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Abstract

We obtain new lower and upper bounds for the maximum multiplicity of some weighted, and

respectively non-weighted, common geometric graphs drawn on n points in the plane in general

position (with no three points collinear): perfect matchings, spanning trees, spanning cycles

(tours), and triangulations.

(i) We present a new lower bound construction for the maximum number of triangulations a

set of n points in general position can have. In particular, we show that a generalized double chain

formed by two almost convex chains admits Ω(8.65n) different triangulations. This improves the

bound Ω(8.48n) achieved by the previous best construction, the double zig-zag chain studied by

Aichholzer et al.

(ii) We present a new lower bound of Ω(11.97n) for the number of non-crossing spanning

trees of the double chain composed of two convex chains. The previous bound, Ω(10.42n), stood

unchanged for more than 10 years.

(iii) Using a recent upper bound of 30n for the number of triangulations, due to Sharir and

Sheffer, we show that n points in the plane in general position admit at most O(68.664n) non-

crossing spanning cycles.

(iv) We derive exponential lower bounds for the number of maximum and minimum weighted

geometric graphs (matchings, spanning trees, and tours). It was known that the number of

longest non-crossing spanning trees of a point set can be exponentially large, and here we show

that this can be also realized with points in convex position. For points in convex position

we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial

characterization of the longest tours, which leads to an O(n log n) time algorithm for computing

them.
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638 Bounds on geometric graphs

1 Introduction

Let P be a set of n points in the plane in general position, i.e., no three points lie on a

common line. A geometric graph G = (P, E) is a graph drawn in the plane so that the vertex

set consists of the points in P and the edges are drawn as straight line segments between

points in P . All graphs we consider in this paper are geometric graphs. We call a graph

non-crossing if edges intersect only at common endpoints.

It is a fundamental question to determine the maximum number of non-crossing geometric

graphs on n points in the plane. We follow common conventions (see e.g., [19]) and denote by

pg(P ) the number of non-crossing (plane) graphs on P , and by pg(n) = max|P |=n pg(P ) the

maximum number of non-crossing graphs an n-element point set can admit. Analogously, we

introduce shorthand notation for the maximum number of triangulations, perfect matchings,

spanning trees, and spanning cycles (i.e., Hamiltonian cycles); see Table 1.

Abbr. Graph class Lower bound Upper bound

pg(n) graphs Ω(41.18n) [1, 13] O(207.85n) [14, 21]

cf(n) cycle-free graphs Ω(12.23n) [new, Thm. 2] O(164.49n) [14, 21]

pm(n) perfect matchings Ω∗(3n) [13] O(10.07n) [19]

st(n) spanning trees Ω(11.97n) [new, Thm. 2] O(146.37n) [14, 21]

sc(n) spanning cycles Ω(4.64n) [13] O(68.664n) [new, Thm. 3]

tr(n) triangulations Ω(8.65n) [new, Thm. 1] O(30n) [21]

Table 1 Classes of non-crossing geometric graphs, current best upper and lower bounds.

In the past 30 years numerous researchers have tried to estimate these quantities. In

a pivotal result, Ajtai et al. [2] showed that pg(n) = O(cn) for an absolute, but very large

constant c > 0. The constant c has been improved several times since then, the best bound

today is c < 207.85, which follows form the combination of the result of Sharir and Sheffer [21]

with the result of Hoffmann et al. [14]. Interestingly, this upper bound, as well as the currently

best upper bounds for st(n), sc(n), and cf(n), are derived from upper bounds on tr(n).

This underlines the importance of the bound for tr(n) in this setting. For example, the

best known upper bound for st(n) is the combination of tr(n) ≤ 30n [21] with the ratio

sc(n)/tr(n) = O∗ (4.879n) [14]; see also previous work [17, 18, 19, 20]. To our knowledge,

the only upper bound derived via a different approach is for the number of perfect matchings

by Sharir and Welzl [19], pm(n) = O(10.07n).

