
HAL Id: hal-00573644
https://hal.science/hal-00573644

Submitted on 5 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Complexity of Weighted Boolean #CSP Modulo k

Heng Guo, Sangxia Huang, Pinyan Lu, Mingji Xia

To cite this version:
Heng Guo, Sangxia Huang, Pinyan Lu, Mingji Xia. The Complexity of Weighted Boolean #CSP Mod-
ulo k. Symposium on Theoretical Aspects of Computer Science (STACS2011), Mar 2011, Dortmund,
Germany. pp.249-260. �hal-00573644�

https://hal.science/hal-00573644
https://hal.archives-ouvertes.fr

The Complexity of Weighted Boolean #CSP

Modulo k

Heng Guo1, Sangxia Huang2, Pinyan Lu3, and Mingji Xia4

1 University of Wisconsin-Madison

Madison, WI 53706, USA

hguo@cs.wisc.edu

2 KTH — Royal Institute of Technology

Stockholm, Sweden

sangxia@csc.kth.se

3 Microsoft Research Asia

Beijing, China

pinyanl@microsoft.com

4 Institute of Software, Chinese Academy of Sciences

Beijing 100190, China

xmjljx@gmail.com

Abstract

We prove a complexity dichotomy theorem for counting weighted Boolean CSP modulo k for

any positive integer k > 1. This generalizes a theorem by Faben for the unweighted setting. In

the weighted setting, there are new interesting tractable problems. We first prove a dichotomy

theorem for the finite field case where k is a prime. It turns out that the dichotomy theorem for

the finite field is very similar to the one for the complex weighted Boolean #CSP, found by [Cai,

Lu and Xia, STOC 2009]. Then we further extend the result to an arbitrary integer k.

1998 ACM Subject Classification F.2 [Theory of Computation] Analysis of Algorithms and

Problem Complexity

Keywords and phrases #CSP, dichotomy theorem, counting problems, computational complex-

ity

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.249

1 Introduction

The complexity of counting problems is a fascinating subject. Valiant defined the class #P

to capture most of these counting problems [21]. Several other related complexity classes

are also well studied. One example is the ⊕P class, which consists of language L where

there is a polynomial time nondeterministic Turing machine that on input x ∈ L has an odd

number of accepting computations, and on input x 6∈ L has an even number of accepting

computations [20, 18]. This class ⊕P can also be formulated as computing the parity of

counting problems. In general, for any integer k, we may consider the counting problems

modulo k, and the corresponding complexity class is denoted by #kP. The class ⊕P is in

fact #2P.

Beyond the complexity of individual problems, there has been a great deal of interest in

finding complexity dichotomy theorems which state that for a wide class of counting problems,

every problem in the class is either computable in polynomial time (tractable) or hard (either

NP-hard or #P-hard) [13, 12, 6, 15]. Such dichotomies do not hold without restrictions [17],

assuming that the larger complexity class strictly contains P. The restrictions for which

© Heng Guo, Sangxia Huang, Pinyan Lu and Mingji Xia;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 249–260

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.249
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

250 The Complexity of Weighted Boolean #CSP Modulo k

dichotomy theorems are known can be framed in terms of local constraints, most importantly,

Constraint Satisfaction Problems (CSP) [19, 10, 3, 4, 5, 11, 9, 14]. In this paper we address

weighted #CSP problems, modulo any integer k, denoted by #kCSP.

Here we give a brief description of #kCSP. Let F be a set of functions, where each

F ∈ F is a function mapping Boolean variables to a value. The weighted #CSP problem

#CSP(F) is defined as follows: The input is a finite set of constraints on Boolean variables

x1, x2, . . . , xn of the form F (xi1
, xi2

, . . . , xik
), where F ∈ F . The output is

∑

x1,x2,...,xn∈{0,1}

∏

F ∈F

F (xi1
, xi2

, . . . , xik
).

If each F takes values 0, 1, then this counts the number of assignments “satisfying” all the

Boolean constraints. Generally speaking, functions F ∈ F could take arbitrary values. What

we consider, #kCSP, is the case that all F take integer values and the output is computed

modulo k.

For #CSP, the complexity dichotomy theorem was first obtained for the unweighted

case [10], and was later generalized to non-negative values [11]. Cai, Lu and Xia proved a

dichotomy theorem for Boolean #CSP, where functions F ∈ F take arbitrary complex val-

ues [8]. Independently, a dichotomy theorem for real weighted functions was also obtained[2].

In these proofs, there are three extensively used reduction techniques: (1) Gadget construc-

tion, (2) polynomial interpolation, and (3) holographic transformation. As pointed out by

Valiant [23], for finite fields, holographic transformations and interpolation both appear to

offer less flexibility than they do for general counting problems.

There do exist several problems for which counting the number of solutions is #P-complete

whereas computing it modulo some integer k is polynomial time computable. One prime

example is computing the permanent of a 0/1 matrix, which is #P-complete [20]. The parity

version of this problem corresponds to computing the permanent modulo 2, which is the

same as the determinant modulo 2, and is therefore computable in polynomial time via linear

algebra computations. Some more such tractable parity problems were recently given by

Valiant [23]. Furthermore, the characteristic of the finite field may affect the tractability.

