphs of bounded width. This has lead to the

introduction of clique-width by Courcelle and Olariu [4] and, subsequently, of rank-width

by Oum and Seymour [16]. Both of these width parameters are related in the sense that

one is bounded if and only if the other is bounded. We refer to Section 2 for further details.

In this article, we provide polynomial algorithms for two well-established problems on

digraphs of bounded clique-width/bi-rank-width.

The first one is Minimum Leaf Out-Branching, a problem which generalizes the Hamilto-

nian Path problem and which is studied e.g. in [5]. The task is to find a spanning

out-tree in a digraph that minimizes the number of leaves. Definition and more details

are provided in Section 3. We remark that the undirected variant is known as Minimum

Leaf Spanning Tree problem (e.g. [19]), and our results apply also to that.

The second one is Edge Disjoint Paths problem, asking for pairwise edge-disjoint paths

between a fixed number of terminal pairs. In this case the directed variant is much more

difficult than the undirected one – see details in Section 4.

Parameterized complexity status of Minimum Leaf Out-Branching remained unsolved in

our previous work on digraphs of bounded bi-rank-width [9], resisting the dynamic program-

ming approaches traditionally used e.g. for clique-width. The provided new Algorithm 12 in

Section 3 solves the problem and is also straightforwardly applicable to undirected graphs.

◮ Theorem 1 (Algorithm 12). The Minimum Leaf Out-Branching problem on a given digraph

G of clique-width k (with arbitrary number of leaves) can be solved in XP time O(nf(k)),

where f(k) ∼ 2O(k) if a k-expression of G is given, and f(k) ∼ 2O(2k) otherwise.

The second part of the article shortly deals with the Edge Disjoint Paths problem with

a fixed number of paths. Note that this was the only remaining open (directed) variant

of Disjoint Paths with respect to parameterization by clique-width – see [9, 12, 15] for

complexity results and/or algorithms for the other variants. We show in Section 4 that

even the Edge Disjoint Paths problem may be described by an MSO1 formula. This is

somehow surprising given the fact that MSO1 cannot speak about sets of edges, and our

logical formula is definitely not a trivial restatement of the original problem. In the end we

obtain, in connection with [3]:

◮ Theorem 2 (Theorem 17). Both the undirected and directed variant of the Edge Disjoint

Paths problem with a fixed number of terminal pairs have a linear-time FPT algorithm on

simple (di)graphs of bounded clique-width.

Theorem 2 can, moreover, be directly used as a subroutine in a new algorithm for the

Edge Disjoint Paths problem on tournaments by Chudnovsky and Seymour [in preparation].

2 Clique-width and rank-width

We use standard graph and digraph (directed graph) notation. All our graphs and digraphs

are simple (i.e. do not contain loops or multiple edges) unless specified otherwise.

STACS’11
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◮ Definition 3 (clique-width, [4]). Let k be a positive integer. A pair (G, γ) is a k-labelled

graph if G is a graph and γ : V (G) → {1, 2, . . . , k} is a mapping. We call γ(v) for v ∈ V (G)

the label of a vertex v. As γ is usually fixed, we often write just G for the k-labelled graph

(G, γ), and we refer to γ(v) as to the G-label of a vertex v. A k-expression is a well formed

expression t built using the four operators defined below. Let 1 ≤ i, j ≤ k. Then

1. [i] is a nullary operator which represents a graph with a single vertex labelled i,

2. ηi,j , for i 6= j, is a unary operator which adds edges between all pairs of vertices where

one is labelled i and the other is labelled j,

3. ρi→j is a unary operator which changes the labels of all vertices labelled i to j, and

4. ⊕ is a binary operator which represents disjoint union of two k-labelled graphs.

Each k-expression t naturally corresponds to (generates) a k-labelled graph G which will

be denoted for reference by G[t] = G. The clique-width of an undirected graph G is then

the smallest k such that there exists a k-expression generating G. For digraphs clique-width

is defined in just the same way, only the operator ηi,j is replaced by the operator αi,j which

creates directed edges (arcs) from each vertex with label i to each vertex with label j. It is

known [4] that every graph of clique-width k can be generated by an irredundand expression,

i.e. an expression that applies the ηi,j / αi,j operator only in situations when there is no edge

from a vertex of label i to one of label j.

It is quite natural to view a k-expression tG corresponding to G as a tree T with nodes

labelled by subterms of tG (tG being the root), together with a bijection between the leaves

of the tree and vertices of G. In this setting the type of each node t ∈ V (T ) is the top-level

operator of t, and so we have four different node types.