So far, we recalled various upper bounds on the maximum number of geometric graphs

in certain classes. In this paper we mostly conduct our offensive from the other direction,

on improving the corresponding lower bounds. Lower bounds for unweighted non-crossing

graph classes were obtained in [1, 7, 13]. García, Noy, and Tejel [13] were the first to

recognize the power of the double chain configuration in establishing good lower bounds

for the maximum number of matchings, triangulations, spanning cycles and trees. It was

widely believed for some time that the double chain gives asymptotically the highest number

of triangulations, namely Θ∗(8n). This was until 2006, when Aichholzer et al. [1] showed

that another configuration, the so-called double zig-zag chain, admits Θ∗(
√

72
n
) = Ω(8.48n)

triangulations1. In this paper we further exploit the power of almost convex polygons and

establish a new lower bound tr(n) = Ω(8.65n). For matchings, spanning cycles, and plane

graphs, the double chain still holds the current record.

1 We use the Θ∗, O∗, Ω∗ notation for the asymptotic growth of functions ignoring polynomial factors.
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Less studied are multiplicities of weighted geometric graphs. The weight of a geometric

graph is the sum of its (Euclidean) edge lengths. This leads to the question how many

graphs of a certain type (e.g., matchings, spanning trees, or tours) with minimum or

maximum weight can be realized on an n-element point set. The notation is analogous; see

Table 2. Dumitrescu [8] showed that the longest and shortest matchings can have exponential

multiplicity, 2Ω(n), for a point set in general position. Furthermore, the longest and shortest

spanning trees can also have multiplicity of 2Ω(n). Both bounds count explicitly geometric

graphs with crossings; however these minima are automatically non-crossing. The question

for the maximum multiplicity for non-crossing geometric graphs remained open for most of

the geometric graph classes. Since we do not have any upper bounds that are better than

those for the corresponding unweighted classes, the “upper bound” column is missing from

Table 2.

Abbr. Graph class Lower bound

pm
min

(n) shortest perfect matchings Ω(2n/4) [8]

pm
max

(n) longest perfect matchings Ω(2n/4) [new, Theorem 4]

stmin(n) shortest spanning trees Ω(2n/2) [8]

stmax(n) longest spanning trees Ω(2n) [new, Theorem 7]

scmin(n) shortest spanning cycles Ω(2n/3) [new, Theorem 8]

scmax(n) longest spanning cycles Ω(2n/3) [new, Theorem 5]

Table 2 Classes of weighted non-crossing geometric graphs: exponential lower bounds.

Our results. Due to space constraints, some of the proofs are omitted from this extended

abstract (all proofs are available in the full version of this paper [10]).

(I) A new lower bound, Ω(8.65n), for the maximum number of triangulations a set of n

points can have. We first re-derive the bound given by Aichholzer et al. [1] with a simpler

analysis, which allows us to extend it to more complex point sets. Our estimate might be

the best possible for the type of construction we consider.

(II) A new lower bound, Ω(11.97n), for the maximum number of non-crossing spanning trees

a set of n points can have. This is obtained by refining the analysis of the number of

such trees on the “double chain” point configuration. The previous bound was Ω(10.42n).

A slight modification of the construction improves also the lower bound for cycle-free

non-crossing graphs. In particular, we improve the old bound of Ω(11.62n) to Ω(12.23n),

(III) A new upper bound, O(68.664n), for the number of non-crossing spanning cycles on

n points in the plane. This improves the latest upper bound of 70.21n obtained by a

combination of the results of Buchin et al. [4] and a recent upper bound of 30n on the

number of triangulations by Sharir and Sheffer [21].

(IV) Bounds on the maximum multiplicity of various weighted geometric graphs (weighted

by Euclidean length). We show that the maximum number of longest non-crossing perfect

matchings, spanning trees, spanning cycles, as well as shortest tours are all exponential

in n. We also derive tight bounds, as well as a combinatorial characterization of longest

tours over points in convex position. This yields an O(n log n) algorithm to compute a

longest tour for such sets.