For example, Valiant showed that #7Pl-Rtw-Mon-3CNF (counting the number of satisfying

assignments of a planar read-twice monotone 3CNF formula, modulo 7) is solvable in P

by a holographic algorithm [22], while the parity or general version of the same problem is

⊕P-hard or #P-hard, respectively.

These two facts (some useful techniques cannot be adopted in finite fields and there exist

some more complicated tractable cases) make it more challenging to obtain a dichotomy

for #kCSP problems. In [14], Faben obtained a dichotomy theorem for unweighted #kCSP.

Essentially, there is no additional tractable case in his dichotomy theorem (except one

obvious case). However, when we allow functions to take weights in the ring Zk, some new

non-trivial tractable cases do emerge, which is similar to weighted vs unweighted #CSP

without modulus. When moving from unweighted to real or complex weighted cases, the

presence of both positive and negative values, and more generally, complex numbers, offers

the opportunity of interesting cancelations, which could lead to efficient algorithms. In all

such dichotomy theorems, roots of unity plays an essential roles [15, 8, 2, 7]. In finite fields,

interesting cancelations do appear and every nonzero element is a root of unity. For general

k, which may not be a prime, another subtlety is that the computation is performed in a

ring Zk rather than a field, where some nice property of a field no longer holds.

Our result starts from the finite field case, where the modulus k is an odd prime. In this

case, the final result is algebraically the same as the dichotomy for complex weighted #CSP.

H. Guo, S. Huang, P. Lu and M. Xia 251

The imaginary unit i =
√

−1 plays an important role in the dichotomy for the complex

weighted #CSP [8]. Here by “algebraically", we mean that we view i as a fourth primitive

root of unit which is also well defined in a finite field (or its extension). Then the dichotomy

for #kCSP is identical to that for complex weighted #CSP. Some of the proof techniques

are fairly similar to those in the proof for the complex weighted case [8], while others are

completely different. For example, the polynomial interpolation is one of the most important

techniques in [8], but it is not available for the finite field.

Hereby we briefly explain why the polynomial interpolation does not work. Consider

the simplest case where one would like to realize a unary function [1, x] by polynomial

interpolation. The answer to an instance of #pCSP including [1, x], is a polynomial in the

variable x. The degree of this polynomial is the number of occurrences of this function [1, x].

After replacing all of its occurrences by some realizable unary functions, we can evaluate

the polynomial in other points of the variable. Given enough such evaluations, we can get

a system of linear equations in the coefficients. The hope is to recover all coefficients by

solving this system as long as its not singular. Then we can evaluate the polynomial in the

original point x. In finite field Zp, we can reduce the degree of the polynomial to p − 1 by

Fermat’s Little Theorem. So we have p different coefficients to recover. To get a non-singular

linear system, we need to evaluate the polynomial on at least p points, which means we need

to construct at least p different unary functions. However, in Zp, there are only p essentially

different unary functions of the form [1, x], and thus the interpolation is not even needed if

we could construct all of them!

Another difference between the proof here and the one in [8] is that the norm of a complex

number is used in [8]. This is an analytical, rather than algebraical, property of complex

numbers, and is not available at all in finite fields. Such kinds of similarity and difference

between fields with characteristic zero and finite p is one main theme of algebraical geometry

[16]. It is interesting to observe similar phenomena in the complexity theory.

For general k, let k = pr1

1 pr2

2 · · · prm
m , where pi’s are distinct primes, be the prime factor-

ization of k. By the Chinese Remainder Theorem, to solve the problem of #kCSP(F) is

equivalent to solving all the #p
ri
i

CSP(F). For #pr CSP and p being an odd prime, we prove

a surprising result that #pr CSP(F) is tractable iff #pCSP(F) is, assuming #P is not equal

to P. One direction is trivial, namely if #pr CSP(F) can be solved in polynomial time, so

can #pCSP(F). The reduction in the other direction is not of the black box style. We need

the dichotomy for #pCSP(F) to state all the tractable cases, assuming #P is not equal to

P, and we also need to explicitly use algorithms to solve such tractable cases. The algorithm

for #pr CSP(F) has a time complexity which is nr times larger than that of the algorithm

for #pCSP(F). We use a different treatment to solve the case that p = 2.

2 Preliminaries

Let k be a given constant integer. In this paper we address the following type of counting

problems, called weighted Boolean #kCSP. Let F be a set of functions, where each f ∈ F

is a function f : {0, 1}r → Z, mapping Boolean variables to integers. We call r the arity of

f . The problem #kCSP(F) is defined as follows: The input is a finite set of constraints

on Boolean variables x1, x2, . . . , xn of the form fj(xij,1
, xij,2

, . . . , xij,rj
), where fj ∈ F . The

output is





∑

x1,x2,...,xn∈{0,1}

∏

j

fj(xij,1
, xij,2

, . . . , xij,rj
)



 mod k. (1)

STACS’11

252 The Complexity of Weighted Boolean #CSP Modulo k

Since we are only interested in the final value modulus k, it is equivalent to view that all the

functions take values in the ring Zk.