◮ Example 4. α1,2(ρ1→2(α1,2(ρ1→2(α1,2([1]⊕[2]))⊕[1]))⊕[1]) is a 2-expression corresponding

to a directed clique of size 4. See Fig. 1.
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A = [1] ⊕ [2] C = ρ1→2(α1,2(B)) D = C ⊕ [1] E = α1,2(D)B = ρ1→2(α1,2(A)) ⊕ [1]

Figure 1 Construction of the directed clique of size 4

Closely related to clique-width is another structural parameter, called rank-width [16] (on

undirected graphs) or bi-rank-width [14] (on digraphs). Due to space restrictions we only

refer to [11] for their definitions. The relationship of these measures to the former is that

they are bounded if and only if clique-width is bounded. However, a crucial advantage of

rank-width is that it can be computed optimally by an FPT algorithm. To be more specific:

◮ Theorem 5 ([2, 16]). rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1 for all graphs G.

◮ Theorem 6 ([13, 14]). For every integer parameter k there is an O(n3)-time FPT al-

gorithm that, for a given n-vertex graph G, either finds a bi-rank-decomposition of G of

width at most k, or confirms that the bi-rank-width of G is more than k.

Due to lack of space for comprehensible definitions and explanation of rank-width and

their parse trees we stick with (perhaps better known) clique-width in this article. All the

results, however, could be straightforwardly reformulated for (bi-)rank-width.
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3 Minimum leaf out-branching

Let outG(x) denote the out-degree of x in a digraph G, i.e. the number of edges having their

tail in x. For an edge f and nonadjacent vertices x, y of a digraph G, we write G − f to

denote the graph resulting by removal f from G, and G + (x, y) for the graph obtained by

adding a new edge from x to y. A digraph T is an out-tree if T is an oriented tree with

only one vertex of in-degree zero (called the root). The vertices of out-degree zero are called

leaves of T . An out-forest is a digraph whose weakly connected components are out-trees.

◮ Definition 7. Let G be a digraph. We say that T is an out-branching of G if T is a

spanning subdigraph of G, i.e. V (T ) = V (G) and E(T ) ⊆ E(G), and T is an out-tree. The

Minimum Leaf Out-Branching problem (or MinLOB for short) is the problem of deciding,

for a digraph G and integer ℓ on the input, whether G contains an out-branching with at

most ℓ leaves.

Notice that not every digraph has an out-branching. It is not hard to show that G has

an out-branching if, and only if, there is a vertex v ∈ V (G) such that there is a directed path

from v to any vertex of G. This is checkable in linear-time [1], but the MinLOB problem

itself is NP-complete since it contains the Hamiltonian Path as a special case (ℓ = 1). It is

also possible to analogically define the Maximum Leaf Out-Branching problem (MaxLOB),

asking for an out-branching with at least ℓ leaves, but this variant seems to have quite

different (and rather easier) algorithmic behaviour than MinLOB.

The core contribution of our paper is to resolve one important question left open in [9];

what is the computational complexity of MinLOB when parameterized by the clique-

width / bi-rank-width of the input graph? It follows by a reduction from Hamiltonian Path

[7] that MinLOB is W[2]-hard with respect to clique-width (even with fixed ℓ), and so does

not have an FPT algorithm unless the Exponential Time Hypothesis fails. The first XP al-

gorithm for the undirected Hamiltonian Path parameterized by the clique-width was due to

Espelage et al [6]. Another XP algorithm for ℓ-MinLOB for every fixed ℓ and parameterized

by the bi-rank-width has been recently given in [11].

Our new XP algorithm for MinLOB parameterized by the clique-width does not resemble

any of the aforementioned algorithms for the Hamiltonian Path and ℓ-MinLOB problems.

In fact, our new algorithm seems to be in a certain fundamental aspect (see Theorem 13

and Question 14) very different from the many other parameterized algorithms designed for

graphs of bounded clique-width. We suggest that this difference may not be fully understood

yet, and so it deserves further conceptual investigation, too.

3.1 Out-branching and modules

We first show some basic properties of the problem as a prelude to the coming algorithm

in the next section. Though these properties (cf. Definitions 8, 9) are not directly used in

Algorithm 12 and its proof, we consider them worth independent interest.

For a digraph G, a set M ⊆ V (G) is called a module if every vertex of M has the same in-

neighbourhood and out-neighbourhood (as every other in M) among the vertices not in M .

Generalizing the module concept, we consider a k-labelled digraph (H, γ) such that H ⊆ G.

We say that H is a labelled-modular subdigraph of G if γ−1(i) is a module in G − E(H) for

all i = 1, 2, . . . , k. Note that H is not required to be an induced subdigraph of G.

In other words, H is a labelled-modular subdigraph of G if the existence of an edge in

G − E(H) incident with some v ∈ V (H) “depends only on” the label of v. Notice that if s

is a subexpression of a (irredundand) k-expression t, then the generated k-labelled digraph

STACS’11
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G[s] is always a labelled-modular subdigraph of the whole G[t] (an analogical claim holds

e.g. for bi-rank-decompositions).