1.1 Preliminaries

Asymptotics of multinomial coefficients. Denote by H(q) = −q log q − (1−q) log(1−q)

the binary entropy function, where log stands for the logarithm in base 2 (by convention,

STACS’11



640 Bounds on geometric graphs

0 log 0 = 0). For a constant 0 ≤ α ≤ 1, the following estimate can be easily derived from

Stirling’s formula for the factorial:

(

n

αn

)

= Θ(n−1/22H(α)n), (1)

We also need the following bound on the sum of binomial coefficients; see [3] for a proof

and [9, 11] for an application. If 0 < α ≤ 1
2 is a constant,

k≤αn
∑

k=0

(

n

k

)

≤ 2H(α)n. (2)

Define similarly the generalized entropy function of k parameters α1, . . . , αk, satisfying

k
∑

i=1

αi = 1, α1, . . . , αk ≥ 0, as Hk(α1, . . . , αk) = −
k
∑

i=1

αi log αi. (3)

Clearly, H(q) = H2(q, 1 − q). Recall, the multinomial coefficient

(

n

n1, n2, . . . , nk

)

=
n!

n1!n2! . . . nk!
,

where
∑k

i=1 ni = n, counts the number of distinct ways to permute a multiset of n elements,

k of which are distinct, with ni, i = 1, . . . , k, being the multiplicities of each of the k distinct

elements.

Assuming that ni = αin, i = 1, . . . , k, for constants α1, . . . , αk, satisfying (3), again by

using Stirling’s formula for the factorial, one gets an expression analogous to (1):

(

n

n1, n2, . . . , nk

)

= Θ(n−(k−1)/2) ·
(

k
∏

i=1

α−αi

i

)n

= Θ(n−(k−1)/2) · 2Hk(α1,...,αk)n. (4)

Notations and conventions. For a polygonal chain P , let |P | denote the number of

vertices. If 1 < c1 < c2 are two constants, we frequently write Ω∗(cn
2 ) = Ω(cn

1 ). We also write

f(n) ∼ g(n) whenever f(n) = Θ(g(n)).

2 Lower bound on the maximum number of triangulations

Following the notation from [15], we denote by P (n, kr) the class of almost convex polygons

with n vertices, formed by concatenating r flat reflex chains, each having k interior vertices.

For example, P (n, 0r) is the class of convex polygons with n = r vertices. Note that, for

r ≥ 3 and k ≥ 0, every polygon in P (n, kr) has n = r(k + 1) vertices, r of which are convex.

See Fig. 1 for a small example. To further simplify notation, we denote by P (n, kr) any

polygon in this class; note they are all equivalent in the sense that they have the same

visibility graph.

In establishing our new bound on the maximum number of triangulations, we go through

the following steps: We first describe the double zig-zag chain from [1] in our framework,

and re-derive the Θ∗(
√

72
n
) bound of [1] for the number of its triangulations. Our simpler

analysis extends to some variations of the double zig-zag chains, and leads to a new lower

bound of tr(n) = Ω(8.65n).

Two x-monotone polygonal chains L and U are said to be mutually visible if every pair of

points p ∈ L and q ∈ U , are visible from each other. Let us call D(n, kr) the generalized double
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Figure 1 Two (flat) mutually visible copies of P (18, 26) that form D(36, 212). Two consecutive

hull vertices of P (18, 26) with a reflex chain of two vertices in between are indicated in both the

upper and the lower chain.

chain of n points made up of the set of points in two mutually visible copies of P (n/2, kr),

each with n/2 = r(k + 1) vertices, with opposite concavities as in Fig. 12. Generalized double

chains are a family of point configurations, containing, among others, the double chain and

double zig-zag chain configurations. In particular, D(n, 1r) is the double zig-zag chain used

by Aichholzer et al. [1].

◮ Theorem 1. The point set D(n, 3r) with n = 8r points admits Ω(8.65n) triangulations.

Proof. We start by estimating the number of triangulations of P (n, kr). Denote this number

by t(n, kr) = tr(P (n, kr)). Recall that P (n, kr) has n = r(k + 1) vertices. According to [15,

Theorem 3],

t(n, kr) ∼
(

1 + k/2

2k

)r

· t(n) ∼
(

k + 2

2k+1

)r

· 4r(k+1) =
(

(k + 2)
1

k+1 · 2
)n

.