A symmetric function f of arity r on Boolean variables can be expressed by [f0, f1, . . . , fr],

where fj is the value of f on inputs of weight j. We also use ∆0, ∆1 to denote [1, 0] and [0, 1]

respectively. A binary function f is also expressed by the matrix

[

f(0, 0) f(0, 1)

f(1, 0) f(1, 1)

]

.

Suppose f is a function on input variables x1, x2, . . . , xr. fxs=c denotes the function

fxs=c(x1, . . . , xs−1, xs+1, . . . , xr) = f(x1, . . . , xs−1, c, xs+1, . . . , xr), and fxs=∗ denotes the

function fxs=∗ = fxs=0 + fxs=1.

The underlying relation of f is given by Rf = {X ∈ {0, 1}r|f(X) 6= 0}. We also view

relations as functions from {0, 1}r to {0, 1}. In this way, Rf could be viewed as the unweighted

version of f . If the modulus k is a prime, we could copy f k − 1 times to get fk−1 which, by

Fermat’s Little Theorem, is the unweighted version of it. In this way, we would be able to

use some existing results for unweighted #kCSP problems.

A relation R ⊆ {0, 1}r being affine means it is the affine linear subspace composed of

solutions of a system of affine linear equations, equivalently, if a, b, c ∈ R, then a ⊕ b ⊕ c ∈ R.

If Rf is affine, we say f has affine support.

One important starting point of our work are the hardness results for unweighted #kCSP

[14]. For the unweighted case, every function f takes 1 if the input X ∈ Rf , and takes 0

otherwise.

◮ Theorem 1. [14] Given an unweighted function set F , and an integer k, #kCSP(F)

is computable in polynomial time if all the relations in F are affine, or if k = 2 and all

functions in F are closed under complement. Otherwise it is #kP-hard 1.

As a corollary, we have the following hardness result.

◮ Corollary 2. #kCSP({[0, 1, 1]}) and #kCSP({[1, 1, 0]}) are #kP-hard for all k.

We also need the following Pinning Lemma for #kCSP.

◮ Lemma 3. For every F and odd prime k, #kCSP(F ∪ {[1, 0], [0, 1]}) ≤T #kCSP(F).

The proof is similar to that in [2].

We regard a function f and c·f as the same function, where c is a constant relatively prime

to the modulus k. Our study on #kCSP(F) starts with prime modulus. Doing computation

modulo a prime is similar to computing with complex numbers in many aspects. For a

given k, we define ik as an element that satisfies i2
k ≡ −1 (mod k). In some circumstances,

ik is an element of Zk, while in other situations, we need to extend the field and consider

Zk[x]/(x2 + 1). There are essentially two elements satisfying this property, but it doesn’t

matter which one we pick as ik.

We further define two classes of functions, for which the #kCSP problems are tractable.

Let X be an r+1 dimensional column vector (x1, x2, . . . , xr, 1) over Boolean field F2. Suppose

A is a Boolean matrix. χAX denotes the affine relation on inputs x1, x2, . . . , xr, whose value

is 1 if AX is the zero vector, 0 if AX is not the zero vector.

Ak denotes all functions which have the form χAX i
L1(X)+L2(X)+···+Ln(X)
k in modulo k,

where Lj is a 0-1 indicator function χ〈αj ,X〉, αj is a r + 1 dimensional vector, and the inner

1 We keep the statement as in Faben’s paper. Technically, in the case that k = 2k′ where k′ > 1 is odd,
and F are closed under complement and not all affine, we believe that we can only claim the problem is
#k′ P-hard.

H. Guo, S. Huang, P. Lu and M. Xia 253

product 〈·, ·〉 is over Z2. The additions among Lj(X) are just the usual addition in Z. Since

it is the power of i, it can be computed modulo 4, but not modulo 2. (Since we ignore the

global constant, all functions that are constant multiples of these functions are also in this

class.)

Pk denotes the class of functions which, in modulo k, can be expressed as a product of

unary functions, binary equality function ([1, 0, 1]), and binary disequality function ([0, 1, 0]).

It is often useful to view a #kCSP instance as a bipartite graph G = (U, V, E) where

U corresponds to the set of constraints and V corresponds to the set of variables. Edge

(u, v) ∈ E iff variable v appears in constraint u. A subgraph of G is simply a certain

combination of constraints in terms of CSP, and is sometimes called gadget. It is easy to see

that if there are several connected components in G, then the result of the whole instance

is exactly the product of that in the connected components. Therefore, it is sufficient to

consider connected #kCSP instances.

We also need some knowledge from number theory to deal with prime powers. Given k,

a is a quadratic residue modulo k if there exists y such that y2 ≡ a (mod k). Thus, ik exists

in Zk if and only if −1 is a quadratic residue modulo k.

◮ Lemma 4. Let p be an odd prime and k = pr. −1 is a quadratic residue modulo p if and

only if it is a quadratic residue modulo k.