Let G be a digraph, H ⊆ G its subgraph and F ⊆ H an out-forest. We call the pair

(F, µ) where µ : V (H) → N an annotated out-forest. We say that the annotated out-forest

(F, µ) extends to an out-branching T ⊆ G if E(F ) = E(T ) ∩ E(H), and for all x ∈ V (H)

we have µ(x) = outT (x) − outF (x). We are going to define an equivalence relation ≈H on

the set of all annotated out-forests of a k-labelled graph H, with the intended meaning to

“capture all important information” about possible extendability of a particular annotated

out-forest into an out-branching.

◮ Definition 8 (Canonical equivalence). A pair of annotated out-forests (F1, µ1) and (F2, µ2)

in a k-labelled digraph H is canonically equivalent, written as (F1, µ1) ≈H (F2, µ2), if, and

only if, the following holds for each integer ℓ and every digraph G such that H is a labelled-

modular subdigraph of G: (F1, µ1) can be extended to an out-branching of G with ≤ ℓ leaves

if and only if (F2, µ2) can be extended to an out-branching of G with ≤ ℓ leaves.

On the other hand, in Definition 9 we introduce simple “information about (F, µ)” that

is sufficient to determine its equivalence class within ≈H . For every connected component

(out-tree) T0 of F in H, including the isolated vertices of H not incident with any edge of F ,

the shape of T0 is the pair (a, B) where a is the H-label of the root of T0 and B is the set

of all H-labels occurring at the vertices x ∈ V (T0) such that µ(x) > 0 (active vertices).

◮ Definition 9 (Out-forest signatures). The signature of a (spanning) annotated out-forest

(F, µ) in a k-labelled digraph H is a vector in N∗ consisting of

the number of leaves x of F (incl. isolated vertices) such that µ(x) = 0,

for every i = 1, . . . , k, the sum of µ(x) over all vertices x ∈ V (H) of the H-label i, and

for every possible shape, the number of out-trees of F having this shape.

Notice that the length of this vector depends only on k and not on the size of H.

◮ Lemma 10. Let (F1, µ1) and (F2, µ2) be a pair of annotated out-forests in a k-labelled

digraph H. If the signatures of (F1, µ1) and (F2, µ2) are equal, then (F1, µ1) ≈H (F2, µ2).

Due to lack of space, we skip the proof of this lemma. The claim clearly suggests that an

XP-time algorithm for MinLOB might exist since the information “carried by” the set of

available signatures is of polynomial size. Unfortunately, even this strong claim is not strong

enough to give such an algorithm (unlike in the finite Myhill–Nerode-type case, e.g. [8], or

in many other XP solvable problems [11]) since we do not know how to process available

signature vectors dynamically along a k-expression.

3.2 A dynamic algorithm for MinLOB

In order to obtain an XP algorithm for the MinLOB problem, we introduce a “weaker”

alternative to Definition 9. Recall that a vertex x of an annotated out-forest (F, µ) is active

if µ(x) > 0. We now relax this notion to suit the coming algorithm.

Assume a k-expression t generating the digraph H = G[t], an annotated out-forest (F, µ)

in H, and a vertex vq ∈ V (H) generated by the leaf q of t. We say that vq is potentially

active in H for the k-expression t if, for every node (subexpression) s of t on the path from

q to the root, the annotated out-forest induced by (F, µ) in G[s] ⊆ H contains an active

vertex (possibly vq itself) of the same G[s]-label as that of vq. In particular, if a vertex x is

active in (F, µ), then x is also potentially active for t. If there is no active vertex of label i
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in (F, µ), then there is also no such potentially active vertex. It may, however, happen that

there are many more potentially active vertices of (F, µ) for t than the active ones.

For every connected component (out-tree) T0 of F in H, we define the weak shape of T0

as the pair (a, B) where a is the H-label of the root of T0 and B is the set of all H-labels

occurring at the vertices x ∈ V (T0) that are potentially active for the k-expression t.

◮ Definition 11 (Weak signature, cf. Definition 9). The weak signature of a spanning annot-

ated out-forest (F, µ) in the k-labelled digraph H = G[t] generated by a k-expression t is a

vector ~w in Nc (with the appropriate length c) consisting of the sections

wl, the number of leaves x of F (incl. isolated vertices) such that µ(x) = 0,

wa(i) for every i = 1, . . . , k, where wa(i) equals the sum of µ(x) over all vertices x of the

H-label i (informally, the “total multiplicity” of all active vertices of label i), and

ws(a, B) for every possible weak shape (a, B), equal to the number of out-trees (weak

components) of F having this weak shape (a, B) in H for the k-expression t.

The advantage of a weak signature over former signature is that weak signatures are

easier to handle in dynamic programming on a k-expression of the input graph. Still, the

situation is not as easy as if we could dynamically compute the set of all weak signatures of

all possible annotated outforests in our graph — we can only compute a suitable superset of

it via the following straightforward algorithm.