In particular,

for k = 1, t(n, 1r) ∼ (2
√

3)n =
√

12
n
. This estimate was used for counting triangulations

in the construction D(n, 1r) with Ω(8.48n) triangulations from [1].

for k = 2, t(n, 2r) ∼ (25/3)n.

for k = 3, t(n, 3r) ∼ (51/4 · 2)n.

for k = 4, t(n, 4r) ∼ (61/5 · 2)n.

The following estimate is used in all our triangulation bounds. Consider two mutually

visible polygonal chains, L and U , with m vertices each (L is the lower chain and U is

the upper chain). As in the proof of [13, Theorem 4.1], the region between the two chains

consists of 2m − 2 triangles, such that exactly m − 1 triangles have an edge along L and the

remaining m − 1 triangles have an edge adjacent to U . It follows that the number of distinct

triangulations of this middle region is

(

2m − 2

m − 1

)

= Θ(m−1/2 · 4m). (5)

The old Ω(8.48n) lower bound in a new perspective. We estimate from below the

number of triangulations of D(n, 1r) as follows. Recall that |L| = |U | = n/2 = 2r. Include

all edges of L and U in any of the triangulations we construct. Now construct different

triangulations as follows. Independently select a subset of α1r short edges of conv(U) and

2 For convenience, an extra vertex is added to each chain to complete the last group in the figure.

STACS’11



642 Bounds on geometric graphs

similarly, a subset of α1r short edges of conv(L). Here α1 ∈ (0, 1) is a constant to be

determined later. According to (1), this can be done in

(

r

α1r

)

= Θ(r−1/2 · 2H(α1)r)

ways in each of the two chains. Include these edges in the triangulation. Observe that

after adding these short edges the middle region between the (initial) chains L and U is

sandwiched between two mutually visible shorter chains, say L′ ⊂ L and U ′ ⊂ U , where

|L′| = |U ′| = 2r − α1r = (2 − α1)r. (6)

Triangulate this middle region in all possible ways, as outlined in the paragraph above (5).

Let N denote the total number of triangulations of D(n, 1r) obtained in this way. By the

above estimate, we have t(n, 1r) ∼ (2
√

3)n. Combining this with (5) and (6),

N = Ω∗

(

[

(2
√

3)2r2H(α1)r
]2

4(2−α1)r

)

= Ω∗

(

[

22r3r2(2−α1)r2H(α1)r
]2
)

=

= Ω∗

(

[

22 · 3 · 2(2−α1)2H(α1)
]2r
)

= Ω∗

(

[

24−α1+H(α1) · 3
]n/2

)

= Ω∗ (an) ,

where

a =
[

24−α1+H(α1) · 3
](1/2)

.

By setting α1 = 1/3, as in [1], this yields a = 6
√

2 = 8.485 . . ., and N = Ω∗(8.485n) =

Ω(8.48n).

Applying a similar analysis for a generalized double chain with reflex chains of length 3

implies Theorem 1. The details are in the full paper [10]. ◭

3 Lower bound on the maximum number of non-crossing spanning

trees and forests

In this section we derive a new lower bound for the number of non-crossing spanning trees

on the double-chain D(n, 0r), hence also for the maximum number of non-crossing spanning

trees an n-element planar point set can have. The previous best bound, Ω(10.42n), is due to

Dumitrescu [8]. By refining the analysis of [8] we obtain a new bound Ω(11.97n).

◮ Theorem 2. For the double chain D(n, 0r), we have

Ω(11.97n) < st(D(n, 0r)) < O(24.68n), and

Ω(12.23n) < cf(D(n, 0r)) < O(24.68n).

These bounds imply that st(n) = Ω(11.97n) and cf(n) = Ω(12.23n).