Proof. The “if” direction is obvious. If there exist some ip ∈ [p] that i2
p ≡ −1 (mod p), we

consider the number jt = ip +tp, where t is an integer ranging from 0 to pr−1 −1. If there exist

t and t′ that j2
t ≡ j2

t′ (mod pr), it is easy to compute that pr−1|(p(t+t′)+2ip)(t−t′), because

|t − t′| < pr−1, p|p(t + t′) + 2ip. We get p|2ip, which is impossible. Thus the pr−1 values {j2
t

(mod pr)} are distinct and there must exist some t such that j2
t ≡ −1 (mod pr). ◭

3 Complexity in the finite field Zp

In this section, we deal with the complexity of counting CSP problems in the finite field

Zp. The parity case that p = 2, which is in fact the same as the unweighted case, has been

solved in [14] (Theorem 1). In the following we always assume that p is an odd prime. All

computations are done in the finite field Zp. For convenience, we often use the usual notation

= instead of ≡ (mod p).

The counting CSP problem for Pp or Ap is tractable. The algorithm for Pp is based on

decomposing functions into separated components that is easy to solve. The algorithm for

Ap is similar to that for the complex weighted #CSP problems. We need the following two

lemmas. The proof for the modulo case here is similar to the complex weighted case in [8].

◮ Lemma 5. Let F (x1, x2, . . . , xk) = χAX iL1(X)+L2(X)+···+Ln(X) ∈ A . If AX = 0 is

infeasible over Z2, then
∑

x1,x2,...,xk
F = 0. If AX = 0 is feasible, then in polynomial time,

we can construct another function H(y1, y2, . . . , ys) = iL′

1(Y)+L′

2(Y)+···+L′

n(Y) ∈ A , such that

0 ≤ s ≤ k, and
∑

x1,x2,...,xk
F =

∑

y1,y2,...,ys
H.

◮ Lemma 6. Let F (x1, x2, . . . , xk) = iL1(X)+L2(X)+···+Ln(X). Exactly one of the following

two statements hold:

1. (Congruity) There exists a constant c ∈ {1, −1, i, −i} such that for all x2, x3, . . . , xk ∈
{0, 1} we have F x1=1/F x1=0(x2, x3, . . . , xk) = c;

2. (Semi-congruity) There exists a constant c ∈ {1, i} and an affine subspace S of dimension

k − 2 on T = {(x2, x3, . . . , xk) | xi ∈ Z2}, such that F x1=1/F x1=0(x2, x3, . . . , xk) = c on

S, and F x1=1/F x1=0(x2, x3, . . . , xk) = −c on T − S.

STACS’11

254 The Complexity of Weighted Boolean #CSP Modulo k

We first apply Lemma 5 to get rid of the χAX factor, and then use the congruity or

semi-congruity property of constraint functions proved in Lemma 6 to eliminate variables

one by one. Details can be found in [8].

We will then show that for any other functions the problem is hard. Before the hardness

proof we will mention two constructions, which will be used throughout our proofs.

Given a function f and any positive integer k, we can simulate a function g such that

any entry of g is the corresponding entry of f to the kth power. This is done by connecting

corresponding edges of k copies of f with an equality of arity k + 1. Figure 1 is a simple

example when k = 2 and the arity of f is 3. The other construction is for binary functions.

Given two binary functions f and g, whose matrices are F and G respectively, we connect

them directly via a binary equality as shown in Figure 2. It is easy to check that the matrix

of the resulting function is FG.

ff

=3

=3 =3

Figure 1 Duplicate two copies of f

gf

=2

Figure 2 Directly connect two binary func-

tions

The starting point of our hardness proof is the following lemma. In the rest of this section

we may omit the subscripts of Ap and Pp when it is clear from context.

◮ Lemma 7. If [a, b, c] 6∈ A ∪P, #pCSP({[a, b, c]}) is #pP-hard. To be explicit, all tractable

functions [a, b, c] from A ∪ P have one of the following forms: [x, 0, y], [0, x, 0], [x2, xy, y2],

x[1, ±i, 1] or x[1, ±1, −1].

This lemma says, if restricted to one single symmetric binary function, a dichotomy

theorem holds. The same lemma also served as the hardness starting point for the complex

weighted dichotomy [8]. However, the proof techniques are completely different. The main

proof tool for the complex weighted dichotomy [8] is polynomial interpolation, which is not

available here as was explained in Section 1. Before proving this lemma, we state several

useful facts.

◮ Lemma 8. For any symmetric binary function [0, b, c] and a prime number p, where bc 6≡ 0

(mod p), #pCSP({[0, b, c]}) is #pP-hard.

Proof. Via the construction mentioned above, we can realize [0, bk, ck]. Taking k = p − 1,

by Fermat’s Little Theorem, it becomes [0, 1, 1]. By Corollary 2, the #pCSP problem is

#pP-hard. ◭

We also need the following lemma to realize new binary functions. The new binary

functions are not by an explicit construction but an existent argument, which crucially uses

the finiteness of the field.

H. Guo, S. Huang, P. Lu and M. Xia 255

◮ Lemma 9. For any non-degenerate 2 × 2 matrix A in Zp, there exists k such that Ak ≡ I

(mod p) where I is the identity matrix.