◮ Algorithm 12. Assume an input consisting of a k-expression t generating a k-labelled di-

graph G on n vertices. The following algorithm computes, in XP-time wrt. the parameter k,

a set U of vectors from Nc (cf. Definition 11) such that U includes all weak signatures of

spanning annotated out-forests in G for t.

I. Input t (a k-expression); G = G[t].

II. At every leaf q = [i] of t (where i ∈ {1, . . . , k}), the graph G[q] is actually a single

vertex vq of label i. Let Uq be the set of weak signatures of the edge-less annotated

out-forests (G[q], µj) where µj(vq) = j, over 0 ≤ j ≤ outG(vq).

III. At every internal node r of t, we compute in the leaves-to-root direction as follows.

r = p ⊕ q: Ur is the set, for all pairs ~c ∈ Up, ~d ∈ Uq, of their vector sums ~c + ~d.

r = ρi→j(q): We initialize Ur = ∅. Then, for every ~c ∈ Uq, ~c = (wl, ~wa, ~ws) as

in Definition 11, we compute; ~wa′ = ~wa except that wa′(j) = wa(j) + wa(i) and

wa′(i) = 0, and ~ws′ “shifting” the components of ~ws according to the effect that

relabeling i → j has on all possible weak shapes. We add (wl, ~wa′, ~ws′) to Ur.

r = αi,j(q): We initialize Ur = Uq. Then we repeat the following procedure as long

as Ur is changing:

Pick arbitrary ~c ∈ Ur, ~c = (wl, ~wa, ~ws) such that wa(i) > 0, and any weak shapes

(a, B) and (b, C) such that i ∈ B, b = j, and ws(a, B) > 0, ws(j, C) > 0.

Let ~wa′ = ~wa except that wa′(i) = wa(i) − 1.

Let ~ws′ = ~ws except that ws′(a, B) = ws(a, B)−1, ws′(j, C) = ws(j, C)−1, and

ws′(a, B ∪ C) = ws(a, B ∪ C) + 1.

If wa′(i) = 0, then let the label i be subsequently “removed from” the label sets

(of potentially active vertices) of all weak shapes indexing ~ws′.

Finally, add (wl, ~wa′, ~ws′) to Ur.

IV. Output U = Ut.

STACS’11
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Proof. There are two steps in the proof.

Claim. The set U contains, for every annotated out-forest (F, µ) in G such that µ(x) ≤

outG(x) − outF (x), the weak signature of (F, µ) for t.

This is easily proved by leaves-to-root structural induction on t: The claim is trivial at

the leaves. Considering a node r = p ⊕ q, the weak signature of any annotated out-forest

in G[r] that is obtained as a disjoint union of annotated out-forests in G[p], G[q] of weak

signatures ~c, ~d, respectively, equals computed ~c + ~d. Analogically for r = αi,j(q). Notice

that none of those two operations change potential activity of vertices by definition.

Consider one iteration at a node r = αi,j(q). Let (F + (u, v), µ′) be an annotated out-

forest in G[r] such that the weak signature ~c of (F, µ), µ(u) = µ′(u) + 1, has already been

computed in previous iterations of Ur by the inductive assumption. Hence u of G[r]-label i

is active in (F, µ) and ~c contains a weak shape (a, B) such that i ∈ B. Furthermore, since

F + (u, v) is an outforest, ~c contains a weak shape (b, C) such that b = j is the G[r]-label

of v. Then the vector (wl, ~wa′, ~ws′) computed by the algorithm from ~c is exactly the weak

signature of (F + (u, v), µ′) by definition.

Claim. Algorithm 12 runs in XP time, i.e. in time O(nf(k)) where f(k) ∼ 2O(k).

The runtime of the algorithm is clearly dominated (up to a constant multiple of the

exponent) by the number of possible weak signature vectors of length c. It is c = 1+k+k2k.

The value of each vector component may be a natural number up to n for wl, ~ws and up to

n2 for ~wa. Hence the claim follows. ◭

The importance of Algorithm 12 comes from the following crucial statement.

◮ Theorem 13. Suppose that the set U = Ut computed in Algorithm 12 contains a weak

signature vector ~w = (wl, ~wa, ~ws) such that wl = ℓ, ~wa = ~0, and ~ws containing only one

non-zero entry 1 (i.e. ~w corresponds to a weak signature of an out-tree with ℓ leaves and

zero annotation). Then the graph G = G[t] contains an out-branching with ℓ leaves.

Consequently, Algorithm 12 solves the Minimum Leaf Out-Branching problem – for a

given G and arbitrary ℓ – in XP-time wrt. the clique-width k of G (Theorem 1).