Instead of spanning trees, we count (spanning) forests formed by two trees, similarly

to [8]. One of the trees will be associated with the lower chain L and is called lower tree,

the other tree will be associated with the upper chain U and is called upper tree. Since the

two trees can be connected in at most O(n2) ways, it is enough the bound the number of

two trees. Fig. 2 shows an example. We count only special kinds of forests: no edge of the

lower tree connects two vertices of the upper chain, and similarly, no edge of the upper tree

connects two vertices of the lower chain. We call the connected components of the edges

between U and L bridges. For the class of forests we consider, bridges are subtrees of the
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(2, 2) ↑

(2, 1) ↑

(1, 1) ↓

(2, 3) ↑

Figure 2 A double chain with lower and upper tree and four bridges.

lower or the upper tree. A bridge is called an (i, j)-bridge if it has i vertices in L and j

vertices in U . Every bridge is part of either the upper or the lower tree. We say that in the

first case the bridge is oriented upwards and in the latter case it is oriented downwards. Since

edges cannot cross, the bridges have a natural left-to-right order. Fig. 2 shows four bridges,

the first bridge is an upward oriented (2, 2)-bridge. We consider only bridges (i, j), with

1 ≤ i, j ≤ z, for some fixed positive integer z. For z = 1, our analysis coincides with the one

in [8], and we rederive the lower bound of Ω(10.42n) found there. Successive improvements

will be achieved by considering z = 2, 3, 4.

Let m = n/2 be the number of points on one chain. The distribution of bridges is specified

by a set of parameters αij , to be determined later, where the number of (i, j)-bridges is αijm.

To simplify further expressions we introduce the following wildcard-notation:

αi∗ =
z
∑

k=1

αik, α∗j =
z
∑

k=1

αkj , and α∗∗ =
z
∑

k=1

α∗k =
z
∑

k=1

αk∗.

A vertex is called a bridge vertex, if it is part of some bridge, and it is a tree vertex otherwise.

We denote by αLm the number of bridge vertices along L, and by αU m the number of bridge

vertices along U , we have

αL =

z
∑

k=1

kαk∗, and αU =

z
∑

k=1

kα∗k.

To count the forests we proceed as follows. We first count the distributions of the vertices

that belong to bridges on the lower (NL) and upper chain (NU ). We then count the different

ways how bridges can be realized (Nbridges) and how the bridges can be connected to the two

trees (Nlinks). Finally, we estimate the number of the trees within the two chains (Ntrees).

All these numbers are parameterized by the variables αij .

Consider the feasible locations of bridge vertices at the lower chain. We have
(

m
αLm

)

choices to select the bridge vertices in L. Every bridge vertex belongs to some (i, j)-bridge.

The vertices of the bridges cannot interleave, thus we can describe the configuration of

bridges by a sequence of (i, j) tuples that denotes the appearance of the α∗∗m bridges from

left to right on L. There are
(

α∗∗m
α11m,α12m,...,αzzm

)

such sequences. This give us a total of

NL :=

(

m

αLm

)(

α∗∗m

α11m, α12m, . . . , αzzm

)

= Θ∗
(

2
H(αL)m+α∗∗H(z2)(α11/α∗∗,...,αzz/α∗∗)m

)

such “configurations” of bridge vertices along L.

STACS’11



644 Bounds on geometric graphs

We now determine how many options we have to place the bridge vertices on U . Since

we have already specified the sequence of the (i, j)-bridges at the lower chain, all we can do

is to select the bridge vertices in U . This gives

NU :=

(

m

αU m

)

= Θ∗
(

2H(αU )m
)

possibilities for the configuration on U .

We now study in how many ways the bridges can be added to the two trees. Since all

bridges are subtrees, we can link one of the bridge vertices with the lower or upper tree.

From this perspective the whole bridge acts like a super-node in one of the trees. The

orientation of the bridges determine which tree they are glued to: upwards bridges to the

upper tree, downwards bridges to the lower tree. For every pair (i, j) we orient half of the

(i, j)-bridges upwards and half of them downwards. To glue the bridges to the trees we have

to specify a vertex that will be linked to one of the trees. Depending on the orientation of

the (i, j)-bridge, we have i candidates for a downwards oriented bridge and j candidates for

an upward oriented bridge. In total we have

Nlinks :=
∏

i,j

(

αi,jm

αi,jm/2

)

(

iαij/2jαij/2
)m

=
∏

i,j

Θ∗ (2αi,jm) (ij)
αij m

2 = Θ∗ (2α∗∗m)
∏

i,j

(ij)
αij m

2

ways to link the bridges with the trees.