Proof. Since Zp is finite, there are finitely many non-degenerate 2 × 2 matrices. Thus, by

Pigeonhole Principle, there exists p and q such that p < q and Ap ≡ Aq (mod p). Taking

the smallest such pair and letting k = q − p, it is easy to see that Ak ≡ I (mod p). ◭

◮ Corollary 10. For any non-degenerate 2 × 2 matrix A in Zp, there exists a positive integer

k such that Ak ≡ A−1 (mod p).

◮ Lemma 11. Let F be a function of matrix

[

a b

c d

]

, where p ∤ abcd and a2d2 6≡ b2c2

(mod p). #pCSP({F}) is #pP-hard.

Proof. We can realize

[

a2 c2

b2 d2

]

by two copies of the function. Since a2d2 6= b2c2, this

matrix is non-degenerate. Thus by Corollary 10, we can realize (a2d2−b2c2)−1

[

d2 −c2

−b2 a2

]

.

As we consider the problem in the field Zp, (a2d2 − b2c2)−1 is just a constant factor and we

may ignore it. By the pinning Lemma 3, we can realize [d2, −c2], and hence [d2, 0, −c2], by

connecting it to a =3. Then the following function

[

a b

c d

] [

d2 0

0 −c2

] [

a c

b d

]

=

[

a2d2 − b2c2 acd2 − bc2d

acd2 − bc2d 0

]

,

or [a2d2 − b2c2, cd(ad − bc), 0] is realizable. Since p ∤ abcd and a2d2 6= b2c2, we have

a2d2 − b2c2 6= 0 and cd(ad − bc) 6= 0. By Lemma 8, #pCSP({F}) is #pP-hard. ◭

Now we can prove Lemma 7.

Proof. (Lemma 7) If a = 0, we know bc 6= 0, otherwise it is in one of the five exceptional

cases. So by Lemma 8, #pCSP({[a, b, c]}) is #pP-hard . The case c = 0 is symmetric. Since

[a, b, c] 6∈ A ∪ P, we know b 6= 0. Therefore we will assume in the following that abc 6= 0.

By Lemma 11, #pCSP({[a, b, c]}) is #pP-hard if b4 6= a2c2. Moreover, if b2 = ac, then

[a, b, c] ∈ P. Therefore in the following, we assume that b2 = −ac. Since [a, b, c] /∈ A ∪ P,

we must have that a 6= ±c.

Next we connect two copies of [a, b, c] to realize [a2 + b2, ab + bc, b2 + c2]. Since b2 = −ac,

we actually have [a(a − c), b(a + c), c(c − a)] , [a′, b′, c′]. It is easy to verify that b′4 6= a′2c′2,

and thus #pCSP({[a, b, c]}) ≥T #pCSP({[a′, b′, c′]}), which is #pP-hard . ◭

◮ Lemma 12. If RF is not affine, then #pCSP({F}) is #pP-hard.

Proof. We can easily reduce the unweighted case to the weighted one, the hardness follows.

◭

Now we come to the two key lemmas for the hardness proof. Both proofs inductively

reduce the arity of a function. Suppose F 6⊆ A and F 6⊆ P. Thus there exists F 6∈ A

and G 6∈ P, where F, G ∈ F . (It is possible that G = F). From F and G, we recursively

simulate functions with smaller arity, keeping the property of being not in A and not in P

respectively. The proofs of these two lemmas are very similar to those in [8]. Due to space

limitation, we give a sketch of proof for Lemma 14 in the Appendix and omit the proof for

Lemma 13.

STACS’11

256 The Complexity of Weighted Boolean #CSP Modulo k

◮ Lemma 13. If F 6∈ A , then either #pCSP({F}) is #pP-hard, or we can simulate a unary

function H /∈ A , that is, there is a reduction from #pCSP({F, H}) to #pCSP({F}).

◮ Lemma 14. For any function F 6∈ P, either #pCSP({F}) is #pP-hard , or we can

simulate, using F , a function [a, 0, 1, 0] (or [0, 1, 0, a]), where a 6= 0, or a binary function

H 6∈ P having no zero values.

Now we are ready to prove the main lemma.

◮ Lemma 15. Let p be an odd prime, and F a class of functions mapping Boolean inputs

to [p]. If F ⊆ A or F ⊆ P, #pCSP(F) is computable in polynomial time. Otherwise,

#pCSP(F) is #pP-hard .

Proof. For A and P, their polynomial time algorithms are given above.

If F 6⊆ A and F 6⊆ P, by Lemma 13, either #pCSP(F) is #pP-hard , or we can

simulate a function F = [1, λ] /∈ A . In particular λ /∈ {0, ±1, ±i}. By Lemma 14, either

#pCSP(F) is #pP-hard , or we can simulate a function P = [a, 0, 1, 0], or P ′ = [0, 1, 0, a],

where a 6= 0, or a binary function H 6∈ P having no zero values.

Firstly, we prove #pCSP({F, P}) is #pP-hard . Clearly P x1=∗ = [a, 1, 1]. If a 6∈
{1, −1}, it is #pP-hard by Lemma 7. If a ∈ {1, −1}, we can construct Q(x1, x2) =
∑

x3
P (x1, x2, x3)F (x3) = [a, λ, 1], which is [±1, λ, 1]. Both of them are #pP-hard by

Lemma 7. The proof for #pCSP({F, P ′}) is the same.