Proof. Let ~c ∈ Us be a weak signature vector computed by Algorithm 12 on a subexpression

s of the k-expression t. A derivation tree δ of ~c over t is a rooted tree which is a subdivision

of that of s, and every node of δ is labelled with one weak signature vector as follows:

Each r ∈ V (s) ⊆ V (δ) is labelled with some ~cr ∈ Ur such that the root of δ is labelled by

~c, and for each edge (r, q) ∈ E(s) it holds that ~cr is computed from ~cq by Algorithm 12.

Moreover, (r, q) ∈ E(δ) unless r is of the form “r = αi,j(q)”. If r = αi,j(q) and ~cr

was created from ~cq by adding k edges, then (r, q) is replaced with an r–q -path (r0 =

r, r1, . . . , rk = q) of length k in δ such that ~crℓ
, 0 ≤ ℓ < k, is obtained from ~crℓ+1

by one

(productive) iteration of the “r = αi,j(q)” step in III.

Typically, one vector ~c can have many derivation trees.

Such a derivation tree δ is realizable over t if there exists an annotated out-forest (F, µ) in

G[s] such that, for each node d of δ, the corresponding subforest of (F, µ) has weak signature

equal to the label of d. Obviously not all vectors in Us have realizable derivations, in general.

Let V ⊆ U be the set of good vectors assumed in the statement of this theorem, i.e. of

those vectors ~w = (wl, ~wa, ~ws) ∈ U such that wl = ℓ, ~wa = ~0, and ~ws containing only

one non-zero entry 1. Among all the good vectors ~w ∈ V, we select ~w0 and a derivation

tree δ0 of ~w0 such that there is a derivation tree δ1 ⊆ δ0 which is realizable over t and

δ1 maximizes the number of edges of its realizing out-forest (F1, µ1). We aim to show, by

means of contradiction, that δ1 = δ0. Then (F1, µ1) would be a realization of whole δ0 of

weak signature ~w0 ∈ V, and hence F1 is an outbranching with ℓ leaves by the definition of V.
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Let δ1 ( δ0. Analyzing Algorithm 12. III, one easily finds out that both the “r = p ⊕ q”

and “r = ρi→j(q)” operations preserve realizability. Hence we have got a realizing out-forest

(F1, µ1) of δ1 over t, its weak signature ~c1, and the label ~c2 of the parent of the root of δ1 in

the derivation tree δ0 such that: ~c2 results from ~c1 by one iteration of the “r = αi,j(q)” step

in III, but no single edge of G can be added to (F1, µ1) to produce an out-forest of weak

signature ~c2. In the rest of the proof we are going to construct another annotated out-forest

with one more edge than (F1, µ1) such that its weak signature is contained in the derivation

tree of some good vector in V (and this will be a contradiction to the assumptions).

We need a few more technical terms before proceeding with our proof.

An out-branching of a weak signature vector ~c is any out-tree Γ such that V (Γ) is the

multiset of weak shapes respecting their multiplicities given by ~c, i.e. every weak shape

has the appropriate number of unique copies in V (Γ). Informally, if ~c were realizable by

an out-forest F , then the vertices of Γ would be all the out-trees of F .

Considering a weak signature ~c labelling a node of a derivation tree δ, we say that an

out-branching Γ of ~c is determined by δ if the following holds for every pair x, y ∈ V (Γ):

(x, y) ∈ E(Γ) iff the computation run of Algorithm 12 associated with δ contains a

“directed sequence” of αi,j operations interconnecting the particular copies x to y.

An out-branching Γ of a weak signature ~c is feasible for t if there exists good ~d ∈ V such

that a derivation tree δ of ~d contains the label ~c and Γ is determined by δ.

Informally, the out-branching Γ of ~c outlines the “intended arrangement” of components of

~c in a (potential) resulting out-branching of G.

In our case we have got an out-branching Γ1 of the aforementioned weak signature ~c1

(of (F1, µ1)) determined by the derivation tree δ0. Let (x, y) ∈ E(Γ1) be its edge such that

x is a copy of the weak shape (a, B), i ∈ B, and y is a copy of the weak shape (j, C),

and that ~c2 results from ~c1 in the iteration of the “r = αi,j(q)” step (III) which picks the

weak shapes (a, B) and (j, C) in ~c1. The digraph Γ1 − (x, y) has two weak components; X

containing x and Y containing y. Let F1 = L1 ∪ L′
1 be a partition of F1 such that L1 is

formed by the out-trees corresponding to the vertices of X and L′
1 is formed by those of Y ,

and, particularly, let Tx ⊆ L1, Ty ⊆ L′
1 be the out-trees corresponding to x, y of Γ1. Hence

the root v1 of Ty has F1-label j and some potentially active vertex u1 in Tx has F1-label i,