Until now we have specified which vertices belong to which type of bridges, the orientation

of the bridges, and the vertex where the bridge will be linked to its tree. It remains to count

the number of ways to actually “draw” the bridges. Let us consider an (i, j)-bridge. All edges

have to go from L to U and the bridge has to be a tree. The number of such trees equals the

number of triangulations of a polygon with point set {(k, 0) | 0 ≤ k ≤ i}∪{(k, 1) | 0 ≤ k ≤ j}.

By deleting the edges along the horizontal lines y = 0 and y = 1, we define a bijection

between these triangulations and the combinatorial types of (i, j)-bridges. The number of

triangulations is now easy to express similarly to Equation (5): We have i+j−2 triangles, and

each triangle is adjacent to a horizontal edge along either y = 0 or y = 1, where exactly i − 1

triangles are adjacent to line y = 0. In total we have Bij :=
(

i+j−2
i−1

)

different triangulations

and therefore we can express the number of different bridges by

Nbridges =
(

∏

ij

B
αij

ij

)m

.

00111 01011 01101 01110 10011

10101 10110 11001 11010 11100

Figure 3 All B34 = 10 combinatorial types of (3, 4)-bridges. If an edge differs form its predecessor

at the top we write a 0, otherwise a 1. We obtain a bijection between the bridges and sequences

with three 1s and two 0s.

Observe that the upper and the lower trees are trees on a convex point set. By considering

the bridges as super-nodes, we treat the lower chain as a convex chain of nL vertices. Similarly,

we think of the upper chain as a convex chain with nU vertices. We have

nU =
(

1 −
n
∑

k=1

2k − 1

2
αk∗

)

m, and nL =
(

1 −
n
∑

k=1

2k − 1

2
α∗k

)

m.
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(Notice that the bridges take away all of its vertices, except one, depending on the orientation).

Since the number of non-crossing spanning trees on an n-element convex point set equals

Θ∗((27/4)n) [12], the number of spanning trees within the two chains is given by

Ntrees = O∗
((

27/4
)nL+nU

)

.

To finish our analysis we have to find the optimal parameters αij such that

st(D(n, 0r)) = Ω∗ (NL · NU · Nbridges · Nlinks · Ntrees) (7)

is maximized. The details are presented in the full paper [10].

4 Upper bound for the number of non-crossing spanning cycles

Newborn and Moser [16] asked what is the maximum number of non-crossing spanning

cycles for n points in the plane, and they proved Ω((101/3)n) ≤ sc(n) ≤ O(6n⌊ n
2 ⌋!). The

first exponential upper bound sc(n) ≤ 1013n was obtained by Ajtai et al. [2], and has been

followed by a series of improved bounds (e.g., see [4, 7, 19], a more comprehensive history

can be found in [6]). Currently, the best known lower bound 4.462n ≤ sc(n) is by García et

al. [13]. The previous best upper bound O(70.21n) is obtained by combining the upper bound

30n/4 of Buchin et al. [4] for the number of spanning cycles in a triangulation with a new

upper bound of tr(n) ≤ 30n by Sharir and Sheffer [21].

The bound by Buchin et al. [4] cannot be improved much further, since they also present

triangulations with Ω(2.0845n) spanning cycles. However, the bound for sc(n) still seems

rather weak since it potentially counts some spanning cycles many times. To overcome this

inefficiency, we use the notion of pseudo-simultaneously flippable edges (ps-flippable edges for

short), introduced in [14]. A set F of edges in a triangulation is ps-flippable if after deleting

all edges in F , the bounded faces are convex. One can obtain a lower bound for the support

of a spanning cycle C in terms of the number of ps-flippable edges that are not in C.

◮ Theorem 3. We have sc(n) = O (68.664n) .

The proof is available in the full paper [10].