Secondly, we prove #pCSP({F, H}) is #pP-hard . After normalizing, we may suppose

H =

[

1 x

y z

]

, where xyz 6= 0, and z 6= xy. There are two cases, depending on whether

z = −xy.

For the case z 6= −xy, we conclude that it is hard by applying Lemma 11 on H.

For the case z = −xy, we construct some binary functions with an integer parameter s

as follows:
∑

x3

H(x1, x3)H(x2, x3)(F (x3))s = [1 + λsx2, (y + λsxz), (y2 + λsz2)]

= [1 + λsx2, y(1 − λsx2), y2(1 + λsx2)].

As λ is not a power of i, at most one of the two values x2 and λx2 can be a power of i. Now

we choose s = 0 or s = 1 above so that λsx2 6∈ {±1, ±i}.

After normalizing, we may write the function [1 + λsx2, y(1 − λsx2), y2(1 + λsx2)] as

[1, y(1 − λsx2)(1 + λsx2)−1, y2], noticing that 1 + λsx2 6= 0. We claim that this function is

not one of the five tractable cases from Lemma 7. Since there are no zero entries, clearly it is

not the first two cases. It has rank 2, therefore it is not the third case. If it were the fourth

tractable case [1, ±i, 1], then y = ±1, and (1 − λsx2)(1 + λsx2)−1 = ±i. This implies that

λsx2 = ±i, which is impossible. If [1, y(1 − λsx2)(1 + λsx2)−1, y2] = [1, ±1, −1], the fifth

tractable case, then y = ±i, and again (1 − λsx2)(1 + λsx2)−1 = ±i, also impossible. ◭

4 Dichotomy for a general integer k

We first deal with the case when k is a power of an odd prime. Then we use Chinese

Remainder Theorem to prove hardness for other composite numbers. Beigel and Gill have

shown that the class #pr P is the same as #pP and for a composite k having two or more

prime factors, the modulo counting class is a union of counting classes modulo each of its

prime factors [1]. Therefore, we only talk about #pP-hard for prime p.

H. Guo, S. Huang, P. Lu and M. Xia 257

◮ Lemma 16. Suppose p is an odd prime, k = pr for some integer r ≥ 1. F is a finite set

of constraint functions. If, after taking modulus p, F ⊆ Ap or F ⊆ Pp, #kCSP(F) has

polynomial time algorithms. Otherwise, #kCSP(F) is #pP-hard .

Proof. If #pCSP(F) is #pP-hard, then #kCSP(F) must be #pP-hard. Therefore we only

need to show the tractable part. We decompose every function f ∈ F into the sum of two

functions gf and hf , such that all values of hf are multiples of p, and gf ∈ Pk or gf ∈ Ak,

depending on whether f ∈ Pp or f ∈ Ap. Such a decomposition is always possible. If

f ∈ Pp, assuming that f =
∏

fi, where fi is either unary, or binary equality or disequality,

the we can simply take gf =
∏

fi in modulo k. Since gf ≡ f (mod p), we can see that values

of hf = f − gf are multiples of p. On the other hand, if f ∈ Ap, then f could be expressed

as f = χAX i

∑

Li(X)
p . Let gf = χAX i

∑

Li(X)

k . It is easy to see that gf ≡ f (mod p), and hf

satisfies our condition.

Given the decomposition, we can express the final summation in the following way
∑

x1,x2,...,xn∈{0,1}

∏

f(xi1
, xi2

, . . . , xir
) mod k

=
∑

x1,x2,...,xn∈{0,1}

∏

(gf (xi1
, xi2

, . . . , xir
) + hf (xi1

, xi2
, . . . , xir

)) mod k

=
∑

f ′

1
∈{gf1

,hf1
}

· · ·
∑

f ′

n∈{gfn ,hfn }





∑

x1,x2,...,xn∈{0,1}

∏

f ′
i(xi1

, xi2
, . . . , xir

)



 mod k

We only need to consider the assignments of functions such that the summation in the

parenthesis is nonzero. To ensure that this is nonzero, no more than r of the functions f ′
i

can be assigned hfi
. The total number of such combinations is of order O(nr+1).

For every such combination, assume that f ′
1, . . . , f ′

r are assigned. Since F is finite, the

degree of the functions is bounded. Therefore, constantly many variables are involved in f ′
1,

. . . , f ′
r. We can list all assignments to these variables in constant time. We can express each

assignment with the help of Lemma 3, and obtain a new instance in #kCSP(F ′) such that

F ′ ⊆ A or F ′ ⊆ P, depending on the case of F . Therefore, we can compute the value of

these instances in polynomial time, and thus we can compute the value of the whole instance

efficiently. ◭

Now we deal with k = 2r. We need the following claim to establish the connection

between the weighted and unweighted case.

◮ Lemma 17. For any positive integer r and t, (1 + 2t)2r ≡ 1 (mod 2r).

Therefore, we only need to duplicate the weighted functions k = 2r times to obtain an

unweighted function. Note this process actually converts all odd values to 1, and all even

values to 0. Then we have the following result for k = 2r.