We may as well assume that δ1, its realization (F1, µ1) and x, y are chosen – subject

to optimality in the previous criteria – such that they minimize the distance from the root

of δ1 to one of its nodes d2 satisfying the following: In the annotated subforest (F2, µ2)

induced from (F1, µ1) at the derivation node d2 and containing u1, there exists a vertex

u2 ∈ V (F2) ∩ V (L1) such that u2 is active in (F2, µ2) and u2 has the same F2-label as u1

(possibly u2 = u1). This leads to two cases to be considered:

i. The distance to our d2 is zero. Then there is an active vertex u2 ∈ V (L1) in (F1, µ1) of

the F1-label i, and so (u2, v1) is an edge of G.

ii. The distance to our d2 is non-zero. Then, in particular, all active vertices of (F1, µ1) of

the F1-label i belong to L′
1.

Ad (i), we take the out-forest F ′
1 = F1 + (u2, v1) ⊆ G. Let ~c1

′ be the weak signature of

the annotated out-forest (F ′
1, µ′

1) where µ′
1(u2) = µ1(u2) − 1 and µ′

1(x) = µ1(x) otherwise,

and δ′
1 the derivation tree of ~c1

′ realizing (F ′
1, µ′

1). Let x′ be the vertex of Γ1 corresponding

to the out-tree of F1 containing u2, let Γ′
1 = Γ1 − (x, y) + (x′, y), and Γ′′

1 be obtained from

Γ′
1 by contracting (x′, y). Clearly, Γ′

1 is an out-branching of ~c1 and feasibility of Γ1 naturally

implies that also Γ′
1 is feasible for t. Hence Γ′′

1 is a feasible out-branching of ~c1
′ for t. The

derivation tree witnessing feasibility of Γ′′
1 (in place of δ0), its subtree δ′

1 (in place of δ1),
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and the annotated out-forest (F ′
1 = F1 + (u2, v1), µ′

1) contradict the optimality of our choice

of ~w0 and δ0 above. The proof is finished in this case (i).

Ad (ii), let the F2-label of u1 and u2 be i′. Let d3 be the parent node of d2 in δ1 and

(F3, µ3) be induced from (F1, µ1) at d3. By the optimality of our choice of d2, the operation

(cf. III) taking place at d3 must be an iteration of αi′,j′ adding an edge from u2 (or u2 would

still be active in (F3, µ3)). Let (u2, v) ∈ E(F3) \ E(F2) be this added edge. Moreover, since

u1 is still potentially active in (F1, µ1), there exists a vertex u3 ∈ V (F2) ∩ V (L′
1) of F2-label

i′ active in (F3, µ3), and (u3, v) ∈ E(G).

Let F ′
3 = F2 + (u3, v) and µ′

3 = µ3 except that µ′
3(u2) = µ3(u2) + 1, µ′

3(u3) = µ3(u3) − 1.

The (F ′
3, µ′

3) is an annotated out-forest in which u2 is still active. Now, if u3 is active in

(F1, µ1), then we set F ′
1 = F1 − (u2, v) + (u3, v) and µ′

1 accordingly. If u3 is not active

in (F1, µ1), then we pick any edge (u3, v′) ∈ E(F1) \ E(F3) and subsequently define F ′
1 =

F1 − (u2, v) + (u3, v) − (u3, v′) + (u2, v′) and µ′
1 = µ1. Again, it is routine to verify that F ′

1

is an out-forest in G in both cases. Let ~c1
′ be the weak signature of new (F ′

1, µ′
1) and δ′

1 the

derivation tree of ~c1
′ realizing (F ′

1, µ′
1).

Finally, we apply the computation run of the derivation tree δ0 (starting up from the

root of δ1) onto the top of δ′
1. In this way we obtain an out-branching Γ′

1of ~c1
′ that is an

appropriate local modification of Γ1. It follows from our choice of u2, u3 and their out-edges

that Γ′
1 is also feasible for t. Now we have an alternative optimal choice of ~w′

0 ∈ V and

δ′
0 which are witnessing feasibility of Γ′

1, and of (F ′
1, µ′

1) in place of (F1, µ1). This time,

however, d3 with δ′
1 contradicts the optimality of our previous choice of d2 (the distance

from the root of δ′
1 to d3 is smaller by one).

This contradiction closes case (ii), and so the proof is finished. ◭

◮ Question 14. Seeing the complications in the proof of Theorem 13, one may naturally

ask about a simpler solution of the problem. Say, cannot one come up with a better version

of Definition 9 that, together with an appropriate modification of Lemma 10, would directly

provide us with an XP algorithm? To be more formal, we ask whether there exists an

equivalence relation ∼ on the set of annotated out-forests in a k-labelled graph H such that

∼ refines ≈H (Definition 8) for every particular H, and

the set of nonempty classes of ∼ for particular H can be computed dynamically over a

k-expression of H in XP time.