5 Weighted geometric graphs

Longest perfect matchings. Let n be even, and consider perfect matchings on a set of

n points in the plane. It is easy to construct n-element point sets (no three of which are

collinear) with an exponential number of longest matchings: [8] gives constructions with

Ω(2n/4) such matchings. Moreover, the same lower bound can be achieved with yet another

restriction, convex position, imposed on the point set; see [8]. Here, we present constructions

with an exponential number of maximum (longest) non-crossing matchings.

◮ Theorem 4. For every even n, there exist n-element point sets with at least 2⌊n/4⌋ longest

non-crossing perfect matchings. Consequently, pmmax(n) = Ω(2n/4).

Proof. (sketch) Assume first that n is a multiple of 4. Let S4 = {a, b, c, d} be a 4-element

point set such that segment ab is vertical, cd lies on the orthogonal bisector of ab (hence,

|ac| = |bc| and |ad| = |bd|), |ab| = |cd| = 1
n and min{|ac|, |ad|} = |ac| = |bc| = 2n. Then S4

has two maximum matchings, {ac, bd} and {ad, bc}, each of which has length at least 4n.

Let the n-element point set P be the union of n/4 translated copies of S4 lying in disjoint
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horizontal strips such that the copies of a are almost collinear, all the copies of points a

and b lie in a disk of unit diameter, and all the copies of points c and d lie in a disk of unit

diameter; see Fig. 4.

a

b

c d

a

b
c d

Figure 4 Left: Two possible maximum matchings for the point set S4 = {a, b, c, d}. Right: A set

of n = 16 points that admit 24 maximum non-crossing perfect matchings.

If we combine the maximum matchings of all copies of S4, then we obtain 2n/4 non-

crossing perfect matchings of P . All these matchings have the same length, which is at least
n
4 · 4n = n2. In the full paper [10], we show that this is the maximum possible length of a

non-crossing perfect matching of P . ◭

Longest non-crossing tours. By Theorem 8, the maximum number of shortest non-

crossing spanning cycles on n points is exponential in n. We show here that the maximum

number of longest non-crossing spanning cycles is also exponential in n.

◮ Theorem 5. Let scmax(n) denote the maximum number of longest non-crossing spanning

cycles that an n-element point set can have. Then we have scmax(n) = Ω(2n/3).

Proof. (sketch) For every k ∈ N, we construct a set Q of 4k + 1 points that admits

2k = Ω(2n/4) longest non-crossing tours. We start by constructing an auxiliary set P of

2k points. The auxiliary point set P may contain collinear triples, however our final set Q

does not. Recall that two segments cross if and only if their relative interiors intersect. We

construct P = {ci, xi : i = 1, 2, . . . , k} with the following properties: (i) for every xi, the

farthest point in P is ci; (ii) the perfect matching M = {cixi : i = 1, 2, . . . , k} is non-crossing;

and (iii) the convex hull of P is conv(P ) = (x1, c1, c2, . . . , ck). Note that property (i) implies

that M is the maximum matching of P .

For k ∈ N, let α = π
3k . We construct P = {ci, xi : i = 1, . . . , k} iteratively. During

the iterative process, we maintain the properties that |xici| > maxj<i |xicj | and |xi+1ci| >

maxj<i |xi+1cj |. Initially, let c1 = (0, 0), x1 = (2, 0), and x2 = (2 − 1
k , 0). Let ~ℓ1 be a ray

emitted by x1 and incident to c1. Refer to Fig. 5. If ci, xi and xi+1 are already defined,

we construct points ci+1 and xi+2 (in the last iteration, only ci+1) as follows. Let ~ℓi+1

be a ray emitted by xi+1 such that ∠(~ℓi+1, ~ℓi) = α. Compute the intersections of ray
~ℓi+1 with the circle centered at xi of radius |xici| and the circle centered at xi+1 of radius

|xi+1ci|. Let ci+1 ∈ ~ℓi+1 be the midpoint of the segment between these two intersection

points. This choice guarantees that |xi+1ci+1| > |xi+1cj | and |xjci+1| < |xjcj | for all j ≤ i.

Now let xi+2 ∈ ci+1xi+1 be a point at distance at most 1
k from xi+1 such that we have

|xi+2ci+1| > |xi+2cj | for all j ≤ i. This completes the description of P .