◮ Lemma 18. If k = 2r and r > 1, then #kCSP(F) is #2P-hard, unless all functions in

F are affine modulo 2, for which we have a polynomial time algorithm.

Proof. Hardness can be proved by considering the unweighted version of F and applying

Theorem 1. Algorithm for an affine F is similar to that in Lemma 16, except that for a

given combination and assignment, we calculate the value of the gadget directly instead of

applying the Pinning Lemma. This can be done efficiently according to [8]. ◭

Based on Lemma 15, Lemma 16, Lemma 18 and the Chinese Remainder Theorem, we

conclude with our main result:

STACS’11

258 The Complexity of Weighted Boolean #CSP Modulo k

◮ Theorem 19. Let k = 2r0pr1

1 pr2

2 · · · prm
m , where pi’s are distinct odd primes, r0 ≥ 0, and

ri ≥ 1 for i = 1, 2, ..., m. Let F be a set of functions. #kCSP(F) is in P if one of the

following three conditions is satisfied.

1. r0 = 0. F ⊆ Api
or F ⊆ Ppi

for all i ∈ [m].

2. r0 = 1. F ⊆ A2 or every function in F are closed under complement after mod 2.

F ⊆ Api
or F ⊆ Ppi

for all i ∈ [m].

3. r0 ≥ 2. F ⊆ A2. F ⊆ Api
or F ⊆ Ppi

for all i ∈ [m].

Otherwise the problem is #pP-hard for some p|k. More specific, we have

For i ∈ [m], if F 6⊆ Api
and F 6⊆ Ppi

, then #kCSP(F) is #pi
P-hard.

If r0 = 1, F 6⊆ A2, and it is not the case that every function in F are closed under

complement after mod 2, then #kCSP(F) is #2P-hard.

If r0 ≥ 2 and F 6⊆ A2, then #kCSP(F) is #2P-hard.

The statement of the main theory is a little complicated due to technique reason 2 . In

terms of dichotomy, we have a simple statement.

◮ Theorem 20. Let k > 1 and F be a set of functions. Then #kCSP(F) is either in P or

#pP-hard for some p|k.

Acknowledgements Work partly done when Heng Guo was a master student in Peking

University, and Sangxia Huang was an intern student at Microsoft Research Asia and an

undergraduate student of Shanghai Jiao Tong University. Sangxia Huang is supported by

ERC Advanced investigator grant 226203. Mingji Xia is supported by NSFC 61003030 and

60970003, the CAS start-up fund for CAS President Scholarship winner, the Hundred-Talent

program of Chinese Academy of Sciences under Angsheng Li, and the Grand Challenge

Program “Network Algorithms and Digital Information” of ISCAS.

References

1 Richard Beigel and John Gill. Counting classes: Thresholds, parity, mods, and fewness.

Theor. Comput. Sci., 103(1):3–23, 1992.

2 A. Bulatov, M. Dyer, L.A. Goldberg, M. Jalsenius, and D. Richerby. The complexity of

weighted boolean #CSP with mixed signs. Theoretical Computer Science, 410(38-40):3949–

3961, 2009.

3 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-

element set. J. ACM, 53(1):66–120, 2006.

4 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. In Luca

Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,

and Igor Walukiewicz, editors, ICALP (1), volume 5125 of Lecture Notes in Computer

Science, pages 646–661. Springer, 2008.

5 Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting

constraint satisfaction problem. In FOCS, pages 562–571. IEEE Computer Society, 2003.

6 Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. In Josep Díaz,

Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, ICALP, volume 3142 of

Lecture Notes in Computer Science, pages 294–306. Springer, 2004.

2 The statement of our dichotomy is slightly different with Faben’s [14]. The dichotomy by Faben stated
that a problem is either P or #kP-hard. This is because in the unweighted case, the criterion for
different odd prime p is identical.

H. Guo, S. Huang, P. Lu and M. Xia 259

7 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: A di-

chotomy theorem. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer

auf der Heide, and Paul G. Spirakis, editors, ICALP (1), volume 6198 of Lecture Notes in

Computer Science, pages 275–286. Springer, 2010.

8 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holant problems and counting CSP. In Michael

Mitzenmacher, editor, STOC, pages 715–724. ACM, 2009.

9 N. Creignou, S. Khanna, and M. Sudan. Complexity classifications of boolean constraint

satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications, 2001.

10 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting prob-

lems. Inf. Comput., 125(1):1–12, 1996.

11 Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. The complexity of weighted

boolean #CSP. SIAM J. Comput., 38(5):1970–1986, 2009.

12 Martin E. Dyer, Leslie Ann Goldberg, and Mike Paterson. On counting homomorphisms

to directed acyclic graphs. J. ACM, 54(6), 2007.

13 Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homomorph-

isms. Random Struct. Algorithms, 17(3-4):260–289, 2000.

14 John Faben. The complexity of counting solutions to generalised satisfiability problems

modulo k. CoRR, abs/0809.1836, 2008.

15 Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity

dichotomy for partition functions with mixed signs. In STACS, pages 493–504, 2009.

16 R. Hartshorne. Algebraic geometry. springer Verlag, 1977.

17 Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–

171, 1975.