4 Edge-disjoint paths

◮ Definition 15. In the Disjoint Paths problem, an input is a graph (or digraph) G and

k pairs of terminals (s1, t1), . . . , (sk, tk), where si, ti ∈ V (G) for 1 ≤ i ≤ k. The question

is whether there exists a collection of k pairwise vertex-disjoint paths P1, . . . , Pk in G such

that Pi connects si to ti, i = 1, . . . , k.

The Edge Disjoint Paths problem is defined analogously with requiring the paths

P1, . . . , Pk to be only pairwise edge-disjoint.

While the undirected Disjoint Paths variants are FPT solvable when parameterized

simply by the number of paths (terminal pairs) [18], the directed case is NP-complete already

for two paths in general. Hence it makes sense to look for suitable additional parameter-

izations of this problem, e.g. by clique-width. Note, on the other hand, that the Disjoint

Paths problem with the number of paths k on the input is para-NP-complete for graphs

of bounded clique-width [12], and the Edge Disjoint Paths problem with k on the input is

para-NP-complete even for graphs of tree-width two [15].
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◮ Definition 16. The monadic second order logic of one-sorted adjacency graphs, commonly

abbreviated as MSO1, has variables for graph vertices (say x, y, z . . . ) and for vertex sets

(X, Y, Z . . . ), common logic connectives and quantifiers, and a binary relational predicate

edge. When dealing with directed graphs, we write arc instead of edge. Note that quanti-

fication over sets of edges is not possible (unlike in the more general MSO2 language).

To give examples of MSO1, we express that X is a dominating set in a graph G as

δ(X) ≡ ∀y 6∈X ∃z ∈X edge(z, y), and that a digraph G is acyclic as α ≡ ∀X ∃y ∈X ∀z ∈

X¬ arc(z, y). The MinLOB problem, on the other hand, is not expressible in MSO1 (even

with constant number of leaves) since neither the Hamiltonian Path is. Interestingly, the

“dual” MaxLOB problem has an MSO1 definition since, e.g. [10], a solution to MaxLOB

is a complement to an out-connected dominating set in G.

Similarly, the (vertex) disjoint paths problem for a fixed k has a relatively easy description

in MSO1, e.g. [10]. For edge-disjoint paths with fixed k the situation is more complicated

– the inability to handle sets of edges seems to prevent us from expressing that two paths

(possibly sharing many vertices) are indeed edge disjoint. Yet, with a suitable trick we are

able to express the existence of k directed pairwise edge-disjoint paths in MSO1, and hence

also to show membership in FPT when parameterized by clique-width or rank-width.

◮ Theorem 17. Let G be a digraph, and (s1, t1), . . . , (sk, tk) be pairs of terminals in G.

There exists an MSO1 formula πk such that G |= πk(s1, . . . , sk, t1, . . . , tk) if, and only if,

the corresponding directed k edge-disjoint paths problem in G has a solution.

Proof. We start with an informal sketch of our approach. The initial idea is to focus on such

collections of pairwise edge-disjoint si–ti paths Pi, 1 ≤ i ≤ k, in G that lexicographically

minimize the length vector
(
len(P1), . . . , len(Pk)

)
. So each Pi is an induced path in the

subgraph G − E(P1 ∪ · · · ∪ Pi−1). Then, by standard means, we “identify” each si–ti path

Pi with its vertex set Xi, and express the existence of Pi as the nonexistence of a separation

between si, ti inside Xi of G − E(P1 ∪ · · · ∪ Pi−1). The difficult part of this solution is to

specify the edges E(Pj), 1 ≤ j < i. Formally, let

̺(x, y, Z, r) ≡ ∀Y
[
(x ∈ Y ∧ y 6∈ Y ) → (1)

∃z, z′ ∈ Z
(
z ∈ Y ∧ z′ 6∈ Y ∧ z 6= r 6= z′ ∧ arc(z, z′)

)]

be a formula stating that there exists a directed path from x to y on the vertices Z \ {r}

(note that {x, y} 6⊆ Z implies G 6|= ̺(x, y, Z, r)), and put

µ(s, t, Z, u, v) ≡ ̺(s, u, Z, v) ∧ ̺(v, t, Z, u) (2)

Claim. Let Z be a vertex subset of G such that s, t ∈ Z and the subgraph G[Z] ⊆ G induced

on the vertices Z contains a directed s–t-path. Then the following three statements hold:

(i) If G |= µ(s, t, Z, u, v), then {s, t, u, v} ⊆ Z.

(ii) If G |= ¬µ(s, t, Z, u, v), then no s–t-path in G[Z] may contain the edge (u, v).

(iii) Suppose Z is inclusion-minimal such that G[Z] contains a s–t-path P . Then such P is

unique and E(P ) is the set of those (u, v) ∈ E(G) such that G |= µ(s, t, Z, u, v).