Note that |xixi+1| ≤ 1
k , and so the points x1, . . . , xk lie in a disk of diameter 1. Hence,

for every point xi, the farthest point in P is in {cj : j = 1, . . . , k}. By the above construction,

the farthest point from xi in {cj : j = 1, . . . , k} is ci. This proves that P has property (i). It

is easy to verify that P has properties (ii) and (iii), as well.

We now construct the point set Q based on P . Let δ > 0 be a sufficiently small

constant. For every segment cixi we construct a skinny deltoid ∆i = (ai, bi, ci, di), see
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c1 x1x2

~ℓ2 c2

x3

c3 ai

bici
di

∆i

~ℓ3
xi

a1
~ℓ1

Figure 5 Left: The auxiliary point set P for k = 3. Right: A long and skinny deltoid ∆i =

(ai, bi, ci, di).

Fig. 5, such that ai ∈ cixi is at distance δ from xi, we have |bici| = |cidi| = δ, and

|aibi| = |aici| = |aidi| = |cixi| − δ. Since the segments cixi are pairwise non-crossing and

δ > 0 is small, the deltoids ∆i are pairwise interior disjoint. Let Q be the set of vertices of

all deltoids ∆i, i = 1, . . . , k, and the point x1. Since conv(P ) = (c1, c2, . . . , ck, x1), we have

conv(Q) = (b1, c1, d1, b2, c2, d2, . . . , bk, ck, dk, x1), and the points {ai : i = 1, . . . , k} lie in the

interior of conv(Q). If δ > 0 is sufficiently small, then the farthest points from ai in Q are bi,

ci, and di, for every i = 1, 2, . . . , k.

Every non-crossing tour of Q visits the convex hull vertices in the cyclic order determined

by conv(Q). We obtain a non-crossing tour by replacing some edges of conv(Q) with non-

crossing paths visiting the points lying in the interior of conv(Q). If we replace either edge bici

or cidi with the path (bi, ai, ci) or (ci, ai, di), respectively, for every i = 1, 2, . . . , k, then we

obtain a tour. Let H be the set of 2k tours obtained in this way. These tours are non-crossing,

since for every i, we exchange an edge of ∆i with a path lying in ∆i, and the deltoids ∆i are

interior disjoint. The tours in H have the same length, L = |conv(Q)| − kδ + 2
∑k

i=1 |aici|,
since |aibi| = |aidi| = |aici|. In the full paper [10], we show that this length is maximal over

all non-crossing tours (cycles).

To obtain the asserted bound, we use a skinny hexagon (instead of deltoid ∆i) with five

equidistant vertices on a circle centered at ai. We now have four possible ways to insert each

ai into the tour, which implies scmax(n) = Ω(4n/6) = Ω(2n/3). ◭

Typically for the longest matching, spanning tree or spanning cycle, one expects to see

many crossings. Somewhat surprisingly, we show that this is not always the case.

◮ Corollary 6. For every even n ≥ 2, there exists an n-element point set (in general position)

whose longest perfect matching is non-crossing.

Longest spanning trees and shortest spanning cycles. We state without proof our

results on the maximum multiplicity stmax(n) of the longest crossing-free spanning tree on

points, and the maximum multiplicity scmin(n) of the shortest non-crossing Hamiltonian

cycle on n points.

◮ Theorem 7. The vertex set of a regular convex n-gon admits Ω(2n) longest non-crossing

spanning trees. Consequently, stmax(n) = Ω(2n).

◮ Theorem 8. Let scmin(n)denote the maximum number of shortest tours that an n-element

point set can have.

(i) If S is a set of n ≥ 3 points in convex position, then scmin(S) = 1.

(ii) For points in general position, we have scmin(n) ≥ 2⌊n/3⌋.
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Recall that a geometric graph G = (V, E) is called a (geometric) thrackle, if any two

edges in E either cross or share a common endpoint.

◮ Theorem 9. Let tcmax(n) denote the maximum number of longest tours that an n-element

point set in convex position can have. For n odd we have tcmax(n) = 1 and the (unique)

longest tour is a thrackle. For n even we have tcmax(n) = n/2.
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