18 Christos H. Papadimitriou and Stathis Zachos. Two remarks on the power of counting.

In Proceedings of the 6th GI-Conference on Theoretical Computer Science, pages 269–276,

1982.

19 T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual

ACM symposium on Theory of computing, page 226. ACM, 1978.

20 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,

8:189–201, 1979.

21 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Com-

put., 8(3):410–421, 1979.

22 Leslie G. Valiant. Accidental algorthims. In FOCS ’06: Proceedings of the 47th Annual

IEEE Symposium on Foundations of Computer Science, pages 509–517, Washington, DC,

USA, 2006. IEEE Computer Society.

23 Leslie G. Valiant. Some observations on holographic algorithms. In Alejandro López-Ortiz,

editor, LATIN, volume 6034 of Lecture Notes in Computer Science, pages 577–590. Springer,

2010.

A Proof of Lemma 14

Proof. Suppose F has arity r. Since P contains all unary functions and F 6∈ P, r ≥ 2.

Define an |RF |×r {0, 1}-matrix whose rows list every element of RF , and columns correspond

to x1, . . . , xr.

We first remove any column which is all-0 or all-1 and update the table to RF xi=0 or

RF xi=1 , respectively. If two columns are identical or are complementary in every bit, we

remove one of them and update the table to RF
xj =∗ , where j corresponds to the column

removed. We remove columns as long as possible. It is easy to see that this removal process

maintains the property of not belonging to P.

STACS’11

260 The Complexity of Weighted Boolean #CSP Modulo k

Now we suppose there is some G 6∈ P where no more columns can be removed by the

above process. There must be some columns left in the table, otherwise the function just

before the last column removal is a unary function, hence in P. In fact G being not in P,

the arity of G is ≥ 2. For simplicity we still denote it by r. We have two cases:

Case 1: |RG| < 2r. By Lemma 12, we may assume RG is affine, given by an affine linear

system AX = 0. We have shown that |RG| 6= 0, as some columns remain. Since G is not

unary, the table has more than one columns. If |RG| = 1, any two columns (of length one)

must be identical or complementary and the removal process should have continued. Thus

|RG| > 1. W.l.o.g. assume x1, . . . , xs are free variables in AX = 0 and xs+1, . . . , xk are

dependent variables. |RG| = 2s is a power of 2. We have shown that s ≥ 1. By |RG| < 2r,

s < r. We claim s ≥ 2. If instead s = 1, then every x2, . . . , xr is dependent on x1 on RG, so

the column at x2 must be an all-0 or all-1 column, or be identical or complementary to x1.

The expression of xr in terms of x1, . . . , xs must involve at least two non-zero coefficients;

otherwise the column at xr must be an all-0 or all-1 column, or be identical or complementary

to another column. W.l.o.g., say the coefficients of x1, x2 are non-zero.

Let P (x1, x2, xr) = Gx3=0,...,xs=0,xs+1=∗,...,xr−1=∗ (these two lists of variables could be

empty). It can be verified that RP = χx1⊕x2⊕xr=c for some c ∈ Z2.

The affine linear equation x1 ⊕ x2 ⊕ xr = c is symmetric. Now we define a “symmetrized”

function H(x1, x2, xr) =
∏

σ∈S3
P (xσ(1), xσ(2), xσ(r)), where S3 is the symmetry group on

three letters {1, 2, k}. This H is a symmetric function on (x1, x2, xr) and has support

RH = RP . Thus, after normalizing, H = [a, 0, 1, 0] or [0, 1, 0, a] where a 6= 0. We remark

that this ternary function H 6∈ P.

Case 2: |RG| = 2r. If for all 1 ≤ i ≤ r, the ratio Gxi=1/Gxi=0 is a constant function

ci, (since |RG| = 2r there are no divisions by zeros), then G = c0 · ∏

1≤i≤r Ui(ci), where the

constant c0 = Gx1=0,...,xr=0, and Ui(ci) is the unary function [1, ci] on xi. This gives G ∈ P,

a contradiction.

Now suppose for some i, Gxi=1/Gxi=0 is not a constant function. W.l.o.g., assume that

i = 1. The Boolean hypercube on (x2, . . . , xr) ∈ {0, 1}r−1 is connected by edges which flip

just one bit. W.l.o.g., suppose that

Gx1=1/Gx1=0(0, a3, . . . , ar) 6= Gx1=1/Gx1=0(1, a3, . . . , ar). Set x3 = a3, . . . , xr = ar, we

get a binary function H(x1, x2) = G(x1, x2, a3, . . . , ar). We have that H(1, 0)/H(0, 0) 6=

H(1, 1)/H(0, 1), hence the rank of H =

[

H(0, 0) H(0, 1)

H(1, 0) H(1, 1)

]

is 2.

If H were in P, then partition the variable set according to connectivity by binary

equality and disequality functions. If any connected component has at least 2 variables, we

can set values to these 2 variables so that H = 0. But H is never zero. Then each component

must be a single variable and H is defined by a product of unary functions. But such a

function has rank 1. This contradiction completes our proof. ◭

	Introduction
	Preliminaries
	Complexity in the finite field Zp
	Dichotomy for a general integer k
	Proof of Lemma 14