For (i) the proof follows directly from the definition of µ(s, t, Z, u, v). To see that (ii)

also holds, it is enough to note that every edge (u, v) of every s–t-path in G[Z] satisfies

G |= µ(s, t, Z, u, v) by (1). Finally to prove (iii) let us suppose that (u, v) ∈ E(G[Z]) \ E(P )

(i.e., (u, v) points “backwards” on P due to minimality of Z). If in (2), for instance, G |=

̺(s, u, Z, v), then the corresponding s–u-path joined with the u–t-subpath of P would result
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in an s–t-path in G[Z] avoiding v, a contradiction to minimality of Z. This finishes the

proof of the claim.

Now, (iii) provides us with a criterion for identifying edges used by one particular s–t-

path. To make use of it in a k path problem, we have to identify edges used by the first path

P1 in G, then edges used by P2 in G − E(P1), then those used by P3 in G − E(P1 ∪ P2), etc.

For that we use the following trick which “replaces” the atomic predicate arc in (1) with

appropriate recursively defined (3) formulas αj where j = 1, . . . , k. For simplicity, we write

ŝj as a shortcut for the list s1, s2 . . . , sj , and analogically for t̂j , X̂j .

α1(u, v) ≡ arc(u, v) , (3)

αj+1(u, v, ŝj , t̂j , X̂j) ≡ αj(u, v, ŝj−1, t̂j−1, X̂j−1) ∧ ¬µj(sj , tj , Xj , u, v, ŝj−1, t̂j−1, X̂j−1)

where µj ≡ ̺j(sj , u, Xj , v, ŝj−1, t̂j−1, X̂j−1)∧̺j(v, tj , Xj , u, ŝj−1, t̂j−1, X̂j−1) analogically to

(2), and ̺j is replacing the arc predicate in ̺ (1) simply as follows

̺j(x, y, Z, r, ŝj−1, t̂j−1, X̂j−1) ≡ ∀Y
[
(x ∈ Y ∧ y 6∈ Y ) → (4)

∃z, z′ ∈ Z
(
z ∈ Y ∧ z′ 6∈ Y ∧ z 6= r 6= z′ ∧ αj(z, z′, ŝj−1, t̂j−1, X̂j−1)

)]
.

Writing just ̺′
j in place of previous ̺j “without r” (4), we obtain the solution

πk(ŝk, t̂k) ≡ ∃X̂k ̺′

1(s1, t1, X1) ∧ ̺′

2(s2, t2, X2, ŝ1, t̂1, X̂1) ∧

· · · ∧ ̺′

k(sk, tk, Xk, ŝk−1, t̂k−1, X̂k−1) .

It remains to prove that G |= πk(ŝk, t̂k) if, and only if, there exist k edge-disjoint si–ti

paths in G where i = 1, . . . , k. In one direction, suppose a particular choice of the vertex

sets X̂k satisfying πk on G. According to (3) and (4) this assumption means that, for each

i = 1, . . . , k by induction, there exists a directed si–ti path Pi on the vertices Xi such

that Pi completely avoids (ii) edges potentially used by the paths P1, . . . , Pi−1. Hence such

P1, . . . , Pk are pairwise edge-disjoint in G.

Conversely, among all collections of k pairwise edge-disjoint si–ti paths Pi in G, we select

one lexicographically minimizing the vector
(
len(P1), . . . , len(Pk)

)
. Then, clearly, each Xi =

V (Pi) for i = 1, . . . , k is inclusion-minimal inducing an si–ti path in G − E(P1 ∪ · · · ∪ Pi−1),

and so the claim (iii) applies here. Hence, by induction on i, we conclude from (3) that G |=

αi+1(u, v, ŝi, t̂i, X̂i) iff (u, v) ∈ E(G)\E(P1 ∪· · ·∪Pi). And since Pi+1 ⊆ G−E(P1 ∪· · ·∪Pi),

it follows from (4) that our selected sets X1, . . . , Xk satisfy πk(ŝk, t̂k) on G. ◭

In connection with [3]1 we finally obtain:

◮ Corollary 18. Both the undirected and directed edge-disjoint paths problems with fixed k

have a linear FPT algorithm on simple (di)graphs of bounded clique-width.

◮ Question 19. Notice that the MSO1 formula πk constructed in the proof of Theorem 17

has quantifier alternation depth growing with k. Therefore the worst-case runtime estimate

of Corollary 18 coming from [3] has a tower-exponential dependency on the parameter k.

The question thus is whether an MSO1 description of the k edge-disjoint paths problem is

possible with fixed quantifier alternation depth. (An ad-hoc estimate of the Myhill–Nerode

congruence classes of the problem suggests this might be true.)

1 Note that [3] considered only undirected graphs, but the same results also hold for digraphs, cf. [14, 8].
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